hacktricks/macos-hardening/macos-security-and-privilege-escalation/macos-files-folders-and-binaries/universal-binaries-and-mach-o-format.md

17 KiB

macOS Binarios universales y formato Mach-O

☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥

Información básica

Los binarios de Mac OS generalmente se compilan como binarios universales. Un binario universal puede soportar múltiples arquitecturas en el mismo archivo.

Estos binarios siguen la estructura Mach-O que básicamente está compuesta por:

  • Encabezado
  • Comandos de carga
  • Datos

Encabezado Fat

Busca el archivo con: mdfind fat.h | grep -i mach-o | grep -E "fat.h$"

#define FAT_MAGIC	0xcafebabe
#define FAT_CIGAM	0xbebafeca	/* NXSwapLong(FAT_MAGIC) */

struct fat_header {
	uint32_t	magic;		/* FAT_MAGIC or FAT_MAGIC_64 */
	uint32_t	nfat_arch;	/* número de estructuras que siguen */
};

struct fat_arch {
cpu_type_t	cputype;	/* especificador de CPU (int) */
cpu_subtype_t	cpusubtype;	/* especificador de máquina (int) */
uint32_t	offset;		/* desplazamiento del archivo a este objeto */
uint32_t	size;		/* tamaño de este objeto */
uint32_t	align;		/* alineación como una potencia de 2 */
};

El encabezado tiene los bytes mágicos seguidos del número de arquitecturas que el archivo contiene (nfat_arch) y cada arquitectura tendrá una estructura fat_arch.

Verifícalo con:

% file /bin/ls
/bin/ls: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit executable x86_64] [arm64e:Mach-O 64-bit executable arm64e]
/bin/ls (for architecture x86_64):	Mach-O 64-bit executable x86_64
/bin/ls (for architecture arm64e):	Mach-O 64-bit executable arm64e

% otool -f -v /bin/ls
Fat headers
fat_magic FAT_MAGIC
nfat_arch 2
architecture x86_64
    cputype CPU_TYPE_X86_64
cpusubtype CPU_SUBTYPE_X86_64_ALL
capabilities 0x0
    offset 16384
    size 72896
    align 2^14 (16384)
architecture arm64e
    cputype CPU_TYPE_ARM64
cpusubtype CPU_SUBTYPE_ARM64E
capabilities PTR_AUTH_VERSION USERSPACE 0
    offset 98304
    size 88816
    align 2^14 (16384)

o utilizando la herramienta Mach-O View:

Como podrás pensar, generalmente un binario universal compilado para 2 arquitecturas duplica el tamaño de uno compilado para solo 1 arquitectura.

Encabezado Mach-O

El encabezado contiene información básica sobre el archivo, como bytes mágicos para identificarlo como un archivo Mach-O e información sobre la arquitectura objetivo. Puedes encontrarlo en: mdfind loader.h | grep -i mach-o | grep -E "loader.h$"

#define	MH_MAGIC	0xfeedface	/* the mach magic number */
#define MH_CIGAM	0xcefaedfe	/* NXSwapInt(MH_MAGIC) */
struct mach_header {
uint32_t	magic;		/* mach magic number identifier */
cpu_type_t	cputype;	/* cpu specifier (e.g. I386) */
cpu_subtype_t	cpusubtype;	/* machine specifier */
uint32_t	filetype;	/* type of file (usage and alignment for the file) */
uint32_t	ncmds;		/* number of load commands */
uint32_t	sizeofcmds;	/* the size of all the load commands */
uint32_t	flags;		/* flags */
};

#define MH_MAGIC_64 0xfeedfacf /* the 64-bit mach magic number */
#define MH_CIGAM_64 0xcffaedfe /* NXSwapInt(MH_MAGIC_64) */
struct mach_header_64 {
uint32_t	magic;		/* mach magic number identifier */
int32_t		cputype;	/* cpu specifier */
int32_t		cpusubtype;	/* machine specifier */
uint32_t	filetype;	/* type of file */
uint32_t	ncmds;		/* number of load commands */
uint32_t	sizeofcmds;	/* the size of all the load commands */
uint32_t	flags;		/* flags */
uint32_t	reserved;	/* reserved */
};

Tipos de archivos:

  • MH_EXECUTE (0x2): Ejecutable Mach-O estándar
  • MH_DYLIB (0x6): Una biblioteca enlazada dinámicamente Mach-O (es decir, .dylib)
  • MH_BUNDLE (0x8): Un paquete Mach-O (es decir, .bundle)
# Checking the mac header of a binary
otool -arch arm64e -hv /bin/ls
Mach header
magic  cputype cpusubtype  caps    filetype ncmds sizeofcmds      flags
MH_MAGIC_64    ARM64          E USR00     EXECUTE    19       1728   NOUNDEFS DYLDLINK TWOLEVEL PIE

O utilizando Mach-O View:

Comandos de carga de Mach-O

Esto especifica la estructura del archivo en memoria. Contiene la ubicación de la tabla de símbolos, el contexto del hilo principal al comienzo de la ejecución y las bibliotecas compartidas requeridas.
Los comandos básicamente instruyen al cargador dinámico (dyld) cómo cargar el binario en memoria.

Todos los comandos de carga comienzan con una estructura load_command, definida en el loader.h mencionado anteriormente:

struct load_command {
uint32_t cmd;           /* type of load command */
uint32_t cmdsize;       /* total size of command in bytes */
};

Hay alrededor de 50 tipos diferentes de comandos de carga que el sistema maneja de manera diferente. Los más comunes son: LC_SEGMENT_64, LC_LOAD_DYLINKER, LC_MAIN, LC_LOAD_DYLIB y LC_CODE_SIGNATURE.

LC_SEGMENT/LC_SEGMENT_64

{% hint style="success" %} Básicamente, este tipo de comando de carga define cómo cargar los segmentos __TEXT (código ejecutable) y __DATA (datos para el proceso) según los desplazamientos indicados en la sección de Datos cuando se ejecuta el binario. {% endhint %}

Estos comandos definen segmentos que se mapean en el espacio de memoria virtual de un proceso cuando se ejecuta.

Existen diferentes tipos de segmentos, como el segmento __TEXT, que contiene el código ejecutable de un programa, y el segmento __DATA, que contiene datos utilizados por el proceso. Estos segmentos se encuentran en la sección de datos del archivo Mach-O.

Cada segmento se puede dividir aún más en múltiples secciones. La estructura del comando de carga contiene información sobre estas secciones dentro del segmento correspondiente.

En el encabezado primero se encuentra el encabezado del segmento:

struct segment_command_64 { /* para arquitecturas de 64 bits */
uint32_t	cmd;		/* LC_SEGMENT_64 */
uint32_t	cmdsize;	/* incluye el tamaño de las estructuras section_64 */
char		segname[16];	/* nombre del segmento */
uint64_t	vmaddr;		/* dirección de memoria de este segmento */
uint64_t	vmsize;		/* tamaño de memoria de este segmento */
uint64_t	fileoff;	/* desplazamiento del archivo de este segmento */
uint64_t	filesize;	/* cantidad a mapear desde el archivo */
int32_t		maxprot;	/* protección VM máxima */
int32_t		initprot;	/* protección VM inicial */
	uint32_t	nsects;		/* número de secciones en el segmento */
	uint32_t	flags;		/* banderas */
};

Ejemplo de encabezado de segmento:

Este encabezado define el número de secciones cuyos encabezados aparecen después de él:

struct section_64 { /* for 64-bit architectures */
char		sectname[16];	/* name of this section */
char		segname[16];	/* segment this section goes in */
uint64_t	addr;		/* memory address of this section */
uint64_t	size;		/* size in bytes of this section */
uint32_t	offset;		/* file offset of this section */
uint32_t	align;		/* section alignment (power of 2) */
uint32_t	reloff;		/* file offset of relocation entries */
uint32_t	nreloc;		/* number of relocation entries */
uint32_t	flags;		/* flags (section type and attributes)*/
uint32_t	reserved1;	/* reserved (for offset or index) */
uint32_t	reserved2;	/* reserved (for count or sizeof) */
uint32_t	reserved3;	/* reserved */
};

Ejemplo de encabezado de sección:

Si agregas el desplazamiento de sección (0x37DC) + el desplazamiento donde comienza la arquitectura, en este caso 0x18000 --> 0x37DC + 0x18000 = 0x1B7DC

También es posible obtener información de encabezados desde la línea de comandos con:

otool -lv /bin/ls

Segmentos comunes cargados por este comando:

  • __PAGEZERO: Instruye al kernel a mapear la dirección cero para que no se pueda leer, escribir o ejecutar. Las variables maxprot y minprot en la estructura se establecen en cero para indicar que no hay derechos de lectura-escritura-ejecución en esta página.
  • Esta asignación es importante para mitigar las vulnerabilidades de referencia a puntero nulo.
  • __TEXT: Contiene código ejecutable con permisos de lectura y ejecución (sin escritura). Secciones comunes de este segmento:
  • __text: Código binario compilado
  • __const: Datos constantes
  • __cstring: Constantes de cadena
  • __stubs y __stubs_helper: Involucrados durante el proceso de carga de bibliotecas dinámicas
  • __DATA: Contiene datos que son legibles y escribibles (sin ejecución).
  • __data: Variables globales (que han sido inicializadas)
  • __bss: Variables estáticas (que no han sido inicializadas)
  • __objc_* (__objc_classlist, __objc_protolist, etc): Información utilizada por el tiempo de ejecución de Objective-C
  • __LINKEDIT: Contiene información para el enlazador (dyld) como "entradas de tabla de símbolos, cadenas y reubicación".
  • __OBJC: Contiene información utilizada por el tiempo de ejecución de Objective-C. Aunque esta información también puede encontrarse en el segmento __DATA, dentro de varias secciones __objc_*.

LC_MAIN

Contiene el punto de entrada en el atributo entryoff. En el momento de carga, dyld simplemente suma este valor a la base del binario en memoria y luego salta a esta instrucción para iniciar la ejecución del código del binario.

LC_CODE_SIGNATURE

Contiene información sobre la firma de código del archivo Mach-O. Solo contiene un desplazamiento que apunta al bloque de firma. Esto suele estar al final del archivo.
Sin embargo, puedes encontrar información sobre esta sección en esta publicación de blog y en este gist.

LC_LOAD_DYLINKER

Contiene la ruta del ejecutable del enlazador dinámico que mapea bibliotecas compartidas en el espacio de direcciones del proceso. El valor siempre se establece en /usr/lib/dyld. Es importante tener en cuenta que en macOS, el mapeo de dylib ocurre en modo de usuario, no en modo de kernel.

LC_LOAD_DYLIB

Este comando de carga describe una dependencia de biblioteca dinámica que instruye al cargador (dyld) a cargar y enlazar dicha biblioteca. Hay un comando de carga LC_LOAD_DYLIB para cada biblioteca que requiere el binario Mach-O.

  • Este comando de carga es una estructura de tipo dylib_command (que contiene una estructura dylib, que describe la biblioteca dinámica dependiente real):
struct dylib_command {
uint32_t        cmd;            /* LC_LOAD_{,WEAK_}DYLIB */
uint32_t        cmdsize;        /* includes pathname string */
struct dylib    dylib;          /* the library identification */
};

struct dylib {
union lc_str  name;                 /* library's path name */
uint32_t timestamp;                 /* library's build time stamp */
uint32_t current_version;           /* library's current version number */
uint32_t compatibility_version;     /* library's compatibility vers number*/
};

También puedes obtener esta información desde la línea de comandos con:

otool -L /bin/ls
/bin/ls:
/usr/lib/libutil.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libncurses.5.4.dylib (compatibility version 5.4.0, current version 5.4.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1319.0.0)

Algunas bibliotecas potencialmente relacionadas con malware son:

  • DiskArbitration: Monitoreo de unidades USB
  • AVFoundation: Captura de audio y video
  • CoreWLAN: Escaneo de Wifi.

{% hint style="info" %} Un binario Mach-O puede contener uno o más constructores, que se ejecutarán antes de la dirección especificada en LC_MAIN.
Los desplazamientos de cualquier constructor se encuentran en la sección __mod_init_func del segmento __DATA_CONST. {% endhint %}

Datos Mach-O

El corazón del archivo es la región final, los datos, que consiste en una serie de segmentos como se muestra en la región de comandos de carga. Cada segmento puede contener una serie de secciones de datos. Cada una de estas secciones contiene código o datos de un tipo particular.

{% hint style="success" %} Los datos son básicamente la parte que contiene toda la información que se carga mediante los comandos de carga LC_SEGMENTS_64 {% endhint %}

Esto incluye:

  • Tabla de funciones: Que contiene información sobre las funciones del programa.
  • Tabla de símbolos: Que contiene información sobre las funciones externas utilizadas por el binario.
  • También podría contener funciones internas, nombres de variables y más.

Para verificarlo, puedes usar la herramienta Mach-O View:

O desde la línea de comandos:

size -m /bin/ls
☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥