Aprenda e pratique Hacking AWS:<imgsrc="/.gitbook/assets/arte.png"alt=""data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<imgsrc="/.gitbook/assets/arte.png"alt=""data-size="line">\
Aprenda e pratique Hacking GCP: <imgsrc="/.gitbook/assets/grte.png"alt=""data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<imgsrc="/.gitbook/assets/grte.png"alt=""data-size="line">](https://training.hacktricks.xyz/courses/grte)
* **Junte-se ao** 💬 [**grupo do Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo do telegram**](https://t.me/peass) ou **siga**-nos no **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Compartilhe truques de hacking enviando PRs para o** [**HackTricks**](https://github.com/carlospolop/hacktricks) e [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) repositórios do github.
O firmware é um software essencial que permite que os dispositivos operem corretamente, gerenciando e facilitando a comunicação entre os componentes de hardware e o software com o qual os usuários interagem. Ele é armazenado em memória permanente, garantindo que o dispositivo possa acessar instruções vitais desde o momento em que é ligado, levando ao lançamento do sistema operacional. Examinar e potencialmente modificar o firmware é um passo crítico na identificação de vulnerabilidades de segurança.
**Coletar informações** é um passo inicial crítico para entender a composição de um dispositivo e as tecnologias que ele utiliza. Este processo envolve a coleta de dados sobre:
Para esse propósito, ferramentas de **inteligência de código aberto (OSINT)** são inestimáveis, assim como a análise de quaisquer componentes de software de código aberto disponíveis por meio de processos de revisão manuais e automatizados. Ferramentas como [Coverity Scan](https://scan.coverity.com) e [LGTM da Semmle](https://lgtm.com/#explore) oferecem análise estática gratuita que pode ser aproveitada para encontrar problemas potenciais.
Agora que você **tem o firmware**, você precisa extrair informações sobre ele para saber como tratá-lo. Diferentes ferramentas que você pode usar para isso:
```bash
file <bin>
strings -n8 <bin>
strings -tx <bin>#print offsets in hex
hexdump -C -n 512 <bin> > hexdump.out
hexdump -C <bin> | head # might find signatures in header
fdisk -lu <bin>#lists a drives partition and filesystems if multiple
Se você não encontrar muito com essas ferramentas, verifique a **entropia** da imagem com `binwalk -E <bin>`, se a entropia for baixa, então é improvável que esteja criptografada. Se a entropia for alta, é provável que esteja criptografada (ou comprimida de alguma forma).
Com as ferramentas comentadas anteriormente, como `binwalk -ev <bin>`, você deve ter conseguido **extrair o sistema de arquivos**.\
O Binwalk geralmente o extrai dentro de uma **pasta nomeada como o tipo de sistema de arquivos**, que geralmente é um dos seguintes: squashfs, ubifs, romfs, rootfs, jffs2, yaffs2, cramfs, initramfs.
Às vezes, o binwalk **não terá o byte mágico do sistema de arquivos em suas assinaturas**. Nesses casos, use o binwalk para **encontrar o deslocamento do sistema de arquivos e extrair o sistema de arquivos comprimido** do binário e **extrair manualmente** o sistema de arquivos de acordo com seu tipo usando os passos abaixo.
Uma vez que o firmware é obtido, é essencial dissecá-lo para entender sua estrutura e potenciais vulnerabilidades. Este processo envolve a utilização de várias ferramentas para analisar e extrair dados valiosos da imagem do firmware.
Um conjunto de comandos é fornecido para a inspeção inicial do arquivo binário (referido como `<bin>`). Esses comandos ajudam a identificar tipos de arquivo, extrair strings, analisar dados binários e entender os detalhes da partição e do sistema de arquivos:
Para avaliar o status de criptografia da imagem, a **entropia** é verificada com `binwalk -E <bin>`. Baixa entropia sugere a falta de criptografia, enquanto alta entropia indica possível criptografia ou compressão.
Para extrair **arquivos incorporados**, ferramentas e recursos como a documentação de **file-data-carving-recovery-tools** e **binvis.io** para inspeção de arquivos são recomendados.
Usando `binwalk -ev <bin>`, geralmente é possível extrair o sistema de arquivos, muitas vezes em um diretório nomeado de acordo com o tipo de sistema de arquivos (por exemplo, squashfs, ubifs). No entanto, quando **binwalk** não consegue reconhecer o tipo de sistema de arquivos devido à falta de bytes mágicos, a extração manual é necessária. Isso envolve usar `binwalk` para localizar o deslocamento do sistema de arquivos, seguido pelo comando `dd` para extrair o sistema de arquivos:
Depois, dependendo do tipo de sistema de arquivos (por exemplo, squashfs, cpio, jffs2, ubifs), diferentes comandos são usados para extrair manualmente o conteúdo.
Com o sistema de arquivos extraído, a busca por falhas de segurança começa. A atenção é voltada para daemons de rede inseguros, credenciais hardcoded, endpoints de API, funcionalidades de servidor de atualização, código não compilado, scripts de inicialização e binários compilados para análise offline.
* [**LinPEAS**](https://github.com/carlospolop/PEASS-ng) e [**Firmwalker**](https://github.com/craigz28/firmwalker) para busca de informações sensíveis
* [**The Firmware Analysis and Comparison Tool (FACT)**](https://github.com/fkie-cad/FACT\_core) para análise abrangente de firmware
* [**FwAnalyzer**](https://github.com/cruise-automation/fwanalyzer), [**ByteSweep**](https://gitlab.com/bytesweep/bytesweep), [**ByteSweep-go**](https://gitlab.com/bytesweep/bytesweep-go) e [**EMBA**](https://github.com/e-m-b-a/emba) para análise estática e dinâmica
Tanto o código-fonte quanto os binários compilados encontrados no sistema de arquivos devem ser examinados em busca de vulnerabilidades. Ferramentas como **checksec.sh** para binários Unix e **PESecurity** para binários Windows ajudam a identificar binários desprotegidos que podem ser explorados.
O processo de emular firmware permite **análise dinâmica** tanto da operação de um dispositivo quanto de um programa individual. Essa abordagem pode enfrentar desafios com dependências de hardware ou arquitetura, mas transferir o sistema de arquivos raiz ou binários específicos para um dispositivo com arquitetura e endianness correspondentes, como um Raspberry Pi, ou para uma máquina virtual pré-construída, pode facilitar testes adicionais.
Ferramentas como [Firmadyne](https://github.com/firmadyne/firmadyne), [Firmware Analysis Toolkit](https://github.com/attify/firmware-analysis-toolkit) e outras, facilitam a emulação completa de firmware, automatizando o processo e ajudando na análise dinâmica.
Nesta fase, um ambiente de dispositivo real ou emulado é usado para análise. É essencial manter acesso ao shell do sistema operacional e ao sistema de arquivos. A emulação pode não imitar perfeitamente as interações de hardware, necessitando de reinicializações ocasionais da emulação. A análise deve revisitar o sistema de arquivos, explorar páginas da web expostas e serviços de rede, e investigar vulnerabilidades do bootloader. Testes de integridade do firmware são críticos para identificar potenciais vulnerabilidades de backdoor.
A análise em tempo de execução envolve interagir com um processo ou binário em seu ambiente operacional, usando ferramentas como gdb-multiarch, Frida e Ghidra para definir pontos de interrupção e identificar vulnerabilidades por meio de fuzzing e outras técnicas.
Desenvolver um PoC para vulnerabilidades identificadas requer um profundo entendimento da arquitetura alvo e programação em linguagens de baixo nível. Proteções de tempo de execução em sistemas embarcados são raras, mas quando presentes, técnicas como Return Oriented Programming (ROP) podem ser necessárias.
Sistemas operacionais como [AttifyOS](https://github.com/adi0x90/attifyos) e [EmbedOS](https://github.com/scriptingxss/EmbedOS) fornecem ambientes pré-configurados para testes de segurança de firmware, equipados com as ferramentas necessárias.
* [**AttifyOS**](https://github.com/adi0x90/attifyos): AttifyOS é uma distribuição destinada a ajudar você a realizar avaliação de segurança e testes de penetração de dispositivos da Internet das Coisas (IoT). Ele economiza muito tempo ao fornecer um ambiente pré-configurado com todas as ferramentas necessárias carregadas.
* [**EmbedOS**](https://github.com/scriptingxss/EmbedOS): Sistema operacional de teste de segurança embarcada baseado no Ubuntu 18.04 pré-carregado com ferramentas de teste de segurança de firmware.
* [Practical IoT Hacking: The Definitive Guide to Attacking the Internet of Things](https://www.amazon.co.uk/Practical-IoT-Hacking-F-Chantzis/dp/1718500904)
Aprenda e pratique Hacking AWS:<imgsrc="/.gitbook/assets/arte.png"alt=""data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<imgsrc="/.gitbook/assets/arte.png"alt=""data-size="line">\
Aprenda e pratique Hacking GCP: <imgsrc="/.gitbook/assets/grte.png"alt=""data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<imgsrc="/.gitbook/assets/grte.png"alt=""data-size="line">](https://training.hacktricks.xyz/courses/grte)
<details>
<summary>Support HackTricks</summary>
* Confira os [**planos de assinatura**](https://github.com/sponsors/carlospolop)!
* **Junte-se ao** 💬 [**grupo do Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo do telegram**](https://t.me/peass) ou **siga**-nos no **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Compartilhe truques de hacking enviando PRs para o** [**HackTricks**](https://github.com/carlospolop/hacktricks) e [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) repositórios do github.