mirror of
https://github.com/carlospolop/hacktricks
synced 2024-11-29 08:01:00 +00:00
318 lines
6.6 KiB
Markdown
318 lines
6.6 KiB
Markdown
# Rust Basics
|
||
|
||
### Generic Types
|
||
|
||
Create a struct where 1 of their values could be any type
|
||
|
||
```rust
|
||
struct Wrapper<T> {
|
||
value: T,
|
||
}
|
||
|
||
impl<T> Wrapper<T> {
|
||
pub fn new(value: T) -> Self {
|
||
Wrapper { value }
|
||
}
|
||
}
|
||
|
||
Wrapper::new(42).value
|
||
Wrapper::new("Foo").value, "Foo"
|
||
```
|
||
|
||
### Option, Some & None
|
||
|
||
The Option type means that the value might by of type Some (there is something) or None:
|
||
|
||
```rust
|
||
pub enum Option<T> {
|
||
None,
|
||
Some(T),
|
||
}
|
||
```
|
||
|
||
You can use functions such as `is_some()` or `is_none()` to check the value of the Option.
|
||
|
||
### Macros
|
||
|
||
Macros are more powerful than functions because they expand to produce more code than the code you’ve written manually. For example, a function signature must declare the number and type of parameters the function has. Macros, on the other hand, can take a variable number of parameters: we can call `println!("hello")` with one argument or `println!("hello {}", name)` with two arguments. Also, macros are expanded before the compiler interprets the meaning of the code, so a macro can, for example, implement a trait on a given type. A function can’t, because it gets called at runtime and a trait needs to be implemented at compile time.
|
||
|
||
```rust
|
||
macro_rules! my_macro {
|
||
() => {
|
||
println!("Check out my macro!");
|
||
};
|
||
($val:expr) => {
|
||
println!("Look at this other macro: {}", $val);
|
||
}
|
||
}
|
||
fn main() {
|
||
my_macro!();
|
||
my_macro!(7777);
|
||
}
|
||
|
||
// Export a macro from a module
|
||
mod macros {
|
||
#[macro_export]
|
||
macro_rules! my_macro {
|
||
() => {
|
||
println!("Check out my macro!");
|
||
};
|
||
}
|
||
}
|
||
```
|
||
|
||
### Iterate
|
||
|
||
```rust
|
||
// Iterate through a vector
|
||
let my_fav_fruits = vec!["banana", "raspberry"];
|
||
let mut my_iterable_fav_fruits = my_fav_fruits.iter();
|
||
assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana"));
|
||
assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry"));
|
||
assert_eq!(my_iterable_fav_fruits.next(), None); // When it's over, it's none
|
||
|
||
// One line iteration with action
|
||
my_fav_fruits.iter().map(|x| capitalize_first(x)).collect()
|
||
|
||
// Hashmap iteration
|
||
for (key, hashvalue) in &*map {
|
||
for key in map.keys() {
|
||
for value in map.values() {
|
||
```
|
||
|
||
### Recursive Box
|
||
|
||
```rust
|
||
enum List {
|
||
Cons(i32, List),
|
||
Nil,
|
||
}
|
||
|
||
let list = Cons(1, Cons(2, Cons(3, Nil)));
|
||
```
|
||
|
||
### Conditionals
|
||
|
||
#### if
|
||
|
||
```rust
|
||
let n = 5;
|
||
if n < 0 {
|
||
print!("{} is negative", n);
|
||
} else if n > 0 {
|
||
print!("{} is positive", n);
|
||
} else {
|
||
print!("{} is zero", n);
|
||
}
|
||
```
|
||
|
||
#### match
|
||
|
||
```rust
|
||
match number {
|
||
// Match a single value
|
||
1 => println!("One!"),
|
||
// Match several values
|
||
2 | 3 | 5 | 7 | 11 => println!("This is a prime"),
|
||
// TODO ^ Try adding 13 to the list of prime values
|
||
// Match an inclusive range
|
||
13..=19 => println!("A teen"),
|
||
// Handle the rest of cases
|
||
_ => println!("Ain't special"),
|
||
}
|
||
|
||
let boolean = true;
|
||
// Match is an expression too
|
||
let binary = match boolean {
|
||
// The arms of a match must cover all the possible values
|
||
false => 0,
|
||
true => 1,
|
||
// TODO ^ Try commenting out one of these arms
|
||
};
|
||
```
|
||
|
||
#### loop (infinite)
|
||
|
||
```rust
|
||
loop {
|
||
count += 1;
|
||
if count == 3 {
|
||
println!("three");
|
||
continue;
|
||
}
|
||
println!("{}", count);
|
||
if count == 5 {
|
||
println!("OK, that's enough");
|
||
break;
|
||
}
|
||
}
|
||
```
|
||
|
||
#### while
|
||
|
||
```rust
|
||
let mut n = 1;
|
||
while n < 101 {
|
||
if n % 15 == 0 {
|
||
println!("fizzbuzz");
|
||
} else if n % 5 == 0 {
|
||
println!("buzz");
|
||
} else {
|
||
println!("{}", n);
|
||
}
|
||
n += 1;
|
||
}
|
||
```
|
||
|
||
#### for
|
||
|
||
```rust
|
||
for n in 1..101 {
|
||
if n % 15 == 0 {
|
||
println!("fizzbuzz");
|
||
} else {
|
||
println!("{}", n);
|
||
}
|
||
}
|
||
|
||
// Use "..=" to make inclusive both ends
|
||
for n in 1..=100 {
|
||
if n % 15 == 0 {
|
||
println!("fizzbuzz");
|
||
} else if n % 3 == 0 {
|
||
println!("fizz");
|
||
} else if n % 5 == 0 {
|
||
println!("buzz");
|
||
} else {
|
||
println!("{}", n);
|
||
}
|
||
}
|
||
|
||
// ITERATIONS
|
||
|
||
let names = vec!["Bob", "Frank", "Ferris"];
|
||
//iter - Doesn't consume the collection
|
||
for name in names.iter() {
|
||
match name {
|
||
&"Ferris" => println!("There is a rustacean among us!"),
|
||
_ => println!("Hello {}", name),
|
||
}
|
||
}
|
||
//into_iter - COnsumes the collection
|
||
for name in names.into_iter() {
|
||
match name {
|
||
"Ferris" => println!("There is a rustacean among us!"),
|
||
_ => println!("Hello {}", name),
|
||
}
|
||
}
|
||
//iter_mut - This mutably borrows each element of the collection
|
||
for name in names.iter_mut() {
|
||
*name = match name {
|
||
&mut "Ferris" => "There is a rustacean among us!",
|
||
_ => "Hello",
|
||
}
|
||
}
|
||
```
|
||
|
||
#### if let
|
||
|
||
```rust
|
||
let optional_word = Some(String::from("rustlings"));
|
||
if let word = optional_word {
|
||
println!("The word is: {}", word);
|
||
} else {
|
||
println!("The optional word doesn't contain anything");
|
||
}
|
||
```
|
||
|
||
#### while let
|
||
|
||
```rust
|
||
let mut optional = Some(0);
|
||
// This reads: "while `let` destructures `optional` into
|
||
// `Some(i)`, evaluate the block (`{}`). Else `break`.
|
||
while let Some(i) = optional {
|
||
if i > 9 {
|
||
println!("Greater than 9, quit!");
|
||
optional = None;
|
||
} else {
|
||
println!("`i` is `{:?}`. Try again.", i);
|
||
optional = Some(i + 1);
|
||
}
|
||
// ^ Less rightward drift and doesn't require
|
||
// explicitly handling the failing case.
|
||
}
|
||
```
|
||
|
||
### Traits
|
||
|
||
Create a new method for a type
|
||
|
||
```rust
|
||
trait AppendBar {
|
||
fn append_bar(self) -> Self;
|
||
}
|
||
|
||
impl AppendBar for String {
|
||
fn append_bar(self) -> Self{
|
||
format!("{}Bar", self)
|
||
}
|
||
}
|
||
|
||
let s = String::from("Foo");
|
||
let s = s.append_bar();
|
||
println!("s: {}", s);
|
||
```
|
||
|
||
### Tests
|
||
|
||
```rust
|
||
#[cfg(test)]
|
||
mod tests {
|
||
#[test]
|
||
fn you_can_assert() {
|
||
assert!(true);
|
||
assert_eq!(true, true);
|
||
assert_ne!(true, false);
|
||
}
|
||
}
|
||
```
|
||
|
||
### Threading
|
||
|
||
#### Arc
|
||
|
||
An Arc can use Clone to create more references over the object to pass them to the threads. When the last reference pointer to a value is out of scope, the variable is dropped.
|
||
|
||
```rust
|
||
use std::sync::Arc;
|
||
let apple = Arc::new("the same apple");
|
||
for _ in 0..10 {
|
||
let apple = Arc::clone(&apple);
|
||
thread::spawn(move || {
|
||
println!("{:?}", apple);
|
||
});
|
||
}
|
||
```
|
||
|
||
#### Threads
|
||
|
||
In this case we will pass the thread a variable it will be able to modify
|
||
|
||
```rust
|
||
fn main() {
|
||
let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 }));
|
||
let status_shared = Arc::clone(&status);
|
||
thread::spawn(move || {
|
||
for _ in 0..10 {
|
||
thread::sleep(Duration::from_millis(250));
|
||
let mut status = status_shared.lock().unwrap();
|
||
status.jobs_completed += 1;
|
||
}
|
||
});
|
||
while status.lock().unwrap().jobs_completed < 10 {
|
||
println!("waiting... ");
|
||
thread::sleep(Duration::from_millis(500));
|
||
}
|
||
}
|
||
```
|