hacktricks/reversing-and-exploiting/linux-exploiting-basic-esp/elf-tricks.md

409 lines
25 KiB
Markdown
Raw Normal View History

# ELF Tricks
{% hint style="success" %}
Learn & practice AWS Hacking:<img src="/.gitbook/assets/arte.png" alt="" data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<img src="/.gitbook/assets/arte.png" alt="" data-size="line">\
Learn & practice GCP Hacking: <img src="/.gitbook/assets/grte.png" alt="" data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<img src="/.gitbook/assets/grte.png" alt="" data-size="line">](https://training.hacktricks.xyz/courses/grte)
<details>
<summary>Support HackTricks</summary>
* Check the [**plans d'abonnement**](https://github.com/sponsors/carlospolop)!
* **Rejoignez le** 💬 [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe telegram**](https://t.me/peass) ou **suivez** nous sur **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Partagez des astuces de hacking en soumettant des PRs aux** [**HackTricks**](https://github.com/carlospolop/hacktricks) et [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) dépôts github.
</details>
{% endhint %}
## Program Headers
Ils décrivent au chargeur comment charger l'ELF en mémoire :
```bash
readelf -lW lnstat
Elf file type is DYN (Position-Independent Executable file)
Entry point 0x1c00
There are 9 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000040 0x0000000000000040 0x0000000000000040 0x0001f8 0x0001f8 R 0x8
INTERP 0x000238 0x0000000000000238 0x0000000000000238 0x00001b 0x00001b R 0x1
[Requesting program interpreter: /lib/ld-linux-aarch64.so.1]
LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x003f7c 0x003f7c R E 0x10000
LOAD 0x00fc48 0x000000000001fc48 0x000000000001fc48 0x000528 0x001190 RW 0x10000
DYNAMIC 0x00fc58 0x000000000001fc58 0x000000000001fc58 0x000200 0x000200 RW 0x8
NOTE 0x000254 0x0000000000000254 0x0000000000000254 0x0000e0 0x0000e0 R 0x4
GNU_EH_FRAME 0x003610 0x0000000000003610 0x0000000000003610 0x0001b4 0x0001b4 R 0x4
GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 0x000000 0x000000 RW 0x10
GNU_RELRO 0x00fc48 0x000000000001fc48 0x000000000001fc48 0x0003b8 0x0003b8 R 0x1
Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.gnu.build-id .note.ABI-tag .note.package .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame
03 .init_array .fini_array .dynamic .got .data .bss
04 .dynamic
05 .note.gnu.build-id .note.ABI-tag .note.package
06 .eh_frame_hdr
07
08 .init_array .fini_array .dynamic .got
```
Le programme précédent a **9 en-têtes de programme**, ensuite, le **mappage de segment** indique dans quel en-tête de programme (de 00 à 08) **chaque section est située**.
### PHDR - En-tête de programme
Contient les tables d'en-têtes de programme et les métadonnées elles-mêmes.
### INTERP
Indique le chemin du chargeur à utiliser pour charger le binaire en mémoire.
### LOAD
Ces en-têtes sont utilisés pour indiquer **comment charger un binaire en mémoire.**\
Chaque en-tête **LOAD** indique une région de **mémoire** (taille, permissions et alignement) et indique les octets du binaire ELF **à copier là-dedans**.
Par exemple, le second a une taille de 0x1190, devrait être situé à 0x1fc48 avec des permissions de lecture et d'écriture et sera rempli avec 0x528 à partir de l'offset 0xfc48 (il ne remplit pas tout l'espace réservé). Cette mémoire contiendra les sections `.init_array .fini_array .dynamic .got .data .bss`.
### DYNAMIC
Cet en-tête aide à lier les programmes à leurs dépendances de bibliothèque et à appliquer des relocations. Vérifiez la section **`.dynamic`**.
### NOTE
Cela stocke des informations de métadonnées sur le binaire.
### GNU\_EH\_FRAME
Définit l'emplacement des tables de dépliage de pile, utilisées par les débogueurs et les fonctions d'exécution des exceptions C++.
### GNU\_STACK
Contient la configuration de la défense contre l'exécution de la pile. Si activé, le binaire ne pourra pas exécuter de code depuis la pile.
### GNU\_RELRO
Indique la configuration RELRO (Relocation Read-Only) du binaire. Cette protection marquera comme en lecture seule certaines sections de la mémoire (comme le `GOT` ou les tables `init` et `fini`) après que le programme a été chargé et avant qu'il ne commence à s'exécuter.
Dans l'exemple précédent, il copie 0x3b8 octets à 0x1fc48 en lecture seule affectant les sections `.init_array .fini_array .dynamic .got .data .bss`.
Notez que RELRO peut être partiel ou complet, la version partielle ne protège pas la section **`.plt.got`**, qui est utilisée pour **lazy binding** et a besoin de cet espace mémoire pour avoir **des permissions d'écriture** afin d'écrire l'adresse des bibliothèques la première fois que leur emplacement est recherché.
### TLS
Définit une table d'entrées TLS, qui stocke des informations sur les variables locales aux threads.
## En-têtes de section
Les en-têtes de section donnent une vue plus détaillée du binaire ELF.
```
objdump lnstat -h
lnstat: file format elf64-littleaarch64
Sections:
Idx Name Size VMA LMA File off Algn
0 .interp 0000001b 0000000000000238 0000000000000238 00000238 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA
1 .note.gnu.build-id 00000024 0000000000000254 0000000000000254 00000254 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .note.ABI-tag 00000020 0000000000000278 0000000000000278 00000278 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
3 .note.package 0000009c 0000000000000298 0000000000000298 00000298 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
4 .gnu.hash 0000001c 0000000000000338 0000000000000338 00000338 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
5 .dynsym 00000498 0000000000000358 0000000000000358 00000358 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
6 .dynstr 000001fe 00000000000007f0 00000000000007f0 000007f0 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA
7 .gnu.version 00000062 00000000000009ee 00000000000009ee 000009ee 2**1
CONTENTS, ALLOC, LOAD, READONLY, DATA
8 .gnu.version_r 00000050 0000000000000a50 0000000000000a50 00000a50 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
9 .rela.dyn 00000228 0000000000000aa0 0000000000000aa0 00000aa0 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
10 .rela.plt 000003c0 0000000000000cc8 0000000000000cc8 00000cc8 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
11 .init 00000018 0000000000001088 0000000000001088 00001088 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
12 .plt 000002a0 00000000000010a0 00000000000010a0 000010a0 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE
13 .text 00001c34 0000000000001340 0000000000001340 00001340 2**6
CONTENTS, ALLOC, LOAD, READONLY, CODE
14 .fini 00000014 0000000000002f74 0000000000002f74 00002f74 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
15 .rodata 00000686 0000000000002f88 0000000000002f88 00002f88 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
16 .eh_frame_hdr 000001b4 0000000000003610 0000000000003610 00003610 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
17 .eh_frame 000007b4 00000000000037c8 00000000000037c8 000037c8 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
18 .init_array 00000008 000000000001fc48 000000000001fc48 0000fc48 2**3
CONTENTS, ALLOC, LOAD, DATA
19 .fini_array 00000008 000000000001fc50 000000000001fc50 0000fc50 2**3
CONTENTS, ALLOC, LOAD, DATA
20 .dynamic 00000200 000000000001fc58 000000000001fc58 0000fc58 2**3
CONTENTS, ALLOC, LOAD, DATA
21 .got 000001a8 000000000001fe58 000000000001fe58 0000fe58 2**3
CONTENTS, ALLOC, LOAD, DATA
22 .data 00000170 0000000000020000 0000000000020000 00010000 2**3
CONTENTS, ALLOC, LOAD, DATA
23 .bss 00000c68 0000000000020170 0000000000020170 00010170 2**3
ALLOC
24 .gnu_debugaltlink 00000049 0000000000000000 0000000000000000 00010170 2**0
CONTENTS, READONLY
25 .gnu_debuglink 00000034 0000000000000000 0000000000000000 000101bc 2**2
CONTENTS, READONLY
```
It also indicates the location, offset, permissions but also the **type of data** it section has.
### Meta Sections
* **String table**: Il contient toutes les chaînes nécessaires au fichier ELF (mais pas celles réellement utilisées par le programme). Par exemple, il contient des noms de sections comme `.text` ou `.data`. Et si `.text` est à l'offset 45 dans la table des chaînes, il utilisera le numéro **45** dans le champ **name**.
* Afin de trouver où se trouve la table des chaînes, l'ELF contient un pointeur vers la table des chaînes.
* **Symbol table**: Il contient des informations sur les symboles comme le nom (offset dans la table des chaînes), l'adresse, la taille et plus de métadonnées sur le symbole.
### Main Sections
* **`.text`**: L'instruction du programme à exécuter.
* **`.data`**: Variables globales avec une valeur définie dans le programme.
* **`.bss`**: Variables globales laissées non initialisées (ou initialisées à zéro). Les variables ici sont automatiquement initialisées à zéro, empêchant ainsi l'ajout de zéros inutiles au binaire.
* **`.rodata`**: Variables globales constantes (section en lecture seule).
* **`.tdata`** et **`.tbss`**: Comme .data et .bss lorsque des variables locales à un thread sont utilisées (`__thread_local` en C++ ou `__thread` en C).
* **`.dynamic`**: Voir ci-dessous.
## Symbols
Symbols est un emplacement nommé dans le programme qui pourrait être une fonction, un objet de données global, des variables locales à un thread...
```
readelf -s lnstat
Symbol table '.dynsym' contains 49 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000001088 0 SECTION LOCAL DEFAULT 12 .init
2: 0000000000020000 0 SECTION LOCAL DEFAULT 23 .data
3: 0000000000000000 0 FUNC GLOBAL DEFAULT UND strtok@GLIBC_2.17 (2)
4: 0000000000000000 0 FUNC GLOBAL DEFAULT UND s[...]@GLIBC_2.17 (2)
5: 0000000000000000 0 FUNC GLOBAL DEFAULT UND strlen@GLIBC_2.17 (2)
6: 0000000000000000 0 FUNC GLOBAL DEFAULT UND fputs@GLIBC_2.17 (2)
7: 0000000000000000 0 FUNC GLOBAL DEFAULT UND exit@GLIBC_2.17 (2)
8: 0000000000000000 0 FUNC GLOBAL DEFAULT UND _[...]@GLIBC_2.34 (3)
9: 0000000000000000 0 FUNC GLOBAL DEFAULT UND perror@GLIBC_2.17 (2)
10: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterT[...]
11: 0000000000000000 0 FUNC WEAK DEFAULT UND _[...]@GLIBC_2.17 (2)
12: 0000000000000000 0 FUNC GLOBAL DEFAULT UND putc@GLIBC_2.17 (2)
[...]
```
Chaque entrée de symbole contient :
* **Nom**
* **Attributs de liaison** (faible, local ou global) : Un symbole local ne peut être accédé que par le programme lui-même, tandis que les symboles globaux sont partagés en dehors du programme. Un objet faible est par exemple une fonction qui peut être remplacée par une autre.
* **Type** : NOTYPE (aucun type spécifié), OBJECT (variable de données globale), FUNC (fonction), SECTION (section), FILE (fichier de code source pour les débogueurs), TLS (variable locale au thread), GNU\_IFUNC (fonction indirecte pour la relocation)
* **Index de section** où il est situé
* **Valeur** (adresse en mémoire)
* **Taille**
## Section dynamique
```
readelf -d lnstat
Dynamic section at offset 0xfc58 contains 28 entries:
Tag Type Name/Value
0x0000000000000001 (NEEDED) Shared library: [libc.so.6]
0x0000000000000001 (NEEDED) Shared library: [ld-linux-aarch64.so.1]
0x000000000000000c (INIT) 0x1088
0x000000000000000d (FINI) 0x2f74
0x0000000000000019 (INIT_ARRAY) 0x1fc48
0x000000000000001b (INIT_ARRAYSZ) 8 (bytes)
0x000000000000001a (FINI_ARRAY) 0x1fc50
0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)
0x000000006ffffef5 (GNU_HASH) 0x338
0x0000000000000005 (STRTAB) 0x7f0
0x0000000000000006 (SYMTAB) 0x358
0x000000000000000a (STRSZ) 510 (bytes)
0x000000000000000b (SYMENT) 24 (bytes)
0x0000000000000015 (DEBUG) 0x0
0x0000000000000003 (PLTGOT) 0x1fe58
0x0000000000000002 (PLTRELSZ) 960 (bytes)
0x0000000000000014 (PLTREL) RELA
0x0000000000000017 (JMPREL) 0xcc8
0x0000000000000007 (RELA) 0xaa0
0x0000000000000008 (RELASZ) 552 (bytes)
0x0000000000000009 (RELAENT) 24 (bytes)
0x000000000000001e (FLAGS) BIND_NOW
0x000000006ffffffb (FLAGS_1) Flags: NOW PIE
0x000000006ffffffe (VERNEED) 0xa50
0x000000006fffffff (VERNEEDNUM) 2
0x000000006ffffff0 (VERSYM) 0x9ee
0x000000006ffffff9 (RELACOUNT) 15
0x0000000000000000 (NULL) 0x0
```
Le répertoire NEEDED indique que le programme **doit charger la bibliothèque mentionnée** pour continuer. Le répertoire NEEDED se complète une fois que la **bibliothèque partagée est entièrement opérationnelle et prête** à être utilisée.
## Relocations
Le chargeur doit également relocaliser les dépendances après les avoir chargées. Ces relocalisations sont indiquées dans la table de relocalisation dans les formats REL ou RELA et le nombre de relocalisations est donné dans les sections dynamiques RELSZ ou RELASZ.
```
readelf -r lnstat
Relocation section '.rela.dyn' at offset 0xaa0 contains 23 entries:
Offset Info Type Sym. Value Sym. Name + Addend
00000001fc48 000000000403 R_AARCH64_RELATIV 1d10
00000001fc50 000000000403 R_AARCH64_RELATIV 1cc0
00000001fff0 000000000403 R_AARCH64_RELATIV 1340
000000020008 000000000403 R_AARCH64_RELATIV 20008
000000020010 000000000403 R_AARCH64_RELATIV 3330
000000020030 000000000403 R_AARCH64_RELATIV 3338
000000020050 000000000403 R_AARCH64_RELATIV 3340
000000020070 000000000403 R_AARCH64_RELATIV 3348
000000020090 000000000403 R_AARCH64_RELATIV 3350
0000000200b0 000000000403 R_AARCH64_RELATIV 3358
0000000200d0 000000000403 R_AARCH64_RELATIV 3360
0000000200f0 000000000403 R_AARCH64_RELATIV 3370
000000020110 000000000403 R_AARCH64_RELATIV 3378
000000020130 000000000403 R_AARCH64_RELATIV 3380
000000020150 000000000403 R_AARCH64_RELATIV 3388
00000001ffb8 000a00000401 R_AARCH64_GLOB_DA 0000000000000000 _ITM_deregisterTM[...] + 0
00000001ffc0 000b00000401 R_AARCH64_GLOB_DA 0000000000000000 __cxa_finalize@GLIBC_2.17 + 0
00000001ffc8 000f00000401 R_AARCH64_GLOB_DA 0000000000000000 stderr@GLIBC_2.17 + 0
00000001ffd0 001000000401 R_AARCH64_GLOB_DA 0000000000000000 optarg@GLIBC_2.17 + 0
00000001ffd8 001400000401 R_AARCH64_GLOB_DA 0000000000000000 stdout@GLIBC_2.17 + 0
00000001ffe0 001e00000401 R_AARCH64_GLOB_DA 0000000000000000 __gmon_start__ + 0
00000001ffe8 001f00000401 R_AARCH64_GLOB_DA 0000000000000000 __stack_chk_guard@GLIBC_2.17 + 0
00000001fff8 002e00000401 R_AARCH64_GLOB_DA 0000000000000000 _ITM_registerTMCl[...] + 0
Relocation section '.rela.plt' at offset 0xcc8 contains 40 entries:
Offset Info Type Sym. Value Sym. Name + Addend
00000001fe70 000300000402 R_AARCH64_JUMP_SL 0000000000000000 strtok@GLIBC_2.17 + 0
00000001fe78 000400000402 R_AARCH64_JUMP_SL 0000000000000000 strtoul@GLIBC_2.17 + 0
00000001fe80 000500000402 R_AARCH64_JUMP_SL 0000000000000000 strlen@GLIBC_2.17 + 0
00000001fe88 000600000402 R_AARCH64_JUMP_SL 0000000000000000 fputs@GLIBC_2.17 + 0
00000001fe90 000700000402 R_AARCH64_JUMP_SL 0000000000000000 exit@GLIBC_2.17 + 0
00000001fe98 000800000402 R_AARCH64_JUMP_SL 0000000000000000 __libc_start_main@GLIBC_2.34 + 0
00000001fea0 000900000402 R_AARCH64_JUMP_SL 0000000000000000 perror@GLIBC_2.17 + 0
00000001fea8 000b00000402 R_AARCH64_JUMP_SL 0000000000000000 __cxa_finalize@GLIBC_2.17 + 0
00000001feb0 000c00000402 R_AARCH64_JUMP_SL 0000000000000000 putc@GLIBC_2.17 + 0
00000001feb8 000d00000402 R_AARCH64_JUMP_SL 0000000000000000 opendir@GLIBC_2.17 + 0
00000001fec0 000e00000402 R_AARCH64_JUMP_SL 0000000000000000 fputc@GLIBC_2.17 + 0
00000001fec8 001100000402 R_AARCH64_JUMP_SL 0000000000000000 snprintf@GLIBC_2.17 + 0
00000001fed0 001200000402 R_AARCH64_JUMP_SL 0000000000000000 __snprintf_chk@GLIBC_2.17 + 0
00000001fed8 001300000402 R_AARCH64_JUMP_SL 0000000000000000 malloc@GLIBC_2.17 + 0
00000001fee0 001500000402 R_AARCH64_JUMP_SL 0000000000000000 gettimeofday@GLIBC_2.17 + 0
00000001fee8 001600000402 R_AARCH64_JUMP_SL 0000000000000000 sleep@GLIBC_2.17 + 0
00000001fef0 001700000402 R_AARCH64_JUMP_SL 0000000000000000 __vfprintf_chk@GLIBC_2.17 + 0
00000001fef8 001800000402 R_AARCH64_JUMP_SL 0000000000000000 calloc@GLIBC_2.17 + 0
00000001ff00 001900000402 R_AARCH64_JUMP_SL 0000000000000000 rewind@GLIBC_2.17 + 0
00000001ff08 001a00000402 R_AARCH64_JUMP_SL 0000000000000000 strdup@GLIBC_2.17 + 0
00000001ff10 001b00000402 R_AARCH64_JUMP_SL 0000000000000000 closedir@GLIBC_2.17 + 0
00000001ff18 001c00000402 R_AARCH64_JUMP_SL 0000000000000000 __stack_chk_fail@GLIBC_2.17 + 0
00000001ff20 001d00000402 R_AARCH64_JUMP_SL 0000000000000000 strrchr@GLIBC_2.17 + 0
00000001ff28 001e00000402 R_AARCH64_JUMP_SL 0000000000000000 __gmon_start__ + 0
00000001ff30 002000000402 R_AARCH64_JUMP_SL 0000000000000000 abort@GLIBC_2.17 + 0
00000001ff38 002100000402 R_AARCH64_JUMP_SL 0000000000000000 feof@GLIBC_2.17 + 0
00000001ff40 002200000402 R_AARCH64_JUMP_SL 0000000000000000 getopt_long@GLIBC_2.17 + 0
00000001ff48 002300000402 R_AARCH64_JUMP_SL 0000000000000000 __fprintf_chk@GLIBC_2.17 + 0
00000001ff50 002400000402 R_AARCH64_JUMP_SL 0000000000000000 strcmp@GLIBC_2.17 + 0
00000001ff58 002500000402 R_AARCH64_JUMP_SL 0000000000000000 free@GLIBC_2.17 + 0
00000001ff60 002600000402 R_AARCH64_JUMP_SL 0000000000000000 readdir64@GLIBC_2.17 + 0
00000001ff68 002700000402 R_AARCH64_JUMP_SL 0000000000000000 strndup@GLIBC_2.17 + 0
00000001ff70 002800000402 R_AARCH64_JUMP_SL 0000000000000000 strchr@GLIBC_2.17 + 0
00000001ff78 002900000402 R_AARCH64_JUMP_SL 0000000000000000 fwrite@GLIBC_2.17 + 0
00000001ff80 002a00000402 R_AARCH64_JUMP_SL 0000000000000000 fflush@GLIBC_2.17 + 0
00000001ff88 002b00000402 R_AARCH64_JUMP_SL 0000000000000000 fopen64@GLIBC_2.17 + 0
00000001ff90 002c00000402 R_AARCH64_JUMP_SL 0000000000000000 __isoc99_sscanf@GLIBC_2.17 + 0
00000001ff98 002d00000402 R_AARCH64_JUMP_SL 0000000000000000 strncpy@GLIBC_2.17 + 0
00000001ffa0 002f00000402 R_AARCH64_JUMP_SL 0000000000000000 __assert_fail@GLIBC_2.17 + 0
00000001ffa8 003000000402 R_AARCH64_JUMP_SL 0000000000000000 fgets@GLIBC_2.17 + 0
```
### Relocalisations Statique
Si le **programme est chargé à un endroit différent** de l'adresse préférée (généralement 0x400000) parce que l'adresse est déjà utilisée ou à cause de **ASLR** ou pour toute autre raison, une relocalisation statique **corrige les pointeurs** qui avaient des valeurs s'attendant à ce que le binaire soit chargé à l'adresse préférée.
Par exemple, toute section de type `R_AARCH64_RELATIV` devrait avoir modifié l'adresse au biais de relocalisation plus la valeur d'addend.
### Relocalisations Dynamiques et GOT
La relocalisation pourrait également référencer un symbole externe (comme une fonction d'une dépendance). Comme la fonction malloc de libC. Ensuite, le chargeur, en chargeant libC à une adresse, vérifie où la fonction malloc est chargée, il écrira cette adresse dans la table GOT (Global Offset Table) (indiquée dans la table de relocalisation) où l'adresse de malloc devrait être spécifiée.
### Table de Liaison de Procédure
La section PLT permet d'effectuer un liaison paresseuse, ce qui signifie que la résolution de l'emplacement d'une fonction sera effectuée la première fois qu'elle est accédée.
Ainsi, lorsqu'un programme appelle malloc, il appelle en réalité l'emplacement correspondant de `malloc` dans le PLT (`malloc@plt`). La première fois qu'il est appelé, il résout l'adresse de `malloc` et la stocke, donc la prochaine fois que `malloc` est appelé, cette adresse est utilisée au lieu du code PLT.
## Initialisation du Programme
Après que le programme a été chargé, il est temps pour lui de s'exécuter. Cependant, le premier code qui est exécuté **n'est pas toujours la fonction `main`**. Cela est dû au fait que, par exemple, en C++, si une **variable globale est un objet d'une classe**, cet objet doit être **initialisé** **avant** que main ne s'exécute, comme dans :
```cpp
#include <stdio.h>
// g++ autoinit.cpp -o autoinit
class AutoInit {
public:
AutoInit() {
printf("Hello AutoInit!\n");
}
~AutoInit() {
printf("Goodbye AutoInit!\n");
}
};
AutoInit autoInit;
int main() {
printf("Main\n");
return 0;
}
```
Notez que ces variables globales se trouvent dans `.data` ou `.bss`, mais dans les listes `__CTOR_LIST__` et `__DTOR_LIST__`, les objets à initialiser et à détruire sont stockés afin de les suivre.
À partir du code C, il est possible d'obtenir le même résultat en utilisant les extensions GNU :
```c
__attributte__((constructor)) //Add a constructor to execute before
__attributte__((destructor)) //Add to the destructor list
```
D'un point de vue du compilateur, pour exécuter ces actions avant et après l'exécution de la fonction `main`, il est possible de créer une fonction `init` et une fonction `fini` qui seraient référencées dans la section dynamique comme **`INIT`** et **`FIN`**. et sont placées dans les sections `init` et `fini` de l'ELF.
L'autre option, comme mentionné, est de référencer les listes **`__CTOR_LIST__`** et **`__DTOR_LIST__`** dans les entrées **`INIT_ARRAY`** et **`FINI_ARRAY`** dans la section dynamique et la longueur de celles-ci est indiquée par **`INIT_ARRAYSZ`** et **`FINI_ARRAYSZ`**. Chaque entrée est un pointeur de fonction qui sera appelé sans arguments.
De plus, il est également possible d'avoir un **`PREINIT_ARRAY`** avec des **pointeurs** qui seront exécutés **avant** les pointeurs **`INIT_ARRAY`**.
### Ordre d'initialisation
1. Le programme est chargé en mémoire, les variables globales statiques sont initialisées dans **`.data`** et celles non initialisées sont mises à zéro dans **`.bss`**.
2. Toutes les **dépendances** pour le programme ou les bibliothèques sont **initialisées** et le **lien dynamique** est exécuté.
3. Les fonctions **`PREINIT_ARRAY`** sont exécutées.
4. Les fonctions **`INIT_ARRAY`** sont exécutées.
5. S'il y a une entrée **`INIT`**, elle est appelée.
6. Si c'est une bibliothèque, dlopen se termine ici, si c'est un programme, il est temps d'appeler le **vrai point d'entrée** (fonction `main`).
## Stockage Local par Fil (TLS)
Ils sont définis en utilisant le mot-clé **`__thread_local`** en C++ ou l'extension GNU **`__thread`**.
Chaque fil maintiendra un emplacement unique pour cette variable, donc seul le fil peut accéder à sa variable.
Lorsque cela est utilisé, les sections **`.tdata`** et **`.tbss`** sont utilisées dans l'ELF. Qui sont comme `.data` (initialisé) et `.bss` (non initialisé) mais pour le TLS.
Chaque variable aura une entrée dans l'en-tête TLS spécifiant la taille et l'offset TLS, qui est l'offset qu'elle utilisera dans la zone de données locale du fil.
Le `__TLS_MODULE_BASE` est un symbole utilisé pour faire référence à l'adresse de base du stockage local par fil et pointe vers la zone en mémoire qui contient toutes les données locales au fil d'un module.
{% hint style="success" %}
Learn & practice AWS Hacking:<img src="/.gitbook/assets/arte.png" alt="" data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<img src="/.gitbook/assets/arte.png" alt="" data-size="line">\
Learn & practice GCP Hacking: <img src="/.gitbook/assets/grte.png" alt="" data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<img src="/.gitbook/assets/grte.png" alt="" data-size="line">](https://training.hacktricks.xyz/courses/grte)
<details>
<summary>Support HackTricks</summary>
* Check the [**subscription plans**](https://github.com/sponsors/carlospolop)!
* **Join the** 💬 [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** us on **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Share hacking tricks by submitting PRs to the** [**HackTricks**](https://github.com/carlospolop/hacktricks) and [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.
</details>
{% endhint %}