# macOS Binaires universels et format Mach-O
☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥
* Travaillez-vous dans une entreprise de **cybersécurité** ? Voulez-vous voir votre **entreprise annoncée dans HackTricks** ? ou voulez-vous avoir accès à la **dernière version de PEASS ou télécharger HackTricks en PDF** ? Consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop) !
* Découvrez [**The PEASS Family**](https://opensea.io/collection/the-peass-family), notre collection exclusive de [**NFT**](https://opensea.io/collection/the-peass-family)
* Obtenez le [**swag officiel PEASS & HackTricks**](https://peass.creator-spring.com)
* **Rejoignez le** [**💬**](https://emojipedia.org/speech-balloon/) [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe telegram**](https://t.me/peass) ou **suivez** moi sur **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Partagez vos astuces de piratage en soumettant des PR au** [**repo hacktricks**](https://github.com/carlospolop/hacktricks) **et au** [**repo hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).
#define FAT_MAGIC 0xcafebabe
#define FAT_CIGAM 0xbebafeca /* NXSwapLong(FAT_MAGIC) */
struct fat_header {
uint32_t magic; /* FAT_MAGIC or FAT_MAGIC_64 */
uint32_t nfat_arch; /* nombre de structures qui suivent */
};
struct fat_arch {
cpu_type_t cputype; /* spécificateur de CPU (int) */
cpu_subtype_t cpusubtype; /* spécificateur de machine (int) */
uint32_t offset; /* décalage de fichier vers ce fichier objet */
uint32_t size; /* taille de ce fichier objet */
uint32_t align; /* alignement en puissance de 2 */
};
L'en-tête a les octets **magic** suivis du **nombre** d'**architectures** que le fichier **contient** (`nfat_arch`) et chaque architecture aura une structure `fat_arch`.
Vérifiez-le avec :
% file /bin/ls
/bin/ls: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit executable x86_64] [arm64e:Mach-O 64-bit executable arm64e]
/bin/ls (for architecture x86_64): Mach-O 64-bit executable x86_64
/bin/ls (for architecture arm64e): Mach-O 64-bit executable arm64e
% otool -f -v /bin/ls
Fat headers
fat_magic FAT_MAGIC
nfat_arch 2
architecture x86_64
cputype CPU_TYPE_X86_64
cpusubtype CPU_SUBTYPE_X86_64_ALL
capabilities 0x0
offset 16384
size 72896
align 2^14 (16384)
architecture arm64e
cputype CPU_TYPE_ARM64
cpusubtype CPU_SUBTYPE_ARM64E
capabilities PTR_AUTH_VERSION USERSPACE 0
offset 98304
size 88816
align 2^14 (16384)
ou en utilisant l'outil [Mach-O View](https://sourceforge.net/projects/machoview/) :
Comme vous pouvez le penser, un binaire universel compilé pour 2 architectures **double la taille** de celui compilé pour une seule architecture.
## En-tête Mach-O
L'en-tête contient des informations de base sur le fichier, telles que les octets magiques pour l'identifier en tant que fichier Mach-O et des informations sur l'architecture cible. Vous pouvez le trouver dans : `mdfind loader.h | grep -i mach-o | grep -E "loader.h$"`
```c
#define MH_MAGIC 0xfeedface /* the mach magic number */
#define MH_CIGAM 0xcefaedfe /* NXSwapInt(MH_MAGIC) */
struct mach_header {
uint32_t magic; /* mach magic number identifier */
cpu_type_t cputype; /* cpu specifier (e.g. I386) */
cpu_subtype_t cpusubtype; /* machine specifier */
uint32_t filetype; /* type of file (usage and alignment for the file) */
uint32_t ncmds; /* number of load commands */
uint32_t sizeofcmds; /* the size of all the load commands */
uint32_t flags; /* flags */
};
#define MH_MAGIC_64 0xfeedfacf /* the 64-bit mach magic number */
#define MH_CIGAM_64 0xcffaedfe /* NXSwapInt(MH_MAGIC_64) */
struct mach_header_64 {
uint32_t magic; /* mach magic number identifier */
int32_t cputype; /* cpu specifier */
int32_t cpusubtype; /* machine specifier */
uint32_t filetype; /* type of file */
uint32_t ncmds; /* number of load commands */
uint32_t sizeofcmds; /* the size of all the load commands */
uint32_t flags; /* flags */
uint32_t reserved; /* reserved */
};
```
**Types de fichiers**:
* MH\_EXECUTE (0x2): Exécutable Mach-O standard
* MH\_DYLIB (0x6): Une bibliothèque dynamique Mach-O (c'est-à-dire .dylib)
* MH\_BUNDLE (0x8): Un bundle Mach-O (c'est-à-dire .bundle)
```bash
# Checking the mac header of a binary
otool -arch arm64e -hv /bin/ls
Mach header
magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC_64 ARM64 E USR00 EXECUTE 19 1728 NOUNDEFS DYLDLINK TWOLEVEL PIE
```
Ou en utilisant [Mach-O View](https://sourceforge.net/projects/machoview/):
## **Commandes de chargement Mach-O**
Cela spécifie la **disposition du fichier en mémoire**. Il contient l'**emplacement de la table des symboles**, le contexte du thread principal au début de l'exécution et les **bibliothèques partagées** requises.\
Les commandes instruisent essentiellement le chargeur dynamique **(dyld) sur la façon de charger le binaire en mémoire.**
Les commandes de chargement commencent toutes par une structure **load\_command**, définie dans le **`loader.h`** précédemment mentionné:
```objectivec
struct load_command {
uint32_t cmd; /* type of load command */
uint32_t cmdsize; /* total size of command in bytes */
};
```
Il existe environ **50 types différents de commandes de chargement** que le système gère différemment. Les plus courantes sont : `LC_SEGMENT_64`, `LC_LOAD_DYLINKER`, `LC_MAIN`, `LC_LOAD_DYLIB` et `LC_CODE_SIGNATURE`.
### **LC\_SEGMENT/LC\_SEGMENT\_64**
{% hint style="success" %}
Essentiellement, ce type de commande de chargement définit **comment charger les sections** qui sont stockées dans DATA lorsque le binaire est exécuté.
{% endhint %}
Ces commandes **définissent des segments** qui sont **cartographiés** dans l'espace de **mémoire virtuelle** d'un processus lorsqu'il est exécuté.
Il existe **différents types** de segments, tels que le segment **\_\_TEXT**, qui contient le code exécutable d'un programme, et le segment **\_\_DATA**, qui contient les données utilisées par le processus. Ces **segments sont situés dans la section de données** du fichier Mach-O.
**Chaque segment** peut être **divisé** en plusieurs **sections**. La **structure de commande de chargement** contient des **informations** sur **ces sections** dans le segment respectif.
Dans l'en-tête, vous trouvez d'abord l'**en-tête de segment** :
struct segment_command_64 { /* pour les architectures 64 bits */
uint32_t cmd; /* LC_SEGMENT_64 */
uint32_t cmdsize; /* inclut la taille des structures section_64 */
char segname[16]; /* nom du segment */
uint64_t vmaddr; /* adresse mémoire de ce segment */
uint64_t vmsize; /* taille mémoire de ce segment */
uint64_t fileoff; /* décalage du fichier de ce segment */
uint64_t filesize; /* quantité à mapper depuis le fichier */
int32_t maxprot; /* protection VM maximale */
int32_t initprot; /* protection VM initiale */
uint32_t nsects; /* nombre de sections dans le segment */
uint32_t flags; /* indicateurs */
};
Exemple d'en-tête de segment :
Cet en-tête définit le **nombre de sections dont les en-têtes apparaissent après** lui :
```c
struct section_64 { /* for 64-bit architectures */
char sectname[16]; /* name of this section */
char segname[16]; /* segment this section goes in */
uint64_t addr; /* memory address of this section */
uint64_t size; /* size in bytes of this section */
uint32_t offset; /* file offset of this section */
uint32_t align; /* section alignment (power of 2) */
uint32_t reloff; /* file offset of relocation entries */
uint32_t nreloc; /* number of relocation entries */
uint32_t flags; /* flags (section type and attributes)*/
uint32_t reserved1; /* reserved (for offset or index) */
uint32_t reserved2; /* reserved (for count or sizeof) */
uint32_t reserved3; /* reserved */
};
```
Exemple d'**en-tête de section**:
Si vous **ajoutez** le **décalage de section** (0x37DC) + le **décalage** où commence l'**architecture**, dans ce cas `0x18000` --> `0x37DC + 0x18000 = 0x1B7DC`
Il est également possible d'obtenir des **informations d'en-tête** à partir de la **ligne de commande** avec:
```bash
otool -lv /bin/ls
```
Segments communs chargés par cette commande :
* **`__PAGEZERO` :** Il indique au noyau de **mapper** l'**adresse zéro** afin qu'elle ne puisse **pas être lue, écrite ou exécutée**. Les variables maxprot et minprot dans la structure sont définies à zéro pour indiquer qu'il n'y a **aucun droit de lecture-écriture-exécution sur cette page**.
* Cette allocation est importante pour **atténuer les vulnérabilités de référence de pointeur NULL**.
* **`__TEXT`** : Contient du **code exécutable** et des **données en lecture seule**. Sections communes de ce segment :
* `__text` : Code binaire compilé
* `__const` : Données constantes
* `__cstring` : Constantes de chaîne
* `__stubs` et `__stubs_helper` : Impliqués pendant le processus de chargement de bibliothèque dynamique
* **`__DATA`** : Contient des données qui sont **modifiables**.
* `__data` : Variables globales (qui ont été initialisées)
* `__bss` : Variables statiques (qui n'ont pas été initialisées)
* `__objc_*` (\_\_objc\_classlist, \_\_objc\_protolist, etc) : Informations utilisées par le runtime Objective-C
* **`__LINKEDIT`** : Contient des informations pour le linker (dyld) telles que "les entrées de table de symboles, de chaînes et de relocation".
* **`__OBJC`** : Contient des informations utilisées par le runtime Objective-C. Bien que ces informations puissent également être trouvées dans le segment \_\_DATA, dans diverses sections \_\_objc\_\*.
### **`LC_MAIN`**
Contient le point d'entrée dans l'attribut **entryoff**. Au moment du chargement, **dyld** ajoute simplement cette valeur à la **base du binaire en mémoire**, puis **saute** à cette instruction pour démarrer l'exécution du code binaire.
### **LC\_CODE\_SIGNATURE**
Contient des informations sur la **signature de code du fichier Macho-O**. Il ne contient qu'un **décalage** qui **pointe** vers le **blob de signature**. Cela se trouve généralement à la fin du fichier.
### **LC\_LOAD\_DYLINKER**
Contient le **chemin d'accès à l'exécutable du lien dynamique** qui mappe les bibliothèques partagées dans l'espace d'adressage du processus. La **valeur est toujours définie sur `/usr/lib/dyld`**. Il est important de noter que sous macOS, le mappage dylib se produit en **mode utilisateur**, pas en mode noyau.
### **`LC_LOAD_DYLIB`**
Cette commande de chargement décrit une **dépendance de bibliothèque dynamique** qui **instructe** le **chargeur** (dyld) à **charger et lier ladite bibliothèque**. Il y a une commande de chargement LC\_LOAD\_DYLIB **pour chaque bibliothèque** que le binaire Mach-O requiert.
* Cette commande de chargement est une structure de type **`dylib_command`** (qui contient une structure dylib, décrivant la bibliothèque dynamique dépendante réelle) :
```objectivec
struct dylib_command {
uint32_t cmd; /* LC_LOAD_{,WEAK_}DYLIB */
uint32_t cmdsize; /* includes pathname string */
struct dylib dylib; /* the library identification */
};
struct dylib {
union lc_str name; /* library's path name */
uint32_t timestamp; /* library's build time stamp */
uint32_t current_version; /* library's current version number */
uint32_t compatibility_version; /* library's compatibility vers number*/
};
```
Vous pouvez également obtenir ces informations depuis la ligne de commande avec :
```bash
otool -L /bin/ls
/bin/ls:
/usr/lib/libutil.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libncurses.5.4.dylib (compatibility version 5.4.0, current version 5.4.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1319.0.0)
```
Certaines bibliothèques potentiellement liées à des logiciels malveillants sont :
* **DiskArbitration** : Surveillance des lecteurs USB
* **AVFoundation** : Capture audio et vidéo
* **CoreWLAN** : Scans Wifi.
{% hint style="info" %}
Un binaire Mach-O peut contenir un ou **plusieurs** **constructeurs**, qui seront **exécutés** **avant** l'adresse spécifiée dans **LC\_MAIN**.\
Les décalages de tous les constructeurs sont contenus dans la section **\_\_mod\_init\_func** du segment **\_\_DATA\_CONST**.
{% endhint %}
## **Données Mach-O**
Le cœur du fichier est la région finale, les données, qui se composent de plusieurs segments tels que définis dans la région des commandes de chargement. **Chaque segment peut contenir plusieurs sections de données**. Chacune de ces sections **contient du code ou des données** d'un type particulier.
{% hint style="success" %}
Les données sont essentiellement la partie contenant toutes les informations chargées par les commandes de chargement LC\_SEGMENTS\_64.
{% endhint %}
![](<../../../.gitbook/assets/image (507) (3).png>)
Cela inclut :
* **Table des fonctions** : qui contient des informations sur les fonctions du programme.
* **Table des symboles** : qui contient des informations sur les fonctions externes utilisées par le binaire.
* Il peut également contenir des noms de fonctions internes, de variables et plus encore.
Pour vérifier cela, vous pouvez utiliser l'outil [**Mach-O View**](https://sourceforge.net/projects/machoview/) :
Ou depuis la ligne de commande :
```bash
size -m /bin/ls
```