hacktricks/macos-hardening/macos-security-and-privilege-escalation/macos-proces-abuse/macos-library-injection
2024-04-29 10:23:36 +00:00
..
macos-dyld-hijacking-and-dyld_insert_libraries.md Translated ['README.md', 'binary-exploitation/arbitrary-write-2-exec/REA 2024-04-07 03:54:34 +00:00
macos-dyld-process.md Translated ['macos-hardening/macos-security-and-privilege-escalation/mac 2024-04-29 10:23:36 +00:00
README.md Translated ['macos-hardening/macos-security-and-privilege-escalation/mac 2024-04-29 10:23:36 +00:00

Injection de bibliothèque macOS

Apprenez le piratage AWS de zéro à héros avec htARTE (Expert en équipe rouge AWS de HackTricks)!

Autres façons de soutenir HackTricks :

{% hint style="danger" %} Le code de dyld est open source et peut être trouvé sur https://opensource.apple.com/source/dyld/ et peut être téléchargé sous forme de tar en utilisant une URL telle que https://opensource.apple.com/tarballs/dyld/dyld-852.2.tar.gz {% endhint %}

Processus Dyld

Jetez un œil à la façon dont Dyld charge des bibliothèques à l'intérieur des binaires dans :

{% content-ref url="macos-dyld-process.md" %} macos-dyld-process.md {% endcontent-ref %}

DYLD_INSERT_LIBRARIES

C'est comme le LD_PRELOAD sur Linux. Cela permet d'indiquer à un processus qui va être exécuté de charger une bibliothèque spécifique à partir d'un chemin (si la variable d'environnement est activée).

Cette technique peut également être utilisée comme technique ASEP car chaque application installée a un fichier plist appelé "Info.plist" qui permet de définir des variables d'environnement en utilisant une clé appelée LSEnvironmental.

{% hint style="info" %} Depuis 2012, Apple a considérablement réduit la puissance du DYLD_INSERT_LIBRARIES.

Allez dans le code et vérifiez src/dyld.cpp. Dans la fonction pruneEnvironmentVariables, vous pouvez voir que les variables DYLD_* sont supprimées.

Dans la fonction processRestricted, la raison de la restriction est définie. En vérifiant ce code, vous pouvez voir que les raisons sont :

  • Le binaire est setuid/setgid
  • Existence de la section __RESTRICT/__restrict dans le binaire macho.
  • Le logiciel a des autorisations (runtime renforcé) sans l'autorisation com.apple.security.cs.allow-dyld-environment-variables
  • Vérifiez les autorisations d'un binaire avec : codesign -dv --entitlements :- </chemin/vers/bin>

Dans les versions plus récentes, vous pouvez trouver cette logique dans la deuxième partie de la fonction configureProcessRestrictions. Cependant, ce qui est exécuté dans les versions plus récentes, ce sont les vérifications initiales de la fonction (vous pouvez supprimer les ifs liés à iOS ou à la simulation car ils ne seront pas utilisés dans macOS. {% endhint %}

Validation de bibliothèque

Même si le binaire permet d'utiliser la variable d'environnement DYLD_INSERT_LIBRARIES, si le binaire vérifie la signature de la bibliothèque à charger, il ne chargera pas une bibliothèque personnalisée.

Pour charger une bibliothèque personnalisée, le binaire doit avoir une des autorisations suivantes :

ou le binaire ne doit pas avoir le drapeau de runtime renforcé ou le drapeau de validation de bibliothèque.

Vous pouvez vérifier si un binaire a le runtime renforcé avec codesign --display --verbose <bin> en vérifiant le drapeau runtime dans CodeDirectory comme : CodeDirectory v=20500 size=767 flags=0x10000(runtime) hashes=13+7 location=embedded

Vous pouvez également charger une bibliothèque si elle est signée avec le même certificat que le binaire.

Trouvez un exemple sur la façon de (ab)user de cela et vérifiez les restrictions dans :

{% content-ref url="macos-dyld-hijacking-and-dyld_insert_libraries.md" %} macos-dyld-hijacking-and-dyld_insert_libraries.md {% endcontent-ref %}

Détournement de Dylib

{% hint style="danger" %} Rappelez-vous que les restrictions de validation de bibliothèque précédentes s'appliquent également pour effectuer des attaques de détournement de Dylib. {% endhint %}

Comme sous Windows, sous MacOS, vous pouvez également détourner des dylibs pour faire exécuter du code arbitraire par des applications (en fait, en tant qu'utilisateur régulier, cela pourrait ne pas être possible car vous pourriez avoir besoin d'une autorisation TCC pour écrire à l'intérieur d'un bundle .app et détourner une bibliothèque).
Cependant, la façon dont les applications MacOS chargent les bibliothèques est plus restreinte que sous Windows. Cela implique que les développeurs de logiciels malveillants peuvent toujours utiliser cette technique pour la discrétion, mais la probabilité de pouvoir abuser de cela pour escalader les privilèges est beaucoup plus faible.

Tout d'abord, il est plus courant de constater que les binaires MacOS indiquent le chemin complet des bibliothèques à charger. Deuxièmement, MacOS ne recherche jamais dans les dossiers du $PATH pour les bibliothèques.

La partie principale du code liée à cette fonctionnalité se trouve dans ImageLoader::recursiveLoadLibraries dans ImageLoader.cpp.

Il existe 4 commandes d'en-tête différentes qu'un binaire macho peut utiliser pour charger des bibliothèques :

  • La commande LC_LOAD_DYLIB est la commande courante pour charger une dylib.
  • La commande LC_LOAD_WEAK_DYLIB fonctionne comme la précédente, mais si la dylib n'est pas trouvée, l'exécution se poursuit sans aucune erreur.
  • La commande LC_REEXPORT_DYLIB la commande proxy (ou réexporte) les symboles d'une bibliothèque différente.
  • La commande LC_LOAD_UPWARD_DYLIB est utilisée lorsque deux bibliothèques dépendent l'une de l'autre (c'est ce qu'on appelle une dépendance ascendante).

Cependant, il existe 2 types de détournement de dylib :

  • Bibliothèques liées faiblement manquantes : Cela signifie que l'application tentera de charger une bibliothèque qui n'existe pas configurée avec LC_LOAD_WEAK_DYLIB. Ensuite, si un attaquant place une dylib là où elle est attendue, elle sera chargée.
  • Le fait que le lien soit "faible" signifie que l'application continuera de s'exécuter même si la bibliothèque n'est pas trouvée.
  • Le code lié à cela se trouve dans la fonction ImageLoaderMachO::doGetDependentLibraries de ImageLoaderMachO.cpplib->required est seulement false lorsque LC_LOAD_WEAK_DYLIB est vrai.
  • Trouvez des bibliothèques liées faiblement dans les binaires avec (vous avez ensuite un exemple sur la façon de créer des bibliothèques de détournement) :

otool -l </chemin/vers/bin> | grep LC_LOAD_WEAK_DYLIB -A 5 cmd LC_LOAD_WEAK_DYLIB cmdsize 56 name /var/tmp/lib/libUtl.1.dylib (offset 24) time stamp 2 Wed Jun 21 12:23:31 1969 current version 1.0.0 compatibility version 1.0.0

- **Configuré avec @rpath** : Les binaires Mach-O peuvent avoir les commandes **`LC_RPATH`** et **`LC_LOAD_DYLIB`**. En fonction des **valeurs** de ces commandes, les **bibliothèques** vont être **chargées** à partir de **différents répertoires**.
- **`LC_RPATH`** contient les chemins de certains dossiers utilisés pour charger des bibliothèques par le binaire.
* **`LC_LOAD_DYLIB`** contient le chemin vers des bibliothèques spécifiques à charger. Ces chemins peuvent contenir **`@rpath`**, qui sera **remplacé** par les valeurs dans **`LC_RPATH`**. S'il y a plusieurs chemins dans **`LC_RPATH`**, tous seront utilisés pour rechercher la bibliothèque à charger. Exemple :
* Si **`LC_LOAD_DYLIB`** contient `@rpath/library.dylib` et que **`LC_RPATH`** contient `/application/app.app/Contents/Framework/v1/` et `/application/app.app/Contents/Framework/v2/`. Les deux dossiers seront utilisés pour charger `library.dylib`. Si la bibliothèque n'existe pas dans `[...]/v1/` et qu'un attaquant pourrait la placer là pour détourner le chargement de la bibliothèque dans `[...]/v2/` car l'ordre des chemins dans **`LC_LOAD_DYLIB`** est suivi.
* **Trouver les chemins rpath et les bibliothèques** dans les binaires avec : `otool -l </chemin/vers/binaire> | grep -E "LC_RPATH|LC_LOAD_DYLIB" -A 5`

{% hint style="info" %}
**`@executable_path`** : Est le **chemin** vers le répertoire contenant le **fichier exécutable principal**.

**`@loader_path`** : Est le **chemin** vers le **répertoire** contenant le **binaire Mach-O** qui contient la commande de chargement.

* Lorsqu'il est utilisé dans un exécutable, **`@loader_path`** est effectivement le **même** que **`@executable_path`**.
* Lorsqu'il est utilisé dans un **dylib**, **`@loader_path`** donne le **chemin** vers le **dylib**.
{% endhint %}

La manière d'**escalader les privilèges** en abusant de cette fonctionnalité serait dans le cas rare où une **application** exécutée par **root** recherche une **bibliothèque dans un dossier où l'attaquant a des permissions d'écriture**.

{% hint style="success" %}
Un **scanner** pratique pour trouver les **bibliothèques manquantes** dans les applications est [**Dylib Hijack Scanner**](https://objective-see.com/products/dhs.html) ou une [**version CLI**](https://github.com/pandazheng/DylibHijack).\
Un **rapport détaillé avec des informations techniques** sur cette technique peut être trouvé [**ici**](https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x).
{% endhint %}

**Exemple**

{% content-ref url="macos-dyld-hijacking-and-dyld_insert_libraries.md" %}
[macos-dyld-hijacking-and-dyld\_insert\_libraries.md](macos-dyld-hijacking-and-dyld\_insert\_libraries.md)
{% endcontent-ref %}

## Dlopen Hijacking

{% hint style="danger" %}
Rappelez-vous que les **restrictions précédentes de validation de bibliothèque s'appliquent également** pour effectuer des attaques de détournement de Dlopen.
{% endhint %}

Depuis **`man dlopen`** :

* Lorsque le chemin **ne contient pas de caractère slash** (c'est-à-dire juste un nom de feuille), **dlopen() effectuera une recherche**. Si **`$DYLD_LIBRARY_PATH`** était défini au lancement, dyld cherchera d'abord dans ce répertoire. Ensuite, si le fichier mach-o appelant ou l'exécutable principal spécifie un **`LC_RPATH`**, alors dyld cherchera dans ces répertoires. Ensuite, si le processus est **non restreint**, dyld cherchera dans le **répertoire de travail actuel**. Enfin, pour les anciens binaires, dyld essaiera quelques solutions de repli. Si **`$DYLD_FALLBACK_LIBRARY_PATH`** était défini au lancement, dyld cherchera dans ces répertoires, sinon, dyld cherchera dans **`/usr/local/lib/`** (si le processus est non restreint), puis dans **`/usr/lib/`** (ces informations ont été prises de **`man dlopen`**).
1. `$DYLD_LIBRARY_PATH`
2. `LC_RPATH`
3. `CWD` (si non restreint)
4. `$DYLD_FALLBACK_LIBRARY_PATH`
5. `/usr/local/lib/` (si non restreint)
6. `/usr/lib/`

{% hint style="danger" %}
S'il n'y a pas de slash dans le nom, il y aurait 2 façons de faire un détournement :

* Si un **`LC_RPATH`** est **modifiable** (mais la signature est vérifiée, donc pour cela vous avez également besoin que le binaire soit non restreint)
* Si le binaire est **non restreint** et qu'il est alors possible de charger quelque chose depuis le CWD (ou en abusant de l'une des variables d'environnement mentionnées)
{% endhint %}

* Lorsque le chemin **ressemble à un chemin de framework** (par exemple `/stuff/foo.framework/foo`), si **`$DYLD_FRAMEWORK_PATH`** était défini au lancement, dyld cherchera d'abord dans ce répertoire pour le **chemin partiel du framework** (par exemple `foo.framework/foo`). Ensuite, dyld essaiera le **chemin fourni tel quel** (en utilisant le répertoire de travail actuel pour les chemins relatifs). Enfin, pour les anciens binaires, dyld essaiera quelques solutions de repli. Si **`$DYLD_FALLBACK_FRAMEWORK_PATH`** était défini au lancement, dyld cherchera dans ces répertoires. Sinon, il cherchera dans **`/Library/Frameworks`** (sur macOS si le processus est non restreint), puis dans **`/System/Library/Frameworks`**.
1. `$DYLD_FRAMEWORK_PATH`
2. chemin fourni (en utilisant le répertoire de travail actuel pour les chemins relatifs si non restreint)
3. `$DYLD_FALLBACK_FRAMEWORK_PATH`
4. `/Library/Frameworks` (si non restreint)
5. `/System/Library/Frameworks`

{% hint style="danger" %}
S'il s'agit d'un chemin de framework, la manière de le détourner serait :

* Si le processus est **non restreint**, en abusant du **chemin relatif depuis le CWD** des variables d'environnement mentionnées (même si ce n'est pas indiqué dans la documentation si le processus est restreint, les variables d'environnement DYLD\_\* sont supprimées)
{% endhint %}

* Lorsque le chemin **contient un slash mais n'est pas un chemin de framework** (c'est-à-dire un chemin complet ou un chemin partiel vers un dylib), dlopen() regarde d'abord (si défini) dans **`$DYLD_LIBRARY_PATH`** (avec la partie feuille du chemin). Ensuite, dyld **essaie le chemin fourni** (en utilisant le répertoire de travail actuel pour les chemins relatifs (mais uniquement pour les processus non restreints)). Enfin, pour les anciens binaires, dyld essaiera des solutions de repli. Si **`$DYLD_FALLBACK_LIBRARY_PATH`** était défini au lancement, dyld cherchera dans ces répertoires, sinon, dyld cherchera dans **`/usr/local/lib/`** (si le processus est non restreint), puis dans **`/usr/lib/`**.
1. `$DYLD_LIBRARY_PATH`
2. chemin fourni (en utilisant le répertoire de travail actuel pour les chemins relatifs si non restreint)
3. `$DYLD_FALLBACK_LIBRARY_PATH`
4. `/usr/local/lib/` (si non restreint)
5. `/usr/lib/`

{% hint style="danger" %}
S'il y a des slashes dans le nom et ce n'est pas un framework, la manière de le détourner serait :

* Si le binaire est **non restreint** et qu'il est alors possible de charger quelque chose depuis le CWD ou `/usr/local/lib` (ou en abusant de l'une des variables d'environnement mentionnées)
{% endhint %}

{% hint style="info" %}
Remarque : Il n'y a **pas** de fichiers de configuration pour **contrôler la recherche de dlopen**.

Remarque : Si l'exécutable principal est un binaire **set\[ug\]id ou signé avec des autorisations**, alors **toutes les variables d'environnement sont ignorées**, et seul un chemin complet peut être utilisé ([vérifiez les restrictions de DYLD\_INSERT\_LIBRARIES](macos-dyld-hijacking-and-dyld\_insert\_libraries.md#check-dyld\_insert\_librery-restrictions) pour des informations plus détaillées)

Remarque : Les plateformes Apple utilisent des fichiers "universels" pour combiner des bibliothèques 32 bits et 64 bits. Cela signifie qu'il n'y a **pas de chemins de recherche séparés pour 32 bits et 64 bits**.

Remarque : Sur les plateformes Apple, la plupart des dylibs système sont **combinés dans le cache dyld** et n'existent pas sur le disque. Par conséquent, l'appel à **`stat()`** pour prévoir si une dylib système existe **ne fonctionnera pas**. Cependant, **`dlopen_preflight()`** utilise les mêmes étapes que **`dlopen()`** pour trouver un fichier mach-o compatible.
{% endhint %}

**Vérifier les chemins**

Vérifions toutes les options avec le code suivant :
```c
// gcc dlopentest.c -o dlopentest -Wl,-rpath,/tmp/test
#include <dlfcn.h>
#include <stdio.h>

int main(void)
{
void* handle;

fprintf("--- No slash ---\n");
handle = dlopen("just_name_dlopentest.dylib",1);
if (!handle) {
fprintf(stderr, "Error loading: %s\n\n\n", dlerror());
}

fprintf("--- Relative framework ---\n");
handle = dlopen("a/framework/rel_framework_dlopentest.dylib",1);
if (!handle) {
fprintf(stderr, "Error loading: %s\n\n\n", dlerror());
}

fprintf("--- Abs framework ---\n");
handle = dlopen("/a/abs/framework/abs_framework_dlopentest.dylib",1);
if (!handle) {
fprintf(stderr, "Error loading: %s\n\n\n", dlerror());
}

fprintf("--- Relative Path ---\n");
handle = dlopen("a/folder/rel_folder_dlopentest.dylib",1);
if (!handle) {
fprintf(stderr, "Error loading: %s\n\n\n", dlerror());
}

fprintf("--- Abs Path ---\n");
handle = dlopen("/a/abs/folder/abs_folder_dlopentest.dylib",1);
if (!handle) {
fprintf(stderr, "Error loading: %s\n\n\n", dlerror());
}

return 0;
}

Si vous le compilez et l'exécutez, vous pouvez voir où chaque bibliothèque a été recherchée sans succès. De plus, vous pourriez filtrer les journaux du système de fichiers:

sudo fs_usage | grep "dlopentest"

Détournement de chemin relatif

Si un binaire/application privilégié (comme un SUID ou un binaire avec des autorisations puissantes) charge une bibliothèque de chemin relatif (par exemple en utilisant @executable_path ou @loader_path) et que la Validation de bibliothèque est désactivée, il pourrait être possible de déplacer le binaire vers un emplacement où l'attaquant pourrait modifier la bibliothèque chargée par chemin relatif, et l'exploiter pour injecter du code dans le processus.

Élaguer les variables d'environnement DYLD_* et LD_LIBRARY_PATH

Dans le fichier dyld-dyld-832.7.1/src/dyld2.cpp, il est possible de trouver la fonction pruneEnvironmentVariables, qui supprimera toute variable d'environnement qui commence par DYLD_ et LD_LIBRARY_PATH=.

Il définira également spécifiquement les variables d'environnement DYLD_FALLBACK_FRAMEWORK_PATH et DYLD_FALLBACK_LIBRARY_PATH sur null pour les binaires suid et sgid.

Cette fonction est appelée depuis la fonction _main du même fichier si ciblant OSX de cette manière :

#if TARGET_OS_OSX
if ( !gLinkContext.allowEnvVarsPrint && !gLinkContext.allowEnvVarsPath && !gLinkContext.allowEnvVarsSharedCache ) {
pruneEnvironmentVariables(envp, &apple);

et ces indicateurs booléens sont définis dans le même fichier dans le code :

#if TARGET_OS_OSX
// support chrooting from old kernel
bool isRestricted = false;
bool libraryValidation = false;
// any processes with setuid or setgid bit set or with __RESTRICT segment is restricted
if ( issetugid() || hasRestrictedSegment(mainExecutableMH) ) {
isRestricted = true;
}
bool usingSIP = (csr_check(CSR_ALLOW_TASK_FOR_PID) != 0);
uint32_t flags;
if ( csops(0, CS_OPS_STATUS, &flags, sizeof(flags)) != -1 ) {
// On OS X CS_RESTRICT means the program was signed with entitlements
if ( ((flags & CS_RESTRICT) == CS_RESTRICT) && usingSIP ) {
isRestricted = true;
}
// Library Validation loosens searching but requires everything to be code signed
if ( flags & CS_REQUIRE_LV ) {
isRestricted = false;
libraryValidation = true;
}
}
gLinkContext.allowAtPaths                = !isRestricted;
gLinkContext.allowEnvVarsPrint           = !isRestricted;
gLinkContext.allowEnvVarsPath            = !isRestricted;
gLinkContext.allowEnvVarsSharedCache     = !libraryValidation || !usingSIP;
gLinkContext.allowClassicFallbackPaths   = !isRestricted;
gLinkContext.allowInsertFailures         = false;
gLinkContext.allowInterposing         	 = true;

Ce qui signifie essentiellement que si le binaire est suid ou sgid, ou a un segment RESTRICT dans les en-têtes ou s'il a été signé avec le drapeau CS_RESTRICT, alors !gLinkContext.allowEnvVarsPrint && !gLinkContext.allowEnvVarsPath && !gLinkContext.allowEnvVarsSharedCache est vrai et les variables d'environnement sont élaguées.

Notez que si CS_REQUIRE_LV est vrai, alors les variables ne seront pas élaguées mais la validation de la bibliothèque vérifiera qu'elles utilisent le même certificat que le binaire d'origine.

Vérifier les restrictions

SUID & SGID

# Make it owned by root and suid
sudo chown root hello
sudo chmod +s hello
# Insert the library
DYLD_INSERT_LIBRARIES=inject.dylib ./hello

# Remove suid
sudo chmod -s hello

Section __RESTRICT avec le segment __restrict

gcc -sectcreate __RESTRICT __restrict /dev/null hello.c -o hello-restrict
DYLD_INSERT_LIBRARIES=inject.dylib ./hello-restrict

Runtime sécurisé

Créez un nouveau certificat dans le trousseau et utilisez-le pour signer le binaire :

{% code overflow="wrap" %}

# Apply runtime proetction
codesign -s <cert-name> --option=runtime ./hello
DYLD_INSERT_LIBRARIES=inject.dylib ./hello #Library won't be injected

# Apply library validation
codesign -f -s <cert-name> --option=library ./hello
DYLD_INSERT_LIBRARIES=inject.dylib ./hello-signed #Will throw an error because signature of binary and library aren't signed by same cert (signs must be from a valid Apple-signed developer certificate)

# Sign it
## If the signature is from an unverified developer the injection will still work
## If it's from a verified developer, it won't
codesign -f -s <cert-name> inject.dylib
DYLD_INSERT_LIBRARIES=inject.dylib ./hello-signed

# Apply CS_RESTRICT protection
codesign -f -s <cert-name> --option=restrict hello-signed
DYLD_INSERT_LIBRARIES=inject.dylib ./hello-signed # Won't work

{% endcode %}

{% hint style="danger" %} Notez que même s'il y a des binaires signés avec des indicateurs 0x0(none), ils peuvent obtenir dynamiquement l'indicateur CS_RESTRICT lors de leur exécution et donc cette technique ne fonctionnera pas sur eux.

Vous pouvez vérifier si un processus a cet indicateur avec (obtenez csops ici):

csops -status <pid>

et ensuite vérifiez si le drapeau 0x800 est activé. {% endhint %}

Références

Apprenez le piratage AWS de zéro à héros avec htARTE (HackTricks AWS Red Team Expert)!

Autres façons de soutenir HackTricks: