# Angr - Examples
Support HackTricks and get benefits!
Do you work in a **cybersecurity company**? Do you want to see your **company advertised in HackTricks**? or do you want to have access the **latest version of the PEASS or download HackTricks in PDF**? Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
**Join the** [**💬**](https://emojipedia.org/speech-balloon/) [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/carlospolopm)**.**
**Share your hacking tricks submitting PRs to the** [**hacktricks github repo**](https://github.com/carlospolop/hacktricks)**.**
{% hint style="info" %}
If the program is using \*\*`scanf` \*\* to get **several values at once from stdin** you need to generate a state that starts after the **`scanf`**.
{% endhint %}
### Input to reach address (indicating the address)
```python
import angr
import sys
def main(argv):
path_to_binary = argv[1] # :string
project = angr.Project(path_to_binary)
# Start in main()
initial_state = project.factory.entry_state()
# Start simulation
simulation = project.factory.simgr(initial_state)
# Find the way yo reach the good address
good_address = 0x804867d
# Avoiding this address
avoid_address = 0x080485A8
simulation.explore(find=good_address , avoid=avoid_address ))
# If found a way to reach the address
if simulation.found:
solution_state = simulation.found[0]
# Print the string that Angr wrote to stdin to follow solution_state
print(solution_state.posix.dumps(sys.stdin.fileno()))
else:
raise Exception('Could not find the solution')
if __name__ == '__main__':
main(sys.argv)
```
### Input to reach address (indicating prints)
```python
# If you don't know the address you want to recah, but you know it's printing something
# You can also indicate that info
import angr
import sys
def main(argv):
path_to_binary = argv[1]
project = angr.Project(path_to_binary)
initial_state = project.factory.entry_state()
simulation = project.factory.simgr(initial_state)
def is_successful(state):
#Successful print
stdout_output = state.posix.dumps(sys.stdout.fileno())
return b'Good Job.' in stdout_output
def should_abort(state):
#Avoid this print
stdout_output = state.posix.dumps(sys.stdout.fileno())
return b'Try again.' in stdout_output
simulation.explore(find=is_successful, avoid=should_abort)
if simulation.found:
solution_state = simulation.found[0]
print(solution_state.posix.dumps(sys.stdin.fileno()))
else:
raise Exception('Could not find the solution')
if __name__ == '__main__':
main(sys.argv)
```
### Registry values
```python
# Angr doesn't currently support reading multiple things with scanf (Ex:
# scanf("%u %u).) You will have to tell the simulation engine to begin the
# program after scanf is called and manually inject the symbols into registers.
import angr
import claripy
import sys
def main(argv):
path_to_binary = argv[1]
project = angr.Project(path_to_binary)
# Address were you want to indicate the relation BitVector - registries
start_address = 0x80488d1
initial_state = project.factory.blank_state(addr=start_address)
# Create Bit Vectors
password0_size_in_bits = 32 # :integer
password0 = claripy.BVS('password0', password0_size_in_bits)
password1_size_in_bits = 32 # :integer
password1 = claripy.BVS('password1', password1_size_in_bits)
password2_size_in_bits = 32 # :integer
password2 = claripy.BVS('password2', password2_size_in_bits)
# Relate it Vectors with the registriy values you are interested in to reach an address
initial_state.regs.eax = password0
initial_state.regs.ebx = password1
initial_state.regs.edx = password2
simulation = project.factory.simgr(initial_state)
def is_successful(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Good Job.'.encode() in stdout_output
def should_abort(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Try again.'.encode() in stdout_output
simulation.explore(find=is_successful, avoid=should_abort)
if simulation.found:
solution_state = simulation.found[0]
solution0 = solution_state.solver.eval(password0)
solution1 = solution_state.solver.eval(password1)
solution2 = solution_state.solver.eval(password2)
# Aggregate and format the solutions you computed above, and then print
# the full string. Pay attention to the order of the integers, and the
# expected base (decimal, octal, hexadecimal, etc).
solution = ' '.join(map('{:x}'.format, [ solution0, solution1, solution2 ])) # :string
print(solution)
else:
raise Exception('Could not find the solution')
if __name__ == '__main__':
main(sys.argv)
```
### Stack values
```python
# Put bit vectors in th stack to find out the vallue that stack position need to
# have to reach a rogram flow
import angr
import claripy
import sys
def main(argv):
path_to_binary = argv[1]
project = angr.Project(path_to_binary)
# Go to some address after the scanf where values have already being set in the stack
start_address = 0x8048697
initial_state = project.factory.blank_state(addr=start_address)
# Since we are starting after scanf, we are skipping this stack construction
# step. To make up for this, we need to construct the stack ourselves. Let us
# start by initializing ebp in the exact same way the program does.
initial_state.regs.ebp = initial_state.regs.esp
# In this case scanf("%u %u") is used, so 2 BVS are going to be needed
password0 = claripy.BVS('password0', 32)
password1 = claripy.BVS('password1', 32)
# Now, in the address were you have stopped, check were are the scanf values saved
# Then, substrack form the esp registry the needing padding to get to the
# part of the stack were the scanf values are being saved and push the BVS
# (see the image below to understan this -8)
padding_length_in_bytes = 8 # :integer
initial_state.regs.esp -= padding_length_in_bytes
initial_state.stack_push(password0)
initial_state.stack_push(password1)
simulation = project.factory.simgr(initial_state)
def is_successful(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Good Job.'.encode() in stdout_output
def should_abort(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Try again.'.encode() in stdout_output
simulation.explore(find=is_successful, avoid=should_abort)
if simulation.found:
solution_state = simulation.found[0]
solution0 = solution_state.solver.eval(password0)
solution1 = solution_state.solver.eval(password1)
solution = ' '.join(map(str, [ solution0, solution1 ]))
print(solution)
else:
raise Exception('Could not find the solution')
if __name__ == '__main__':
main(sys.argv)
```
In this scenario, the input was taken with `scanf("%u %u")` and the value `"1 1"` was given, so the values **`0x00000001`** of the stack come from the **user input**. You can see how this values starts in `$ebp - 8`. Therefore, in the code we have **subtracted 8 bytes to `$esp` (as in that moment `$ebp` and `$esp` had the same value)** and then we have pushed the BVS.
![](<../../../.gitbook/assets/image (614).png>)
### Static Memory values (Global variables)
```python
import angr
import claripy
import sys
def main(argv):
path_to_binary = argv[1]
project = angr.Project(path_to_binary)
#Get an address after the scanf. Once the input has already being saved in the memory positions
start_address = 0x8048606
initial_state = project.factory.blank_state(addr=start_address)
# The binary is calling scanf("%8s %8s %8s %8s").
# So we need 4 BVS of size 8*8
password0 = claripy.BVS('password0', 8*8)
password1 = claripy.BVS('password1', 8*8)
password2 = claripy.BVS('password2', 8*8)
password3 = claripy.BVS('password3', 8*8)
# Write the symbolic BVS in the memory positions
password0_address = 0xa29faa0
initial_state.memory.store(password0_address, password0)
password1_address = 0xa29faa8
initial_state.memory.store(password1_address, password1)
password2_address = 0xa29fab0
initial_state.memory.store(password2_address, password2)
password3_address = 0xa29fab8
initial_state.memory.store(password3_address, password3)
simulation = project.factory.simgr(initial_state)
def is_successful(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Good Job.'.encode() in stdout_output
def should_abort(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Try again.'.encode() in stdout_output
simulation.explore(find=is_successful, avoid=should_abort)
if simulation.found:
solution_state = simulation.found[0]
# Get the values the memory addresses should store
solution0 = solution_state.solver.eval(password0,cast_to=bytes).decode()
solution1 = solution_state.solver.eval(password1,cast_to=bytes).decode()
solution2 = solution_state.solver.eval(password2,cast_to=bytes).decode()
solution3 = solution_state.solver.eval(password3,cast_to=bytes).decode()
solution = ' '.join([ solution0, solution1, solution2, solution3 ])
print(solution)
else:
raise Exception('Could not find the solution')
if __name__ == '__main__':
main(sys.argv)
```
### Dynamic Memory Values (Malloc)
```python
import angr
import claripy
import sys
def main(argv):
path_to_binary = argv[1]
project = angr.Project(path_to_binary)
# Get address after scanf
start_address = 0x804869e
initial_state = project.factory.blank_state(addr=start_address)
# The binary is calling scanf("%8s %8s") so 2 BVS are needed.
password0 = claripy.BVS('password0', 8*8)
password1 = claripy.BVS('password0', 8*8)
# Find a coupble of addresses that aren't used by the binary (like 0x4444444 & 0x4444454)
# The address generated by mallosc is going to be saved in some address
# Then, make that address point to the fake heap addresses were the BVS are going to be saved
fake_heap_address0 = 0x4444444
pointer_to_malloc_memory_address0 = 0xa79a118
initial_state.memory.store(pointer_to_malloc_memory_address0, fake_heap_address0, endness=project.arch.memory_endness)
fake_heap_address1 = 0x4444454
pointer_to_malloc_memory_address1 = 0xa79a120
initial_state.memory.store(pointer_to_malloc_memory_address1, fake_heap_address1, endness=project.arch.memory_endness)
# Save the VBS in the new fake heap addresses created
initial_state.memory.store(fake_heap_address0, password0)
initial_state.memory.store(fake_heap_address1, password1)
simulation = project.factory.simgr(initial_state)
def is_successful(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Good Job.'.encode() in stdout_output
def should_abort(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Try again.'.encode() in stdout_output
simulation.explore(find=is_successful, avoid=should_abort)
if simulation.found:
solution_state = simulation.found[0]
solution0 = solution_state.solver.eval(password0,cast_to=bytes).decode()
solution1 = solution_state.solver.eval(password1,cast_to=bytes).decode()
solution = ' '.join([ solution0, solution1 ])
print(solution)
else:
raise Exception('Could not find the solution')
if __name__ == '__main__':
main(sys.argv)
```
### File Simulation
```python
#In this challenge a password is read from a file and we want to simulate its content
import angr
import claripy
import sys
def main(argv):
path_to_binary = argv[1]
project = angr.Project(path_to_binary)
# Get an address just before opening the file with th simbolic content
# Or at least when the file is not going to suffer more changes before being read
start_address = 0x80488db
initial_state = project.factory.blank_state(addr=start_address)
# Specify the filena that is going to open
# Note that in theory, the filename could be symbolic.
filename = 'WCEXPXBW.txt'
symbolic_file_size_bytes = 64
# Create a BV which is going to be the content of the simbolic file
password = claripy.BVS('password', symbolic_file_size_bytes * 8)
# Create the file simulation with the simbolic content
password_file = angr.storage.SimFile(filename, content=password)
# Add the symbolic file we created to the symbolic filesystem.
initial_state.fs.insert(filename, password_file)
simulation = project.factory.simgr(initial_state)
def is_successful(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Good Job.'.encode() in stdout_output
def should_abort(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Try again.'.encode() in stdout_output
simulation.explore(find=is_successful, avoid=should_abort)
if simulation.found:
solution_state = simulation.found[0]
solution = solution_state.solver.eval(password,cast_to=bytes).decode()
print(solution)
else:
raise Exception('Could not find the solution')
if __name__ == '__main__':
main(sys.argv)
```
{% hint style="info" %}
Note that the symbolic file could also contain constant data merged with symbolic data:
```python
# Hello world, my name is John.
# ^ ^
# ^ address 0 ^ address 24 (count the number of characters)
# In order to represent this in memory, we would want to write the string to
# the beginning of the file:
#
# hello_txt_contents = claripy.BVV('Hello world, my name is John.', 30*8)
#
# Perhaps, then, we would want to replace John with a
# symbolic variable. We would call:
#
# name_bitvector = claripy.BVS('symbolic_name', 4*8)
#
# Then, after the program calls fopen('hello.txt', 'r') and then
# fread(buffer, sizeof(char), 30, hello_txt_file), the buffer would contain
# the string from the file, except four symbolic bytes where the name would be
# stored.
# (!)
```
{% endhint %}
### Applying Constrains
{% hint style="info" %}
Sometimes simple human operations like compare 2 words of length 16 **char by char** (loop), **cost** a lot to a **angr** because it needs to generate branches **exponentially** because it generates 1 branch per if: `2^16`\
Therefore, it's easier to **ask angr get to a previous point** (where the real difficult part was already done) and **set those constrains manually**.
{% endhint %}
```python
# After perform some complex poperations to the input the program checks
# char by char the password against another password saved, like in the snippet:
#
# #define REFERENCE_PASSWORD = "AABBCCDDEEFFGGHH";
# int check_equals_AABBCCDDEEFFGGHH(char* to_check, size_t length) {
# uint32_t num_correct = 0;
# for (int i=0; i= 0 && b >= 0) return a + b;
# else return 0;
# }
#
# could be simulated with python:
#
# class ReplacementAddIfPositive(angr.SimProcedure):
# def run(self, a, b):
# if a >= 0 and b >=0:
# return a + b
# else:
# return 0
#
# run(...) receives the params of the hooked function
def run(self, to_check, length):
user_input_buffer_address = to_check
user_input_buffer_length = length
# Read the data from the memory address given to the function
user_input_string = self.state.memory.load(
user_input_buffer_address,
user_input_buffer_length
)
check_against_string = 'WQNDNKKWAWOLXBAC'.encode()
# Return 1 if equals to the string, 0 otherways
return claripy.If(
user_input_string == check_against_string,
claripy.BVV(1, 32),
claripy.BVV(0, 32)
)
# Hook the check_equals symbol. Angr automatically looks up the address
# associated with the symbol. Alternatively, you can use 'hook' instead
# of 'hook_symbol' and specify the address of the function. To find the
# correct symbol, disassemble the binary.
# (!)
check_equals_symbol = 'check_equals_WQNDNKKWAWOLXBAC' # :string
project.hook_symbol(check_equals_symbol, ReplacementCheckEquals())
simulation = project.factory.simgr(initial_state)
def is_successful(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Good Job.'.encode() in stdout_output
def should_abort(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Try again.'.encode() in stdout_output
simulation.explore(find=is_successful, avoid=should_abort)
if simulation.found:
solution_state = simulation.found[0]
solution = solution_state.posix.dumps(sys.stdin.fileno()).decode()
print(solution)
else:
raise Exception('Could not find the solution')
if __name__ == '__main__':
main(sys.argv)
```
### Simulate scanf with several params
```python
# This time, the solution involves simply replacing scanf with our own version,
# since Angr does not support requesting multiple parameters with scanf.
import angr
import claripy
import sys
def main(argv):
path_to_binary = argv[1]
project = angr.Project(path_to_binary)
initial_state = project.factory.entry_state()
class ReplacementScanf(angr.SimProcedure):
# The code uses: 'scanf("%u %u", ...)'
def run(self, format_string, param0, param1):
scanf0 = claripy.BVS('scanf0', 32)
scanf1 = claripy.BVS('scanf1', 32)
# Get the addresses from the params and store the BVS in memory
scanf0_address = param0
self.state.memory.store(scanf0_address, scanf0, endness=project.arch.memory_endness)
scanf1_address = param1
self.state.memory.store(scanf1_address, scanf1, endness=project.arch.memory_endness)
# Now, we want to 'set aside' references to our symbolic values in the
# globals plugin included by default with a state. You will need to
# store multiple bitvectors. You can either use a list, tuple, or multiple
# keys to reference the different bitvectors.
self.state.globals['solutions'] = (scanf0, scanf1)
scanf_symbol = '__isoc99_scanf'
project.hook_symbol(scanf_symbol, ReplacementScanf())
simulation = project.factory.simgr(initial_state)
def is_successful(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Good Job.'.encode() in stdout_output
def should_abort(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Try again.'.encode() in stdout_output
simulation.explore(find=is_successful, avoid=should_abort)
if simulation.found:
solution_state = simulation.found[0]
# Grab whatever you set aside in the globals dict.
stored_solutions = solution_state.globals['solutions']
solution = ' '.join(map(str, map(solution_state.solver.eval, stored_solutions)))
print(solution)
else:
raise Exception('Could not find the solution')
if __name__ == '__main__':
main(sys.argv)
```
### Static Binaries
```python
# This challenge is the exact same as the first challenge, except that it was
# compiled as a static binary. Normally, Angr automatically replaces standard
# library functions with SimProcedures that work much more quickly.
#
# To solve the challenge, manually hook any standard library c functions that
# are used. Then, ensure that you begin the execution at the beginning of the
# main function. Do not use entry_state.
#
# Here are a few SimProcedures Angr has already written for you. They implement
# standard library functions. You will not need all of them:
# angr.SIM_PROCEDURES['libc']['malloc']
# angr.SIM_PROCEDURES['libc']['fopen']
# angr.SIM_PROCEDURES['libc']['fclose']
# angr.SIM_PROCEDURES['libc']['fwrite']
# angr.SIM_PROCEDURES['libc']['getchar']
# angr.SIM_PROCEDURES['libc']['strncmp']
# angr.SIM_PROCEDURES['libc']['strcmp']
# angr.SIM_PROCEDURES['libc']['scanf']
# angr.SIM_PROCEDURES['libc']['printf']
# angr.SIM_PROCEDURES['libc']['puts']
# angr.SIM_PROCEDURES['libc']['exit']
#
# As a reminder, you can hook functions with something similar to:
# project.hook(malloc_address, angr.SIM_PROCEDURES['libc']['malloc']())
#
# There are many more, see:
# https://github.com/angr/angr/tree/master/angr/procedures/libc
import angr
import sys
def main(argv):
path_to_binary = argv[1]
project = angr.Project(path_to_binary)
initial_state = project.factory.entry_state()
#Find the addresses were the lib functions are loaded in the binary
#For example you could find: call 0x804ed80 <__isoc99_scanf>
project.hook(0x804ed40, angr.SIM_PROCEDURES['libc']['printf']())
project.hook(0x804ed80, angr.SIM_PROCEDURES['libc']['scanf']())
project.hook(0x804f350, angr.SIM_PROCEDURES['libc']['puts']())
project.hook(0x8048d10, angr.SIM_PROCEDURES['glibc']['__libc_start_main']())
simulation = project.factory.simgr(initial_state)
def is_successful(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Good Job.'.encode() in stdout_output # :boolean
def should_abort(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Try again.'.encode() in stdout_output # :boolean
simulation.explore(find=is_successful, avoid=should_abort)
if simulation.found:
solution_state = simulation.found[0]
print(solution_state.posix.dumps(sys.stdin.fileno()).decode())
else:
raise Exception('Could not find the solution')
if __name__ == '__main__':
main(sys.argv)
```
Support HackTricks and get benefits!
Do you work in a **cybersecurity company**? Do you want to see your **company advertised in HackTricks**? or do you want to have access the **latest version of the PEASS or download HackTricks in PDF**? Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
**Join the** [**💬**](https://emojipedia.org/speech-balloon/) [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/carlospolopm)**.**
**Share your hacking tricks submitting PRs to the** [**hacktricks github repo**](https://github.com/carlospolop/hacktricks)**.**