* Travaillez-vous dans une **entreprise de cybersécurité** ? Voulez-vous voir votre **entreprise annoncée dans HackTricks** ? ou voulez-vous avoir accès à la **dernière version de PEASS ou télécharger HackTricks en PDF** ? Consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop) !
* Découvrez [**The PEASS Family**](https://opensea.io/collection/the-peass-family), notre collection exclusive de [**NFT**](https://opensea.io/collection/the-peass-family)
* Obtenez le [**swag officiel PEASS & HackTricks**](https://peass.creator-spring.com)
* **Rejoignez le** [**💬**](https://emojipedia.org/speech-balloon/) [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe Telegram**](https://t.me/peass) ou **suivez** moi sur **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Partagez vos astuces de piratage en soumettant des PR au** [**repo hacktricks**](https://github.com/carlospolop/hacktricks) **et au** [**repo hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).
Mach utilise des **tâches** comme **plus petite unité** pour partager des ressources, et chaque tâche peut contenir **plusieurs threads**. Ces **tâches et threads sont mappés 1:1 sur les processus et threads POSIX**.
La communication entre les tâches se fait via la Communication Inter-Processus (IPC) de Mach, en utilisant des canaux de communication unidirectionnels. Les **messages sont transférés entre les ports**, qui agissent comme des **files d'attente de messages** gérées par le noyau.
Les droits de port, qui définissent les opérations qu'une tâche peut effectuer, sont essentiels pour cette communication. Les **droits de port possibles** sont :
* Le **droit de réception**, qui permet de recevoir les messages envoyés au port. Les ports Mach sont des files d'attente MPSC (multiple-producteur, unique-consommateur), ce qui signifie qu'il ne peut y avoir qu'un seul droit de réception pour chaque port dans tout le système (contrairement aux tubes, où plusieurs processus peuvent tous détenir des descripteurs de fichier pour l'extrémité de lecture d'un tube).
* Une **tâche avec le droit de réception** peut recevoir des messages et **créer des droits d'envoi**, ce qui lui permet d'envoyer des messages. À l'origine, seule la **propre tâche a le droit de réception sur son port**.
* Le **droit d'envoi**, qui permet d'envoyer des messages au port.
* Le **droit de jeu de ports**, qui indique un _ensemble de ports_ plutôt qu'un seul port. Le défilement d'un message à partir d'un ensemble de ports défile un message à partir de l'un des ports qu'il contient. Les ensembles de ports peuvent être utilisés pour écouter plusieurs ports simultanément, un peu comme `select`/`poll`/`epoll`/`kqueue` dans Unix.
* Le **nom mort**, qui n'est pas un droit de port réel, mais simplement un espace réservé. Lorsqu'un port est détruit, tous les droits de port existants sur le port se transforment en noms morts.
**Les tâches peuvent transférer des droits d'ENVOI à d'autres**, leur permettant d'envoyer des messages en retour. **Les droits d'ENVOI peuvent également être clonés**, de sorte qu'une tâche peut dupliquer et donner le droit à une troisième tâche. Cela, combiné à un processus intermédiaire appelé **serveur d'amorçage**, permet une communication efficace entre les tâches.
3. La tâche **A** établit une **connexion** avec le **serveur d'amorçage**, fournissant le **nom de service du port** et le **droit d'envoi** via une procédure appelée enregistrement d'amorçage.
4. La tâche **B** interagit avec le **serveur d'amorçage** pour exécuter une **recherche d'amorçage pour le service**. Si elle réussit, le **serveur duplique le droit d'envoi** reçu de la tâche A et **le transmet à la tâche B**.
Le serveur d'amorçage ne peut pas authentifier le nom de service revendiqué par une tâche. Cela signifie qu'une **tâche** pourrait potentiellement **usurper n'importe quelle tâche système**, en revendiquant faussement un nom de service d'autorisation, puis en approuvant chaque demande.
Ensuite, Apple stocke les **noms des services fournis par le système** dans des fichiers de configuration sécurisés, situés dans des répertoires protégés par SIP : `/System/Library/LaunchDaemons` et `/System/Library/LaunchAgents`. À côté de chaque nom de service, le **binaire associé est également stocké**. Le serveur d'amorçage créera et détiendra un **droit de réception pour chacun de ces noms de service**.
Pour ces services prédéfinis, le **processus de recherche diffère légèrement**. Lorsqu'un nom de service est recherché, launchd lance le service dynamiquement. Le nouveau flux de travail est le suivant :
* La tâche **A** (le service) effectue un **enregistrement de vérification d'amorçage**. Ici, le **serveur d'amorçage** crée un droit d'envoi, le conserve et **transfère le droit de réception à la tâche A**.
Cependant, ce processus ne s'applique qu'aux tâches système prédéfinies. Les tâches non système fonctionnent toujours comme décrit initialement, ce qui pourrait potentiellement permettre l'usurpation.
Notez comment l'**expéditeur** **alloue** un port, crée un **droit d'envoi** pour le nom `org.darlinghq.example` et l'envoie au **serveur d'amorçage** tandis que l'expéditeur demande le **droit d'envoi** de ce nom et l'utilise pour **envoyer un message**.
* **Port hôte**: Si un processus a le **privilège d'envoi** sur ce port, il peut obtenir des **informations** sur le **système** (par exemple, `host_processor_info`).
* **Port privilégié de l'hôte**: Un processus avec le droit d'**envoi** sur ce port peut effectuer des **actions privilégiées** telles que le chargement d'une extension du noyau. Le **processus doit être root** pour obtenir cette permission.
* De plus, pour appeler l'API **`kext_request`**, il est nécessaire de disposer d'autres autorisations **`com.apple.private.kext*`** qui ne sont accordées qu'aux binaires Apple.
* **Port du nom de la tâche**: Une version non privilégiée du _port de la tâche_. Il fait référence à la tâche, mais ne permet pas de la contrôler. La seule chose qui semble être disponible à travers lui est `task_info()`.
* **Port de la tâche** (alias port du noyau)**:** Avec l'autorisation d'envoi sur ce port, il est possible de contrôler la tâche (lecture/écriture de mémoire, création de threads...).
* Appelez `mach_task_self()` pour **obtenir le nom** de ce port pour la tâche appelante. Ce port n'est **hérité** qu'à travers **`exec()`**; une nouvelle tâche créée avec `fork()` obtient un nouveau port de tâche (dans un cas particulier, une tâche obtient également un nouveau port de tâche après `exec()` dans un binaire suid). La seule façon de créer une tâche et d'obtenir son port est d'effectuer la ["danse de l'échange de port"](https://robert.sesek.com/2014/1/changes\_to\_xnu\_mach\_ipc.html) tout en effectuant un `fork()`.
* Si l'application a l'autorisation **`com.apple.security.get-task-allow`**, les processus de **même utilisateur peuvent accéder au port de la tâche** (communément ajoutée par Xcode pour le débogage). Le processus de **notarisation** ne le permettra pas pour les versions de production.
* Les applications ayant l'autorisation **`com.apple.system-task-ports`** peuvent obtenir le **port de la tâche pour n'importe quel** processus, sauf le noyau. Dans les anciennes versions, cela s'appelait **`task_for_pid-allow`**. Cela n'est accordé qu'aux applications Apple.
**Compilez** le programme précédent et ajoutez les **droits** nécessaires pour pouvoir injecter du code avec le même utilisateur (sinon vous devrez utiliser **sudo**).
Dans macOS, les **threads** peuvent être manipulés via **Mach** ou en utilisant l'API **posix `pthread`**. Le thread que nous avons généré lors de l'injection précédente a été généré en utilisant l'API Mach, donc **il n'est pas conforme à posix**.
Il était possible d'**injecter un simple shellcode** pour exécuter une commande car cela ne nécessitait pas de travailler avec des API conformes à posix, seulement avec Mach. Des **injections plus complexes** nécessiteraient que le **thread** soit également conforme à posix.
Par conséquent, pour **améliorer le thread**, il devrait appeler **`pthread_create_from_mach_thread`** qui va **créer un pthread valide**. Ensuite, ce nouveau pthread pourrait **appeler dlopen** pour **charger une dylib** du système, donc au lieu d'écrire un nouveau shellcode pour effectuer différentes actions, il est possible de charger des bibliothèques personnalisées.
XPC, qui signifie Communication inter-processus XNU (le noyau utilisé par macOS), est un framework pour la **communication entre les processus** sur macOS et iOS. XPC fournit un mécanisme pour effectuer des **appels de méthode asynchrones et sécurisés entre différents processus** du système. Il fait partie du paradigme de sécurité d'Apple, permettant la **création d'applications avec des privilèges séparés** où chaque **composant** s'exécute avec **seulement les autorisations nécessaires** pour effectuer son travail, limitant ainsi les dommages potentiels d'un processus compromis.
XPC utilise une forme de communication inter-processus (IPC), qui est un ensemble de méthodes permettant à différents programmes s'exécutant sur le même système d'échanger des données.
1.**Sécurité** : En séparant le travail en différents processus, chaque processus peut se voir accorder uniquement les autorisations dont il a besoin. Cela signifie que même si un processus est compromis, il a une capacité limitée à causer des dommages.
2.**Stabilité** : XPC aide à isoler les plantages dans le composant où ils se produisent. Si un processus plante, il peut être redémarré sans affecter le reste du système.
3.**Performance** : XPC permet une concurrence facile, car différentes tâches peuvent être exécutées simultanément dans différents processus.
Le seul **inconvénient** est que **séparer une application en plusieurs processus** qui communiquent via XPC est **moins efficace**. Mais dans les systèmes d'aujourd'hui, cela n'est presque pas perceptible et les avantages sont meilleurs.
Les composants XPC d'une application se trouvent **à l'intérieur de l'application elle-même**. Par exemple, dans Safari, vous pouvez les trouver dans **`/Applications/Safari.app/Contents/XPCServices`**. Ils ont l'extension **`.xpc`** (comme **`com.apple.Safari.SandboxBroker.xpc`**) et sont **également des bundles** avec le binaire principal à l'intérieur : `/Applications/Safari.app/Contents/XPCServices/com.apple.Safari.SandboxBroker.xpc/Contents/MacOS/com.apple.Safari.SandboxBroker` et un `Info.plist : /Applications/Safari.app/Contents/XPCServices/com.apple.Safari.SandboxBroker.xpc/Contents/Info.plist`
Comme vous pouvez le penser, un **composant XPC aura des autorisations et des privilèges différents** des autres composants XPC ou du binaire principal de l'application. SAUF si un service XPC est configuré avec [**JoinExistingSession**](https://developer.apple.com/documentation/bundleresources/information\_property\_list/xpcservice/joinexistingsession) défini sur "True" dans son fichier **Info.plist**. Dans ce cas, le service XPC s'exécutera dans la **même session de sécurité que l'application** qui l'a appelé.
Les services XPC sont **démarrés** par **launchd** lorsque cela est nécessaire et **arrêtés** une fois que toutes les tâches sont **terminées** pour libérer les ressources système. Les composants XPC spécifiques à l'application ne peuvent être utilisés que par l'application, réduisant ainsi les risques liés aux vulnérabilités potentielles.
Les services XPC à l'échelle du système sont accessibles à tous les utilisateurs. Ces services, qu'ils soient de type launchd ou Mach, doivent être **définis dans des fichiers plist** situés dans des répertoires spécifiés tels que **`/System/Library/LaunchDaemons`**, **`/Library/LaunchDaemons`**, **`/System/Library/LaunchAgents`** ou **`/Library/LaunchAgents`**.
Ceux dans **`LaunchDameons`** sont exécutés par root. Donc, si un processus non privilégié peut communiquer avec l'un d'entre eux, il pourrait être en mesure d'escalader les privilèges.
Les applications peuvent **s'abonner** à différents **messages d'événement**, ce qui leur permet d'être **initiées à la demande** lorsque de tels événements se produisent. La **configuration** de ces services est effectuée dans des fichiers **plist de lancement**, situés dans les **mêmes répertoires que les précédents** et contenant une clé supplémentaire **`LaunchEvent`**.
Lorsqu'un processus essaie d'appeler une méthode via une connexion XPC, le **service XPC doit vérifier si ce processus est autorisé à se connecter**. Voici les moyens courants de vérifier cela et les pièges courants :
Apple permet également aux applications de **configurer certains droits et la manière de les obtenir**, de sorte que si le processus appelant les possède, il serait **autorisé à appeler une méthode** du service XPC :
Le fichier `xpc_client.c` est un exemple de code source en langage C qui illustre l'utilisation de l'API XPC pour la communication inter-processus (IPC) sur macOS. L'API XPC permet aux processus de communiquer entre eux de manière sécurisée et efficace en utilisant des messages structurés.
Dans cet exemple, un client XPC est créé et utilisé pour envoyer un message à un service XPC distant. Le client XPC utilise la fonction `xpc_connection_create` pour créer une connexion vers le service distant, puis utilise la fonction `xpc_dictionary_create` pour créer un dictionnaire XPC contenant les données à envoyer.
Une fois que le dictionnaire XPC est créé, le client XPC utilise la fonction `xpc_connection_send_message` pour envoyer le message au service distant. Le service distant peut ensuite recevoir le message en utilisant une méthode similaire.
Il est important de noter que l'API XPC offre des mécanismes de sécurité intégrés pour protéger la communication inter-processus. Par exemple, les connexions XPC peuvent être configurées pour utiliser des autorisations spécifiques, et les messages XPC peuvent être chiffrés pour assurer la confidentialité des données.
Ce fichier `xpc_client.c` est un exemple de base pour comprendre comment utiliser l'API XPC pour la communication inter-processus sur macOS. Il peut être utilisé comme point de départ pour développer des applications qui nécessitent une communication sécurisée entre les processus.
{% tab title="xyz.hacktricks.svcoc.plist" %}xyz.hacktricks.svcoc.plist est un fichier de configuration utilisé par le système d'exploitation macOS pour gérer les services de communication inter-processus (IPC). L'IPC est un mécanisme qui permet à différents processus de communiquer entre eux, que ce soit sur la même machine ou sur des machines différentes.
Ce fichier de configuration spécifie les paramètres et les autorisations pour les services IPC spécifiques. Il peut être utilisé pour restreindre l'accès aux services IPC, limiter les privilèges des processus ou définir des règles de sécurité supplémentaires.
Il est important de noter que la modification de ce fichier de configuration peut avoir des conséquences importantes sur le fonctionnement du système d'exploitation. Il est recommandé de faire preuve de prudence lors de la modification de ce fichier et de s'assurer de comprendre les implications de chaque modification.
Pour modifier ce fichier de configuration, vous pouvez utiliser un éditeur de texte ou une interface graphique spécifique à macOS. Assurez-vous de sauvegarder une copie du fichier d'origine avant de le modifier, au cas où vous auriez besoin de revenir à la configuration précédente.
Une fois que vous avez modifié le fichier de configuration, vous devrez peut-être redémarrer le système d'exploitation pour que les modifications prennent effet.
Il est également important de noter que la modification de ce fichier de configuration peut nécessiter des privilèges d'administrateur. Assurez-vous d'avoir les autorisations appropriées avant de procéder à des modifications.
En résumé, xyz.hacktricks.svcoc.plist est un fichier de configuration utilisé par macOS pour gérer les services IPC. Il peut être modifié pour restreindre l'accès aux services IPC, limiter les privilèges des processus ou définir des règles de sécurité supplémentaires.
In macOS, a Dylib is a dynamic library that contains executable code and data that can be shared among multiple applications. It is similar to a DLL (Dynamic Link Library) in Windows.
When a client application wants to use the functionality provided by a Dylib, it needs to load the Dylib and establish a connection with it. This is done through a mechanism called Inter-Process Communication (IPC).
The client code inside the Dylib is responsible for handling the IPC communication. It acts as a bridge between the client application and the Dylib, allowing them to exchange messages and data.
To implement IPC, the client code typically uses a framework like Mach or XPC. These frameworks provide APIs for creating and managing communication channels between processes.
The client code inside the Dylib can define various IPC endpoints, which are entry points for receiving messages from the client application. It can also define methods or functions that can be called by the client application to perform specific tasks.
When the client application wants to communicate with the Dylib, it sends a message to one of the IPC endpoints. The client code inside the Dylib receives the message, processes it, and sends a response back to the client application if necessary.
IPC communication between the client application and the Dylib can be used for various purposes, such as sharing data, invoking functionality, or coordinating actions between different processes.
Overall, the client code inside a Dylib plays a crucial role in enabling communication and interaction between the client application and the shared library. It facilitates the exchange of information and allows the client application to leverage the functionality provided by the Dylib.
MIG a été créé pour **simplifier le processus de création de code Mach IPC**. Il génère essentiellement le code nécessaire pour que le serveur et le client puissent communiquer avec une définition donnée. Même si le code généré est moche, un développeur n'aura qu'à l'importer et son code sera beaucoup plus simple qu'auparavant.
### Exemple
Créez un fichier de définition, dans ce cas avec une fonction très simple :
{% code title="myipc.defs" %}
```cpp
subsystem myipc 500; // Arbitrary name and id
userprefix USERPREF; // Prefix for created functions in the client
serverprefix SERVERPREF; // Prefix for created functions in the server
#include <mach/mach_types.defs>
#include <mach/std_types.defs>
simpleroutine Subtract(
server_port : mach_port_t;
n1 : uint32_t;
n2 : uint32_t);
```
{% endcode %}
Maintenant, utilisez mig pour générer le code serveur et client qui pourra communiquer entre eux pour appeler la fonction Subtract :
Plusieurs nouveaux fichiers seront créés dans le répertoire actuel.
Dans les fichiers **`myipcServer.c`** et **`myipcServer.h`**, vous pouvez trouver la déclaration et la définition de la structure **`SERVERPREFmyipc_subsystem`**, qui définit essentiellement la fonction à appeler en fonction de l'ID du message reçu (nous avons indiqué un numéro de départ de 500):
{% tabs %}
{% tab title="myipcServer.c" %}
```c
/* Description of this subsystem, for use in direct RPC */
Dans cet exemple, nous avons seulement défini une fonction dans les définitions, mais si nous en avions défini davantage, elles auraient été incluses dans le tableau **`SERVERPREFmyipc_subsystem`** et la première serait assignée à l'ID **500**, la deuxième à l'ID **501**...
En réalité, il est possible d'identifier cette relation dans la structure **`subsystem_to_name_map_myipc`** de **`myipcServer.h`**:
```c
#ifndef subsystem_to_name_map_myipc
#define subsystem_to_name_map_myipc \
{ "Subtract", 500 }
#endif
```
Enfin, une autre fonction importante pour faire fonctionner le serveur sera **`myipc_server`**, qui est celle qui va réellement **appeler la fonction** liée à l'identifiant reçu :
Vérifiez le code suivant pour utiliser le code généré afin de créer un serveur et un client simples où le client peut appeler les fonctions Subtract du serveur :
printf("bootstrap_look_up() failed with code 0x%x\n", kr);
return 1;
}
printf("Port right name %d\n", port);
USERPREFSubtract(port, 40, 2);
}
```
## Analyse binaire
Comme de nombreux binaires utilisent désormais MIG pour exposer des ports mach, il est intéressant de savoir comment **identifier l'utilisation de MIG** et les **fonctions exécutées par MIG** avec chaque identifiant de message.
[**jtool2**](../../macos-apps-inspecting-debugging-and-fuzzing/#jtool2) peut analyser les informations MIG d'un binaire Mach-O en indiquant l'identifiant de message et en identifiant la fonction à exécuter :
```bash
jtool2 -d __DATA.__const myipc_server | grep MIG
```
Il a été mentionné précédemment que la fonction qui se chargera d'**appeler la fonction correcte en fonction de l'ID du message reçu** était `myipc_server`. Cependant, vous n'aurez généralement pas les symboles du binaire (pas de noms de fonctions), il est donc intéressant de **vérifier à quoi ressemble la décompilation** car elle sera toujours très similaire (le code de cette fonction est indépendant des fonctions exposées) :
{% tabs %}
{% tab title="myipc_server décompilé 1" %}
<preclass="language-c"><codeclass="lang-c">int _myipc_server(int arg0, int arg1) {
var_10 = arg0;
var_18 = arg1;
// Instructions initiales pour trouver les bons pointeurs de fonction
// Appel à l'adresse calculée où la fonction devrait être
<strong> (var_20)(var_10, var_18);
</strong> var_4 = 0x1;
}
}
else {
*(var_18 + 0x18) = **0x100004000;
*(int32_t *)(var_18 + 0x20) = 0xfffffed1;
var_4 = 0x0;
}
}
else {
*(var_18 + 0x18) = **0x100004000;
*(int32_t *)(var_18 + 0x20) = 0xfffffed1;
var_4 = 0x0;
}
r0 = var_4;
return r0;
}
</code></pre>
{% endtab %}
{% endtabs %}
En fait, si vous allez à la fonction **`0x100004000`**, vous trouverez le tableau des structures **`routine_descriptor`**, le premier élément de la structure est l'adresse où la fonction est implémentée et la **structure prend 0x28 octets**, donc tous les 0x28 octets (à partir de l'octet 0) vous pouvez obtenir 8 octets et cela sera l'**adresse de la fonction** qui sera appelée :
* Travaillez-vous dans une **entreprise de cybersécurité** ? Voulez-vous voir votre **entreprise annoncée dans HackTricks** ? ou voulez-vous avoir accès à la **dernière version de PEASS ou télécharger HackTricks en PDF** ? Consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop) !
* **Rejoignez le** [**💬**](https://emojipedia.org/speech-balloon/) [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe Telegram**](https://t.me/peass) ou **suivez** moi sur **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Partagez vos astuces de piratage en soumettant des PR au** [**repo hacktricks**](https://github.com/carlospolop/hacktricks) **et au** [**repo hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).