Aprenda e pratique Hacking AWS:<imgsrc="/.gitbook/assets/arte.png"alt=""data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<imgsrc="/.gitbook/assets/arte.png"alt=""data-size="line">\
Aprenda e pratique Hacking GCP: <imgsrc="/.gitbook/assets/grte.png"alt=""data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<imgsrc="/.gitbook/assets/grte.png"alt=""data-size="line">](https://training.hacktricks.xyz/courses/grte)
* Confira os [**planos de assinatura**](https://github.com/sponsors/carlospolop)!
* **Junte-se ao** 💬 [**grupo do Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo do telegram**](https://t.me/peass) ou **siga**-nos no **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Compartilhe truques de hacking enviando PRs para o** [**HackTricks**](https://github.com/carlospolop/hacktricks) e [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) repositórios do github.
Electron combina um backend local (com **NodeJS**) e um frontend (**Chromium**), embora falte alguns dos mecanismos de segurança dos navegadores modernos.
npx asar extract app.asar destfolder #Extract everything
npx asar extract-file app.asar main.js #Extract just a file
```
No código-fonte de um aplicativo Electron, dentro de `packet.json`, você pode encontrar especificado o arquivo `main.js` onde as configurações de segurança são definidas.
As configurações do **processo de renderização** podem ser **configuradas** no **processo principal** dentro do arquivo main.js. Algumas das configurações **impedirão que o aplicativo Electron obtenha RCE** ou outras vulnerabilidades se as **configurações estiverem corretamente configuradas**.
* [**`sandbox`**](https://docs.w3cub.com/electron/api/sandbox-option) - está desligado por padrão. Isso restringirá as ações que o NodeJS pode realizar.
* Se **`nodeIntegration`** estiver **ativado**, isso permitiria o uso de **APIs Node.js** em páginas da web que estão **carregadas em iframes** dentro de um aplicativo Electron.
Se você puder executar localmente um aplicativo Electron, é possível que você consiga fazer com que ele execute código JavaScript arbitrário. Veja como em:
Se o **nodeIntegration** estiver definido como **on**, o JavaScript de uma página da web pode usar recursos do Node.js facilmente apenas chamando o `require()`. Por exemplo, a maneira de executar o aplicativo calc no Windows é:
O _**contextIsolation**_ introduz os **contextos separados entre os scripts da página da web e o código interno JavaScript do Electron**, de modo que a execução do JavaScript de cada código não afete o outro. Este é um recurso necessário para eliminar a possibilidade de RCE.
Se houver restrições aplicadas ao clicar em um link, você pode ser capaz de contorná-las **fazendo um clique do meio** em vez de um clique esquerdo normal.
Para mais informações sobre estes exemplos, consulte [https://shabarkin.medium.com/1-click-rce-in-electron-applications-79b52e1fe8b8](https://shabarkin.medium.com/1-click-rce-in-electron-applications-79b52e1fe8b8) e [https://benjamin-altpeter.de/shell-openexternal-dangers/](https://benjamin-altpeter.de/shell-openexternal-dangers/)
Ao implantar um aplicativo de desktop Electron, garantir as configurações corretas para `nodeIntegration` e `contextIsolation` é crucial. Está estabelecido que **execução remota de código do lado do cliente (RCE)** direcionando scripts de preload ou o código nativo do Electron a partir do processo principal é efetivamente prevenido com essas configurações em vigor.
Quando um usuário interage com links ou abre novas janelas, ouvintes de eventos específicos são acionados, que são cruciais para a segurança e funcionalidade do aplicativo:
Esses ouvintes são **substituídos pelo aplicativo de desktop** para implementar sua própria **lógica de negócios**. O aplicativo avalia se um link navegável deve ser aberto internamente ou em um navegador da web externo. Essa decisão é geralmente tomada por meio de uma função, `openInternally`. Se essa função retornar `false`, isso indica que o link deve ser aberto externamente, utilizando a função `shell.openExternal`.
As melhores práticas de segurança do Electron JS desaconselham aceitar conteúdo não confiável com a função `openExternal`, pois isso pode levar a RCE através de vários protocolos. Os sistemas operacionais suportam diferentes protocolos que podem acionar RCE. Para exemplos detalhados e mais explicações sobre este tópico, pode-se consultar [este recurso](https://positive.security/blog/url-open-rce#windows-10-19042), que inclui exemplos de protocolos do Windows capazes de explorar essa vulnerabilidade.
**Desabilitar `contextIsolation` permite o uso de `<webview>` tags**, semelhante a `<iframe>`, para ler e exfiltrar arquivos locais. Um exemplo fornecido demonstra como explorar essa vulnerabilidade para ler o conteúdo de arquivos internos:
Além disso, outro método para **ler um arquivo interno** é compartilhado, destacando uma vulnerabilidade crítica de leitura de arquivo local em um aplicativo desktop Electron. Isso envolve injetar um script para explorar o aplicativo e exfiltrar dados:
Se o **chromium** usado pelo aplicativo é **antigo** e há **vulnerabilidades conhecidas** nele, pode ser possível **explorá-lo e obter RCE através de um XSS**.\
Você pode ver um exemplo neste **writeup**: [https://blog.electrovolt.io/posts/discord-rce/](https://blog.electrovolt.io/posts/discord-rce/)
Supondo que você encontrou um XSS, mas **não consegue acionar RCE ou roubar arquivos internos**, você poderia tentar usá-lo para **roubar credenciais via phishing**.
A chamada para **`openInternally`** decidirá se o **link** será **aberto** na **janela do desktop** como um link pertencente à plataforma, **ou** se será aberto no **navegador como um recurso de 3ª parte**.
No caso de a **regex** usada pela função ser **vulnerável a bypasses** (por exemplo, por **não escapar os pontos dos subdomínios**), um atacante poderia abusar do XSS para **abrir uma nova janela que** estará localizada na infraestrutura do atacante **solicitando credenciais** ao usuário:
* [**Electronegativity**](https://github.com/doyensec/electronegativity) é uma ferramenta para identificar configurações incorretas e anti-padrões de segurança em aplicações baseadas em Electron.
* [**Electrolint**](https://github.com/ksdmitrieva/electrolint) é um plugin de código aberto para VS Code para aplicações Electron que utiliza Electronegativity.
Em [https://www.youtube.com/watch?v=xILfQGkLXQo\&t=22s](https://www.youtube.com/watch?v=xILfQGkLXQo\&t=22s) você pode encontrar um laboratório para explorar aplicativos Electron vulneráveis.
* Mais pesquisas e artigos sobre segurança do Electron em [https://github.com/doyensec/awesome-electronjs-hacking](https://github.com/doyensec/awesome-electronjs-hacking)
Aprenda e pratique Hacking AWS:<imgsrc="/.gitbook/assets/arte.png"alt=""data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<imgsrc="/.gitbook/assets/arte.png"alt=""data-size="line">\
Aprenda e pratique Hacking GCP: <imgsrc="/.gitbook/assets/grte.png"alt=""data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<imgsrc="/.gitbook/assets/grte.png"alt=""data-size="line">](https://training.hacktricks.xyz/courses/grte)
* Confira os [**planos de assinatura**](https://github.com/sponsors/carlospolop)!
* **Junte-se ao** 💬 [**grupo do Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo do telegram**](https://t.me/peass) ou **siga**-nos no **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Compartilhe truques de hacking enviando PRs para os repositórios do** [**HackTricks**](https://github.com/carlospolop/hacktricks) e [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud).