# Binaires universels macOS & Format Mach-O
Apprenez le piratage AWS de zéro à héros avec htARTE (Expert en équipe rouge AWS de HackTricks)! Autres façons de soutenir HackTricks: * Si vous souhaitez voir votre **entreprise annoncée dans HackTricks** ou **télécharger HackTricks en PDF**, consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop)! * Obtenez le [**swag officiel PEASS & HackTricks**](https://peass.creator-spring.com) * Découvrez [**La famille PEASS**](https://opensea.io/collection/the-peass-family), notre collection exclusive de [**NFT**](https://opensea.io/collection/the-peass-family) * **Rejoignez le** 💬 [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe Telegram**](https://t.me/peass) ou **suivez-nous** sur **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/hacktricks\_live)**.** * **Partagez vos astuces de piratage en soumettant des PR aux** [**HackTricks**](https://github.com/carlospolop/hacktricks) et [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) dépôts GitHub.
## Informations de base Les binaires Mac OS sont généralement compilés en tant que **binaires universels**. Un **binaire universel** peut **prendre en charge plusieurs architectures dans le même fichier**. Ces binaires suivent la structure **Mach-O** qui est essentiellement composée de : * En-tête * Commandes de chargement * Données ![https://alexdremov.me/content/images/2022/10/6XLCD.gif](<../../../.gitbook/assets/image (467).png>) ## En-tête Fat Recherchez le fichier avec : `mdfind fat.h | grep -i mach-o | grep -E "fat.h$"`
#define FAT_MAGIC	0xcafebabe
#define FAT_CIGAM	0xbebafeca	/* NXSwapLong(FAT_MAGIC) */

struct fat_header {
	uint32_t	magic;		/* FAT_MAGIC or FAT_MAGIC_64 */
	uint32_t	nfat_arch;	/* nombre de structures qui suivent */
};

struct fat_arch {
cpu_type_t	cputype;	/* spécificateur de CPU (int) */
cpu_subtype_t	cpusubtype;	/* spécificateur de machine (int) */
uint32_t	offset;		/* décalage de fichier vers ce fichier objet */
uint32_t	size;		/* taille de ce fichier objet */
uint32_t	align;		/* alignement en puissance de 2 */
};
L'en-tête contient les octets **magic** suivis du **nombre** d'**architectures** contenues dans le fichier (`nfat_arch`) et chaque architecture aura une structure `fat_arch`. Vérifiez-le avec :
% file /bin/ls
/bin/ls: Mach-O binaire universel avec 2 architectures: [x86_64:Exécutable 64 bits Mach-O x86_64] [arm64e:Exécutable 64 bits Mach-O arm64e]
/bin/ls (pour l'architecture x86_64):	Exécutable 64 bits Mach-O x86_64
/bin/ls (pour l'architecture arm64e):	Exécutable 64 bits Mach-O arm64e

% otool -f -v /bin/ls
En-têtes Fat
fat_magic FAT_MAGIC
nfat_arch 2
architecture x86_64
    cputype CPU_TYPE_X86_64
cpusubtype CPU_SUBTYPE_X86_64_ALL
capabilities 0x0
    offset 16384
    size 72896
    align 2^14 (16384)
architecture arm64e
    cputype CPU_TYPE_ARM64
cpusubtype CPU_SUBTYPE_ARM64E
capabilities PTR_AUTH_VERSION USERSPACE 0
    offset 98304
    size 88816
    align 2^14 (16384)
ou en utilisant l'outil [Mach-O View](https://sourceforge.net/projects/machoview/) :
Comme vous pouvez le penser, un binaire universel compilé pour 2 architectures **double généralement la taille** de celui compilé pour une seule architecture. ## **En-tête Mach-O** L'en-tête contient des informations de base sur le fichier, telles que les octets magiques pour l'identifier comme un fichier Mach-O et des informations sur l'architecture cible. Vous pouvez le trouver dans : `mdfind loader.h | grep -i mach-o | grep -E "loader.h$"` ```c #define MH_MAGIC 0xfeedface /* the mach magic number */ #define MH_CIGAM 0xcefaedfe /* NXSwapInt(MH_MAGIC) */ struct mach_header { uint32_t magic; /* mach magic number identifier */ cpu_type_t cputype; /* cpu specifier (e.g. I386) */ cpu_subtype_t cpusubtype; /* machine specifier */ uint32_t filetype; /* type of file (usage and alignment for the file) */ uint32_t ncmds; /* number of load commands */ uint32_t sizeofcmds; /* the size of all the load commands */ uint32_t flags; /* flags */ }; #define MH_MAGIC_64 0xfeedfacf /* the 64-bit mach magic number */ #define MH_CIGAM_64 0xcffaedfe /* NXSwapInt(MH_MAGIC_64) */ struct mach_header_64 { uint32_t magic; /* mach magic number identifier */ int32_t cputype; /* cpu specifier */ int32_t cpusubtype; /* machine specifier */ uint32_t filetype; /* type of file */ uint32_t ncmds; /* number of load commands */ uint32_t sizeofcmds; /* the size of all the load commands */ uint32_t flags; /* flags */ uint32_t reserved; /* reserved */ }; ``` **Types de fichiers**: * MH\_EXECUTE (0x2): Exécutable Mach-O standard * MH\_DYLIB (0x6): Une bibliothèque dynamique Mach-O (c'est-à-dire .dylib) * MH\_BUNDLE (0x8): Un bundle Mach-O (c'est-à-dire .bundle) ```bash # Checking the mac header of a binary otool -arch arm64e -hv /bin/ls Mach header magic cputype cpusubtype caps filetype ncmds sizeofcmds flags MH_MAGIC_64 ARM64 E USR00 EXECUTE 19 1728 NOUNDEFS DYLDLINK TWOLEVEL PIE ``` Ou en utilisant [Mach-O View](https://sourceforge.net/projects/machoview/):
## **Commandes de chargement Mach-O** La **disposition du fichier en mémoire** est spécifiée ici, détaillant l'emplacement de la **table des symboles**, le contexte du thread principal au démarrage de l'exécution, et les **bibliothèques partagées** requises. Des instructions sont fournies au chargeur dynamique **(dyld)** sur le processus de chargement du binaire en mémoire. Il utilise la structure **load\_command**, définie dans le fichier **`loader.h`**: ```objectivec struct load_command { uint32_t cmd; /* type of load command */ uint32_t cmdsize; /* total size of command in bytes */ }; ``` Il existe environ **50 types différents de commandes de chargement** que le système gère différemment. Les plus courantes sont : `LC_SEGMENT_64`, `LC_LOAD_DYLINKER`, `LC_MAIN`, `LC_LOAD_DYLIB` et `LC_CODE_SIGNATURE`. ### **LC\_SEGMENT/LC\_SEGMENT\_64** {% hint style="success" %} Essentiellement, ce type de commande de chargement définit **comment charger les segments \_\_TEXT** (code exécutable) **et \_\_DATA** (données pour le processus) **selon les décalages indiqués dans la section Data** lorsque le binaire est exécuté. {% endhint %} Ces commandes **définissent des segments** qui sont **cartographiés** dans l'**espace mémoire virtuel** d'un processus lors de son exécution. Il existe **différents types** de segments, tels que le segment **\_\_TEXT**, qui contient le code exécutable d'un programme, et le segment **\_\_DATA**, qui contient les données utilisées par le processus. Ces **segments sont situés dans la section des données** du fichier Mach-O. **Chaque segment** peut être **divisé en plusieurs sections**. La **structure de la commande de chargement** contient des **informations** sur **ces sections** dans le segment respectif. Dans l'en-tête, vous trouvez d'abord l'**en-tête du segment** :
struct segment_command_64 { /* pour les architectures 64 bits */
uint32_t	cmd;		/* LC_SEGMENT_64 */
uint32_t	cmdsize;	/* inclut la taille des structures section_64 */
char		segname[16];	/* nom du segment */
uint64_t	vmaddr;		/* adresse mémoire de ce segment */
uint64_t	vmsize;		/* taille mémoire de ce segment */
uint64_t	fileoff;	/* décalage du fichier de ce segment */
uint64_t	filesize;	/* quantité à mapper depuis le fichier */
int32_t		maxprot;	/* protection VM maximale */
int32_t		initprot;	/* protection VM initiale */
	uint32_t	nsects;		/* nombre de sections dans le segment */
	uint32_t	flags;		/* drapeaux */
};
Exemple d'en-tête de segment :
Cet en-tête définit le **nombre de sections dont les en-têtes apparaissent après** lui : ```c struct section_64 { /* for 64-bit architectures */ char sectname[16]; /* name of this section */ char segname[16]; /* segment this section goes in */ uint64_t addr; /* memory address of this section */ uint64_t size; /* size in bytes of this section */ uint32_t offset; /* file offset of this section */ uint32_t align; /* section alignment (power of 2) */ uint32_t reloff; /* file offset of relocation entries */ uint32_t nreloc; /* number of relocation entries */ uint32_t flags; /* flags (section type and attributes)*/ uint32_t reserved1; /* reserved (for offset or index) */ uint32_t reserved2; /* reserved (for count or sizeof) */ uint32_t reserved3; /* reserved */ }; ``` Exemple de **en-tête de section** :
Si vous **ajoutez** le **décalage de section** (0x37DC) + le **décalage** où **l'architecture commence**, dans ce cas `0x18000` --> `0x37DC + 0x18000 = 0x1B7DC`
Il est également possible d'obtenir des **informations d'en-tête** à partir de la **ligne de commande** avec : ```bash otool -lv /bin/ls ``` Les segments courants chargés par cette commande : * **`__PAGEZERO` :** Il indique au noyau de **mapper** l'**adresse zéro** afin qu'elle ne puisse pas être lue, écrite ou exécutée. Les variables maxprot et minprot dans la structure sont définies à zéro pour indiquer qu'il n'y a **aucun droit de lecture-écriture-exécution sur cette page**. * Cette allocation est importante pour **atténuer les vulnérabilités de déréférencement de pointeur NULL**. * **`__TEXT` :** Contient du **code exécutable** avec des autorisations de **lecture** et d'**exécution** (pas d'écriture). Sections courantes de ce segment : * `__text` : Code binaire compilé * `__const` : Données constantes * `__cstring` : Constantes de chaînes * `__stubs` et `__stubs_helper` : Impliqués lors du processus de chargement de bibliothèque dynamique * **`__DATA` :** Contient des données **lisibles** et **inscriptibles** (non exécutables). * `__data` : Variables globales (qui ont été initialisées) * `__bss` : Variables statiques (qui n'ont pas été initialisées) * `__objc_*` (\_\_objc\_classlist, \_\_objc\_protolist, etc) : Informations utilisées par le runtime Objective-C * **`__LINKEDIT` :** Contient des informations pour le linker (dyld) telles que "entrées de table de symboles, de chaînes et de réadressage". * **`__OBJC` :** Contient des informations utilisées par le runtime Objective-C. Bien que ces informations puissent également être trouvées dans le segment \_\_DATA, dans diverses sections \_\_objc\_\*. ### **`LC_MAIN`** Contient le point d'entrée dans l'attribut **entryoff**. Au moment du chargement, **dyld** ajoute simplement cette valeur à la **base du binaire** (en mémoire), puis **saute** vers cette instruction pour démarrer l'exécution du code binaire. ### **LC\_CODE\_SIGNATURE** Contient des informations sur la **signature de code du fichier Mach-O**. Il contient uniquement un **décalage** qui **pointe** vers le **blob de signature**. Cela se trouve généralement à la toute fin du fichier.\ Cependant, vous pouvez trouver des informations sur cette section dans [**cet article de blog**](https://davedelong.com/blog/2018/01/10/reading-your-own-entitlements/) et ce [**gist**](https://gist.github.com/carlospolop/ef26f8eb9fafd4bc22e69e1a32b81da4). ### **LC\_LOAD\_DYLINKER** Contient le **chemin vers l'exécutable du chargeur dynamique** qui mappe les bibliothèques partagées dans l'espace d'adressage du processus. La **valeur est toujours définie sur `/usr/lib/dyld`**. Il est important de noter que dans macOS, le mappage dylib se fait en **mode utilisateur**, pas en mode noyau. ### **`LC_LOAD_DYLIB`** Cette commande de chargement décrit une **dépendance de bibliothèque dynamique** qui **indique** au **chargeur** (dyld) de **charger et lier ladite bibliothèque**. Il y a une commande de chargement LC\_LOAD\_DYLIB **pour chaque bibliothèque** requise par le binaire Mach-O. * Cette commande de chargement est une structure de type **`dylib_command`** (qui contient une structure dylib, décrivant la bibliothèque dynamique dépendante réelle) : ```objectivec struct dylib_command { uint32_t cmd; /* LC_LOAD_{,WEAK_}DYLIB */ uint32_t cmdsize; /* includes pathname string */ struct dylib dylib; /* the library identification */ }; struct dylib { union lc_str name; /* library's path name */ uint32_t timestamp; /* library's build time stamp */ uint32_t current_version; /* library's current version number */ uint32_t compatibility_version; /* library's compatibility vers number*/ }; ``` ![](<../../../.gitbook/assets/image (483).png>) Vous pouvez également obtenir ces informations depuis l'interface de ligne de commande avec : ```bash otool -L /bin/ls /bin/ls: /usr/lib/libutil.dylib (compatibility version 1.0.0, current version 1.0.0) /usr/lib/libncurses.5.4.dylib (compatibility version 5.4.0, current version 5.4.0) /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1319.0.0) ``` Certains bibliothèques potentiellement liées aux logiciels malveillants sont : * **DiskArbitration** : Surveillance des lecteurs USB * **AVFoundation** : Capture audio et vidéo * **CoreWLAN** : Balayages Wifi. {% hint style="info" %} Un binaire Mach-O peut contenir un ou **plusieurs constructeurs**, qui seront **exécutés avant** l'adresse spécifiée dans **LC\_MAIN**.\ Les décalages de tout constructeur sont conservés dans la section **\_\_mod\_init\_func** du segment **\_\_DATA\_CONST**. {% endhint %} ## **Données Mach-O** Au cœur du fichier se trouve la région des données, composée de plusieurs segments tels que définis dans la région des commandes de chargement. **Une variété de sections de données peut être contenue dans chaque segment**, chaque section **contenant du code ou des données** spécifiques à un type. {% hint style="success" %} Les données sont essentiellement la partie contenant toutes les **informations** chargées par les commandes de chargement **LC\_SEGMENTS\_64** {% endhint %} ![https://www.oreilly.com/api/v2/epubs/9781785883378/files/graphics/B05055\_02\_38.jpg](<../../../.gitbook/assets/image (507) (3).png>) Cela inclut : * **Table des fonctions** : Qui contient des informations sur les fonctions du programme. * **Table des symboles** : Qui contient des informations sur les fonctions externes utilisées par le binaire * Il pourrait également contenir des fonctions internes, des noms de variables, et plus encore. Pour vérifier, vous pourriez utiliser l'outil [**Mach-O View**](https://sourceforge.net/projects/machoview/) :
Ou depuis la ligne de commande : ```bash size -m /bin/ls ```
Apprenez le piratage AWS de zéro à héros avec htARTE (Expert de l'équipe rouge AWS de HackTricks)! Autres façons de soutenir HackTricks: * Si vous souhaitez voir votre **entreprise annoncée dans HackTricks** ou **télécharger HackTricks en PDF**, consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop)! * Obtenez le [**swag officiel PEASS & HackTricks**](https://peass.creator-spring.com) * Découvrez [**La famille PEASS**](https://opensea.io/collection/the-peass-family), notre collection exclusive de [**NFT**](https://opensea.io/collection/the-peass-family) * **Rejoignez le** 💬 [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe Telegram**](https://t.me/peass) ou **suivez-nous** sur **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/hacktricks\_live)**.** * **Partagez vos astuces de piratage en soumettant des PR aux** [**HackTricks**](https://github.com/carlospolop/hacktricks) et [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) dépôts GitHub.