export const blobVert = ` uniform vec2 u_mouse; uniform vec2 u_mouse_delta; uniform float u_t; uniform bool u_is_init; uniform float u_audio_high; uniform float u_audio_mid; uniform float u_audio_bass; uniform float u_audio_level; uniform float u_audio_history; varying float v_noise; #if defined(IS_PBR) && defined(HAS_CUBEMAP) uniform mat4 u_view_matrix_inverse; varying vec3 v_world_normal; varying vec3 v_eye_pos; varying vec3 v_object_pos; varying vec3 v_pos; varying vec3 v_normal; varying vec3 v_world_pos; varying vec2 v_uv; #endif #if defined(HAS_SHADOW) uniform mat4 u_shadow_matrix; varying vec4 v_shadow_coord; const mat4 biasMat = mat4( 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); #endif // (Keijiro) This shader was slightly modified from the original version. // It's recommended to use the original version for other purposes. // // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289((x * 34.0 + 1.0) * x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float snoise(vec3 v) { const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0); // First corner vec3 i = floor(v + dot(v, C.yyy)); vec3 x0 = v - i + dot(i, C.xxx); // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min(g.xyz, l.zxy); vec3 i2 = max(g.xyz, l.zxy); // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; vec3 x3 = x0 - 0.5; // Permutations i = mod289(i); // Avoid truncation effects in permutation vec4 p = permute(permute(permute(i.z + vec4(0.0, i1.z, i2.z, 1.0)) + i.y + vec4(0.0, i1.y, i2.y, 1.0)) + i.x + vec4(0.0, i1.x, i2.x, 1.0)); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) vec4 j = p - 49.0 * floor(p * (1.0 / 49.0)); // mod(p,7*7) vec4 x_ = floor(j * (1.0 / 7.0)); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ * (2.0 / 7.0) + 0.5 / 7.0 - 1.0; vec4 y = y_ * (2.0 / 7.0) + 0.5 / 7.0 - 1.0; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4(x.xy, y.xy); vec4 b1 = vec4(x.zw, y.zw); //vec4 s0 = vec4(lessThan(b0, 0.0)) * 2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1, 0.0)) * 2.0 - 1.0; vec4 s0 = floor(b0) * 2.0 + 1.0; vec4 s1 = floor(b1) * 2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy; vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww; vec3 g0 = vec3(a0.xy, h.x); vec3 g1 = vec3(a0.zw, h.y); vec3 g2 = vec3(a1.xy, h.z); vec3 g3 = vec3(a1.zw, h.w); // Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(g0, g0), dot(g1, g1), dot(g2, g2), dot(g3, g3))); g0 *= norm.x; g1 *= norm.y; g2 *= norm.z; g3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0); m = m * m; m = m * m; vec4 px = vec4(dot(x0, g0), dot(x1, g1), dot(x2, g2), dot(x3, g3)); return (42.0 * dot(m, px) + 1.) * .5; } vec3 norm(in vec3 _v){ return length(_v) > .0 ? normalize(_v) : vec3(.0); } mat4 rotationMatrix(vec3 axis, float angle) { axis = norm(axis); float s = sin(angle); float c = cos(angle); float oc = 1.0 - c; return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0); } void main(){ float m_bass = u_audio_bass; float m_mid = u_audio_mid; float m_high = u_audio_high; float m_level = u_audio_level; float m_history = u_audio_history; vec3 m_noise_seed = position.xyz; float m_noise_complexity = .6; float m_noise_time = u_audio_history * .3; float m_noise_scale = 1.2 + m_level; vec3 m_tangent_vector = .00001 * norm(cross(position, vec3(1., 0., 0.)) + cross(position, vec3(0., 1., 0.))); vec3 m_bitangent_vector = .00001 * norm(cross(m_tangent_vector, position)); float m_fbm = 0.; float m_fbm_tangent = 0.; float m_fbm_bitangent = 0.; const int m_noise_oct = 5; for(int i = 0; i < m_noise_oct; i++){ m_fbm += snoise( (m_noise_seed) * m_noise_complexity * float(i) + m_noise_time * float(i) ); m_fbm_tangent += snoise( (m_noise_seed + m_tangent_vector) * m_noise_complexity * float(i) + m_noise_time * float(i) ); m_fbm_bitangent += snoise( (m_noise_seed + m_bitangent_vector) * m_noise_complexity * float(i) + m_noise_time * float(i) ); } m_fbm /= (float(m_noise_oct)); m_fbm_tangent /= (float(m_noise_oct)); m_fbm_bitangent /= (float(m_noise_oct)); vec3 m_pos = position + norm(position) * m_fbm * m_noise_scale; vec3 m_pos_tangent = (position + m_tangent_vector) + norm(position + m_tangent_vector) * m_fbm * m_noise_scale; vec3 m_pos_bitangent = (position + m_bitangent_vector) + norm(position + m_bitangent_vector) * m_fbm * m_noise_scale; vec3 m_normal = norm(cross( (m_pos_tangent - m_pos), (m_pos_bitangent - m_pos))); // get color float m_noise_col = pow(abs(1.-m_fbm), 3.5); v_noise = m_noise_col + m_noise_col * m_level * 2.2; // rand direction float _dirx = snoise(m_pos.zyx * 4. + m_noise_time * .01); float _diry = snoise(m_pos.yzx * 4. + m_noise_time * .01); float _dirz = snoise(m_pos.zxy * 4. + m_noise_time * .01); vec3 _rand_point_dir = vec3(_dirx, _diry, _dirz); _rand_point_dir = 1.-2.*_rand_point_dir; #if defined(IS_WIRE) || defined(IS_POINTS) // size gl_PointSize = pow(abs(m_fbm), 6.) * 1000. * m_high; m_pos += (_rand_point_dir * .3 * m_level); #endif #if defined(IS_POP) gl_PointSize *= .5; m_pos *= 1.1 * m_fbm; m_pos = vec3(rotationMatrix(vec3(.3,1.,.2), .5*m_history) * vec4(m_pos, 1.)); #endif #if defined(IS_POP_OUT) gl_PointSize *= .5; m_pos *= 1.2; m_pos += (_rand_point_dir*_rand_point_dir * .2 * m_high); m_pos = vec3(rotationMatrix(vec3(1.,.2,.3), -.5*m_history) * vec4(m_pos, 1.)); #endif #if defined(IS_PBR) && defined(HAS_CUBEMAP) vec4 _world_pos = modelMatrix * vec4(m_pos, 1.); vec4 _view_pos = viewMatrix * _world_pos; v_object_pos = m_pos; v_pos = _view_pos.xyz; v_normal = normalMatrix * m_normal; v_world_pos = _world_pos.xyz; v_world_normal = vec3(u_view_matrix_inverse * vec4(v_normal, 0.)); v_eye_pos = -1. * vec3(u_view_matrix_inverse * (_view_pos - vec4(0.,0.,0.,1.)) ); v_uv = uv; #endif #if defined(HAS_SHADOW) v_shadow_coord = (biasMat * u_shadow_matrix) * vec4(m_pos, 1.); #endif gl_Position = projectionMatrix * modelViewMatrix * vec4(m_pos, 1.); } `