# euid, ruid, suid
☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥
* Do you work in a **cybersecurity company**? Do you want to see your **company advertised in HackTricks**? or do you want to have access to the **latest version of the PEASS or download HackTricks in PDF**? Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
* Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
* Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
* **Join the** [**💬**](https://emojipedia.org/speech-balloon/) [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** 🐦[**@carlospolopm**](https://twitter.com/hacktricks_live)**.**
* **Share your hacking tricks by submitting PRs to the [hacktricks repo](https://github.com/carlospolop/hacktricks) and [hacktricks-cloud repo](https://github.com/carlospolop/hacktricks-cloud)**.
### User Identification Variables
- **`ruid`**: The **real user ID** denotes the user who initiated the process.
- **`euid`**: Known as the **effective user ID**, it represents the user identity utilized by the system to ascertain process privileges. Generally, `euid` mirrors `ruid`, barring instances like a SetUID binary execution, where `euid` assumes the file owner's identity, thus granting specific operational permissions.
- **`suid`**: This **saved user ID** is pivotal when a high-privilege process (typically running as root) needs to temporarily relinquish its privileges to perform certain tasks, only to later reclaim its initial elevated status.
#### Important Note
A process not operating under root can only modify its `euid` to match the current `ruid`, `euid`, or `suid`.
### Understanding set*uid Functions
- **`setuid`**: Contrary to initial assumptions, `setuid` primarily modifies `euid` rather than `ruid`. Specifically, for privileged processes, it aligns `ruid`, `euid`, and `suid` with the specified user, often root, effectively solidifying these IDs due to the overriding `suid`. Detailed insights can be found in the [setuid man page](https://man7.org/linux/man-pages/man2/setuid.2.html).
- **`setreuid`** and **`setresuid`**: These functions allow for the nuanced adjustment of `ruid`, `euid`, and `suid`. However, their capabilities are contingent on the process's privilege level. For non-root processes, modifications are restricted to the current values of `ruid`, `euid`, and `suid`. In contrast, root processes or those with `CAP_SETUID` capability can assign arbitrary values to these IDs. More information can be gleaned from the [setresuid man page](https://man7.org/linux/man-pages/man2/setresuid.2.html) and the [setreuid man page](https://man7.org/linux/man-pages/man2/setreuid.2.html).
These functionalities are designed not as a security mechanism but to facilitate the intended operational flow, such as when a program adopts another user's identity by altering its effective user ID.
Notably, while `setuid` might be a common go-to for privilege elevation to root (since it aligns all IDs to root), differentiating between these functions is crucial for understanding and manipulating user ID behaviors in varying scenarios.
### Program Execution Mechanisms in Linux
#### **`execve` System Call**
- **Functionality**: `execve` initiates a program, determined by the first argument. It takes two array arguments, `argv` for arguments and `envp` for the environment.
- **Behavior**: It retains the memory space of the caller but refreshes the stack, heap, and data segments. The program's code is replaced by the new program.
- **User ID Preservation**:
- `ruid`, `euid`, and supplementary group IDs remain unaltered.
- `euid` might have nuanced changes if the new program has the SetUID bit set.
- `suid` gets updated from `euid` post-execution.
- **Documentation**: Detailed information can be found on the [`execve` man page](https://man7.org/linux/man-pages/man2/execve.2.html).
#### **`system` Function**
- **Functionality**: Unlike `execve`, `system` creates a child process using `fork` and executes a command within that child process using `execl`.
- **Command Execution**: Executes the command via `sh` with `execl("/bin/sh", "sh", "-c", command, (char *) NULL);`.
- **Behavior**: As `execl` is a form of `execve`, it operates similarly but in the context of a new child process.
- **Documentation**: Further insights can be obtained from the [`system` man page](https://man7.org/linux/man-pages/man3/system.3.html).
#### **Behavior of `bash` and `sh` with SUID**
- **`bash`**:
- Has a `-p` option influencing how `euid` and `ruid` are treated.
- Without `-p`, `bash` sets `euid` to `ruid` if they initially differ.
- With `-p`, the initial `euid` is preserved.
- More details can be found on the [`bash` man page](https://linux.die.net/man/1/bash).
- **`sh`**:
- Does not possess a mechanism similar to `-p` in `bash`.
- The behavior concerning user IDs is not explicitly mentioned, except under the `-i` option, emphasizing the preservation of `euid` and `ruid` equality.
- Additional information is available on the [`sh` man page](https://man7.org/linux/man-pages/man1/sh.1p.html).
These mechanisms, distinct in their operation, offer a versatile range of options for executing and transitioning between programs, with specific nuances in how user IDs are managed and preserved.
### Testing User ID Behaviors in Executions
Examples taken from https://0xdf.gitlab.io/2022/05/31/setuid-rabbithole.html#testing-on-jail, check it for further information
#### Case 1: Using `setuid` with `system`
**Objective**: Understanding the effect of `setuid` in combination with `system` and `bash` as `sh`.
**C Code**:
```c
#define _GNU_SOURCE
#include
#include
int main(void) {
setuid(1000);
system("id");
return 0;
}
```
**Compilation and Permissions:**
```bash
oxdf@hacky$ gcc a.c -o /mnt/nfsshare/a;
oxdf@hacky$ chmod 4755 /mnt/nfsshare/a
```
```bash
bash-4.2$ $ ./a
uid=99(nobody) gid=99(nobody) groups=99(nobody) context=system_u:system_r:unconfined_service_t:s0
```
**Analysis:**
* `ruid` and `euid` start as 99 (nobody) and 1000 (frank) respectively.
* `setuid` aligns both to 1000.
* `system` executes `/bin/bash -c id` due to the symlink from sh to bash.
* `bash`, without `-p`, adjusts `euid` to match `ruid`, resulting in both being 99 (nobody).
#### Case 2: Using setreuid with system
**C Code**:
```c
#define _GNU_SOURCE
#include
#include
int main(void) {
setreuid(1000, 1000);
system("id");
return 0;
}
```
**Compilation and Permissions:**
```bash
oxdf@hacky$ gcc b.c -o /mnt/nfsshare/b; chmod 4755 /mnt/nfsshare/b
```
**Execution and Result:**
```bash
bash-4.2$ $ ./b
uid=1000(frank) gid=99(nobody) groups=99(nobody) context=system_u:system_r:unconfined_service_t:s0
```
**Analysis:**
* `setreuid` sets both ruid and euid to 1000.
* `system` invokes bash, which maintains the user IDs due to their equality, effectively operating as frank.
#### Case 3: Using setuid with execve
Objective: Exploring the interaction between setuid and execve.
```bash
#define _GNU_SOURCE
#include
#include
int main(void) {
setuid(1000);
execve("/usr/bin/id", NULL, NULL);
return 0;
}
```
**Execution and Result:**
```bash
bash-4.2$ $ ./c
uid=99(nobody) gid=99(nobody) euid=1000(frank) groups=99(nobody) context=system_u:system_r:unconfined_service_t:s0
```
**Analysis:**
* `ruid` remains 99, but euid is set to 1000, in line with setuid's effect.
**C Code Example 2 (Calling Bash):**
```bash
#define _GNU_SOURCE
#include
#include
int main(void) {
setuid(1000);
execve("/bin/bash", NULL, NULL);
return 0;
}
```
**Execution and Result:**
```bash
bash-4.2$ $ ./d
bash-4.2$ $ id
uid=99(nobody) gid=99(nobody) groups=99(nobody) context=system_u:system_r:unconfined_service_t:s0
```
**Analysis:**
* Although `euid` is set to 1000 by `setuid`, `bash` resets euid to `ruid` (99) due to the absence of `-p`.
**C Code Example 3 (Using bash -p):**
```bash
#define _GNU_SOURCE
#include
#include
int main(void) {
char *const paramList[10] = {"/bin/bash", "-p", NULL};
setuid(1000);
execve(paramList[0], paramList, NULL);
return 0;
}
```
**Execution and Result:**
```bash
bash-4.2$ $ ./e
bash-4.2$ $ id
uid=99(nobody) gid=99(nobody) euid=100
```
## References
* [https://0xdf.gitlab.io/2022/05/31/setuid-rabbithole.html#testing-on-jail](https://0xdf.gitlab.io/2022/05/31/setuid-rabbithole.html#testing-on-jail)
☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥
* Do you work in a **cybersecurity company**? Do you want to see your **company advertised in HackTricks**? or do you want to have access to the **latest version of the PEASS or download HackTricks in PDF**? Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
* Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
* Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
* **Join the** [**💬**](https://emojipedia.org/speech-balloon/) [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** 🐦[**@carlospolopm**](https://twitter.com/hacktricks_live)**.**
* **Share your hacking tricks by submitting PRs to the [hacktricks repo](https://github.com/carlospolop/hacktricks) and [hacktricks-cloud repo](https://github.com/carlospolop/hacktricks-cloud)**.