<summary><strong>Support HackTricks and get benefits!</strong></summary>
Do you work in a **cybersecurity company**? Do you want to see your **company advertised in HackTricks**? or do you want to have access the **latest version of the PEASS or download HackTricks in PDF**? Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
**Join the** [**💬**](https://emojipedia.org/speech-balloon/) [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/carlospolopm)**.**
**Share your hacking tricks submitting PRs to the** [**hacktricks github repo**](https://github.com/carlospolop/hacktricks)**.**
**Serialization** is the process of turning some object into a data format that can be restored later. People often serialize objects in order to save them to storage, or to send as part of communications.
**Deserialization** is the reverse of that process, taking data structured from some format, and rebuilding it into an object. Today, the most popular data format for serializing data is JSON. Before that, it was XML.
**You should read:** [**https://cheatsheetseries.owasp.org/cheatsheets/Deserialization\_Cheat\_Sheet.html**](https://cheatsheetseries.owasp.org/cheatsheets/Deserialization\_Cheat\_Sheet.html) **for learn how to attack.**
*`__toString` uses object as string but also can be used to read file or more than that based on function call inside it.
```php
<?php
class test {
public $s = "This is a test";
public function displaystring(){
echo $this->s.'<br/>';
}
public function __toString()
{
echo '__toString method called';
}
public function __construct(){
echo "__construct method called";
}
public function __destruct(){
echo "__destruct method called";
}
public function __wakeup(){
echo "__wakeup method called";
}
public function __sleep(){
echo "__sleep method called";
return array("s"); #The "s" makes references to the public attribute
}
}
$o = new test();
$o->displaystring();
$ser=serialize($o);
echo $ser;
$unser=unserialize($ser);
$unser->displaystring();
/*
php > $o = new test();
__construct method called__destruct method called
php > $o->displaystring();
This is a test<br/>
php > $ser=serialize($o);
__sleep method called
php > echo $ser;
O:4:"test":1:{s:1:"s";s:14:"This is a test";}
php > $unser=unserialize($ser);
__wakeup method called__destruct method called
php > $unser->displaystring();
This is a test<br/>
*/
?>
```
If you look to the results you can see that the functions `__wakeup` and `__destruct` are called when the object is deserialized. Note that in several tutorials you will find that the `__toString` function is called when trying yo print some attribute, but apparently that's **not happening anymore**.
[**Autoload Classes**](https://www.php.net/manual/en/language.oop5.autoload.php) may also be **dangerous**.
You can read an explained **PHP example here**: [https://www.notsosecure.com/remote-code-execution-via-php-unserialize/](https://www.notsosecure.com/remote-code-execution-via-php-unserialize/), here [https://www.exploit-db.com/docs/english/44756-deserialization-vulnerability.pdf](https://www.exploit-db.com/docs/english/44756-deserialization-vulnerability.pdf) or here [https://securitycafe.ro/2015/01/05/understanding-php-object-injection/](https://securitycafe.ro/2015/01/05/understanding-php-object-injection/)
Note than in several cases you **won't be able to find a way to abuse a deserialization in the source code** of the application but you may be able to **abuse the code of external PHP extensions.**\
So, if you can, check the `phpinfo()` of the server and **search on the internet** (an even on the **gadgets** of **PHPGCC**) some possible gadget you could abuse.
If you have found a LFI that is just reading the file and not executing the php code inside of it, for example using functions like _**file\_get\_contents(), fopen(), file() or file\_exists(), md5\_file(), filemtime() or filesize()**_**.** You can try to abuse a **deserialization** occurring when **reading** a **file** using the **phar** protocol.\
The following page present the technique to **abuse an unsafe deserialization in yamls** python libraries and finishes with a tool that can be used to generate RCE deserialization payload for **Pickle, PyYAML, jsonpickle and ruamel.yaml**:
As you may see in the last chunk of code, **if the flag is found**`eval` is used to deserialize the function, so basically **user input if being used inside the `eval` function**.
However, **just serialising** a function **won't execute it** as it would be necessary that some part of the code is **calling `y.rce`** in our example and that's highly **unlikable**.\
Anyway, you could just **modify the serialised object****adding some parenthesis** in order to auto execute the serialized function when the object is deserialized.\
As it was previously indicated, this library will get the code after`_$$ND_FUNC$$_` and will **execute it** using `eval`. Therefore, in order to **auto-execute code** you can **delete the function creation** part and the last parenthesis and **just execute a JS oneliner** like in the following example:
You can [**find here**](https://opsecx.com/index.php/2017/02/08/exploiting-node-js-deserialization-bug-for-remote-code-execution/) **further information** about how to exploit this vulnerability.
The interesting difference here is that the **standard built-in objects are not accessible**, because they are out of scope. It means that we can execute our code, but cannot call build-in objects’ methods. So if we use `console.log()` or `require(something)`, Node returns an exception like `"ReferenceError: console is not defined"`.
However, we can easily can get back access to everything because we still have access to the global context using something like `this.constructor.constructor("console.log(1111)")();`:
**For**[ **more information read this page**](https://www.acunetix.com/blog/web-security-zone/deserialization-vulnerabilities-attacking-deserialization-in-js/)**.**
The package **doesn’t include any deserialization functionalit**y and requires you to implement it yourself. Their example uses `eval` directly. This is the official deserialisation example:
```javascript
function deserialize(serializedJavascript){
return eval('(' + serializedJavascript + ')');
}
```
If this function is used to deserialize objects you can **easily exploit it**:
```javascript
var serialize = require('serialize-javascript');
//Serialization
var test = serialize(function() { return "Hello world!" });
The main problem with deserialized objects in Java is that **deserialization callbacks were invoked during deserialization**. This makes possible for an **attacker** to **take advantage of that callbacks** and prepare a payload that abuses the callbacks to **perform malicious actions**.
Search inside the code for serialization classes and function. For example, search for classes implementing `Serializable` , the use of `java.io.ObjectInputStream` \_\_ or `readObject` \_\_ or `readUnshare` functions\_.\_
* Web files with extension `.faces` and `faces.ViewState` parameter. If you find this in a wabapp, take a look to the [**post about Java JSF VewState Deserialization**](java-jsf-viewstate-.faces-deserialization.md).
If you want to **learn about how does a Java Deserialized exploit work** you should take a look to [**Basic Java Deserialization**](basic-java-deserialization-objectinputstream-readobject.md), [**Java DNS Deserialization**](java-dns-deserialization-and-gadgetprobe.md), and [**CommonsCollection1 Payload**](java-transformers-to-rutime-exec-payload.md).
You could try to **check all the libraries** known to be vulnerable and that [**Ysoserial** ](https://github.com/frohoff/ysoserial)can provide an exploit for. Or you could check the libraries indicated on [Java-Deserialization-Cheat-Sheet](https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet#genson-json).\
You could also use [**gadgetinspector**](https://github.com/JackOfMostTrades/gadgetinspector) to search for possible gadget chains that can be exploited.\
When running **gadgetinspector** (after building it) don't care about the tons of warnings/errors that it's going through and let it finish. It will write all the findings under _gadgetinspector/gadget-results/gadget-chains-year-month-day-hore-min.txt_. Please, notice that **gadgetinspector won't create an exploit and it may indicate false positives**.
Using the Burp extension [**gadgetprobe**](java-dns-deserialization-and-gadgetprobe.md) you can identify **which libraries are available** (and even the versions). With this information it could be **easier to choose a payload** to exploit the vulnerability.\
Using Burp extension [**Java Deserialization Scanner**](java-dns-deserialization-and-gadgetprobe.md#java-deserialization-scanner) you can **identify vulnerable libraries** exploitable with ysoserial and **exploit** them.\
You can also use [**Freddy**](https://github.com/nccgroup/freddy) to **detect deserializations** vulnerabilities in **Burp**. This plugin will detect \*\*not only `ObjectInputStream`\*\*related vulnerabilities but **also** vulns from **Json** an **Yml** deserialization libraries. In active mode, it will try to confirm them using sleep or DNS payloads.\
[**You can find more information about Freddy here.**](https://www.nccgroup.com/us/about-us/newsroom-and-events/blog/2018/june/finding-deserialisation-issues-has-never-been-easier-freddy-the-serialisation-killer/)
Not all is about checking if any vulnerable library is used by the server. Sometimes you could be able to **change the data inside the serialized object and bypass some checks** (maybe grant you admin privileges inside a webapp).\
If you find a java serialized object being sent to a web application, **you can use** [**SerializationDumper**](https://github.com/NickstaDB/SerializationDumper) **to print in a more human readable format the serialization object that is sent**. Knowing which data are you sending would be easier to modify it and bypass some checks.
The most well-known tool to exploit Java deserializations is [**ysoserial**](https://github.com/frohoff/ysoserial) ([**download here**](https://jitpack.io/com/github/frohoff/ysoserial/master-SNAPSHOT/ysoserial-master-SNAPSHOT.jar)). You can also consider using [**ysoseral-modified**](https://github.com/pimps/ysoserial-modified) which will allow you to use complex commands (with pipes for example).\
I would **start using the "URLDNS"** payload **before a RCE** payload to test if the injection is possible. Anyway, note that maybe the "URLDNS" payload is not working but other RCE payload is.
When creating a payload for **java.lang.Runtime.exec()** you **cannot use special characters** like ">" or "|" to redirect the output of an execution, "$()" to execute commands or even **pass arguments** to a command separated by **spaces** (you can do `echo -n "hello world"` but you can't do `python2 -c 'print "Hello world"'`). In order to encode correctly the payload you could [use this webpage](http://www.jackson-t.ca/runtime-exec-payloads.html).
Feel free to use the next script to create **all the possible code execution** payloads for Windows and Linux and then test them on the vulnerable web page:
You can **use** [**https://github.com/pwntester/SerialKillerBypassGadgetCollection**](https://github.com/pwntester/SerialKillerBypassGadgetCollection) **along with ysoserial to create more exploits**. More information about this tool in the **slides of the talk** where the tool was presented: [https://es.slideshare.net/codewhitesec/java-deserialization-vulnerabilities-the-forgotten-bug-class?next\_slideshow=1](https://es.slideshare.net/codewhitesec/java-deserialization-vulnerabilities-the-forgotten-bug-class?next\_slideshow=1)
[**marshalsec** ](https://github.com/mbechler/marshalsec)can be used to generate payloads to exploit different **Json** and **Yml** serialization libraries in Java.\
Read more about this Java JSON library: [https://www.alphabot.com/security/blog/2020/java/Fastjson-exceptional-deserialization-vulnerabilities.html](https://www.alphabot.com/security/blog/2020/java/Fastjson-exceptional-deserialization-vulnerabilities.html)
* If you want to test some ysoserial payloads you can **run this webapp**: [https://github.com/hvqzao/java-deserialize-webapp](https://github.com/hvqzao/java-deserialize-webapp)
Some of your application objects may be forced to implement `Serializable` due to their hierarchy. To guarantee that your application objects can't be deserialized, a `readObject()` method should be declared (with a `final` modifier) which always throws an exception:
The `java.io.ObjectInputStream` class is used to deserialize objects. It's possible to harden its behavior by subclassing it. This is the best solution if:
* You can change the code that does the deserialization
The general idea is to override [`ObjectInputStream.html#resolveClass()`](https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html#resolveClass\(java.io.ObjectStreamClass\)) in order to restrict which classes are allowed to be deserialized.
Because this call happens before a `readObject()` is called, you can be sure that no deserialization activity will occur unless the type is one that you wish to allow.
A simple example of this shown here, where the the `LookAheadObjectInputStream` class is guaranteed not to deserialize any other type besides the `Bicycle` class:
```java
public class LookAheadObjectInputStream extends ObjectInputStream {
public LookAheadObjectInputStream(InputStream inputStream) throws IOException {
super(inputStream);
}
/**
* Only deserialize instances of our expected Bicycle class
* Talk about gadgetinspector: [https://www.youtube.com/watch?v=wPbW6zQ52w8](https://www.youtube.com/watch?v=wPbW6zQ52w8) and slides: [https://i.blackhat.com/us-18/Thu-August-9/us-18-Haken-Automated-Discovery-of-Deserialization-Gadget-Chains.pdf](https://i.blackhat.com/us-18/Thu-August-9/us-18-Haken-Automated-Discovery-of-Deserialization-Gadget-Chains.pdf)
> The **Java Message Service** (**JMS**) API is a Java message-oriented middleware API for sending messages between two or more clients. It is an implementation to handle the producer–consumer problem. JMS is a part of the Java Platform, Enterprise Edition (Java EE), and was defined by a specification developed at Sun Microsystems, but which has since been guided by the Java Community Process. It is a messaging standard that allows application components based on Java EE to create, send, receive, and read messages. It allows the communication between different components of a distributed application to be loosely coupled, reliable, and asynchronous. (From [Wikipedia](https://en.wikipedia.org/wiki/Java\_Message\_Service)).
So, basically there are a **bunch of services using JMS on a dangerous way**. Therefore, if you have **enough privileges** to send messages to this services (usually you will need valid credentials) you could be able to send **malicious objects serialized that will be deserialized by the consumer/subscriber**.\
You should remember that even if a service is vulnerable (because it's insecurely deserializing user input) you still need to find valid gadgets to exploit the vulnerability.
The tool [JMET](https://github.com/matthiaskaiser/jmet) was created to **connect and attack this services sending several malicious objects serialized using known gadgets**. These exploits will work if the service is still vulnerable and if any of the used gadgets is inside the vulnerable application.
.Net is similar to Java regarding how deserialization exploits work: The **exploit** will **abuse gadgets** that **execute** some interesting **code when** an object is **deserialized**.
You can search for the Base64 encoded string **AAEAAAD/////** or any other thing that **may be deserialized** in the back-end and that allows you to control the deserialized type\*\*.\*\* For example, a **JSON** or **XML** containing `TypeObject` or `$type`.
In this case you can use the tool [**ysoserial.net**](https://github.com/pwntester/ysoserial.net) in order to **create the deserialization exploits**. Once downloaded the git repository you should **compile the tool** using Visual Studio for example.
If you want to learn about **how does ysoserial.net creates it's exploit** you can [**check this page where is explained the ObjectDataProvider gadget + ExpandedWrapper + Json.Net formatter**](basic-.net-deserialization-objectdataprovider-gadgets-expandedwrapper-and-json.net.md).
* **`--formatter`**, used to indicated the method to serialized the exploit (you need to know which library is using the back-end to deserialize the payload and use the same to serialize it)
* \*\*`--output` \*\* used to indicate if you want the exploit in **raw** or **base64** encoded. _Note that **ysoserial.net** will **encode** the payload using **UTF-16LE** (encoding used by default on Windows) so if you get the raw and just encode it from a linux console you might have some **encoding compatibility problems** that will prevent the exploit from working properly (in HTB JSON box the payload worked in both UTF-16LE and ASCII but this doesn't mean it will always work)._
* \*\*`--plugin` \*\* ysoserial.net supports plugins to craft **exploits for specific frameworks** like ViewState
This parameter is helpful because if you review the code you will find chucks of code like the following one (from [ObjectDataProviderGenerator.cs](https://github.com/pwntester/ysoserial.net/blob/c53bd83a45fb17eae60ecc82f7147b5c04b07e42/ysoserial/Generators/ObjectDataProviderGenerator.cs#L208)):
This means that in order to test the exploit the code will call [serializersHelper.JsonNet\_deserialize](https://github.com/pwntester/ysoserial.net/blob/c53bd83a45fb17eae60ecc82f7147b5c04b07e42/ysoserial/Helpers/SerializersHelper.cs#L539)
In the **previous code is vulnerable to the exploit created**. So if you find something similar in a .Net application it means that probably that application is vulnerable too.\
Therefore the **`--test`** parameter allows us to understand **which chunks of code are vulnerable** to the desrialization exploit that **ysoserial.net** can create.
Take a look to [this POST about **how to try to exploit the \_\_ViewState parameter of .Net** ](exploiting-\_\_viewstate-parameter.md)to **execute arbitrary code.** If you **already know the secrets** used by the victim machine, [**read this post to know to execute code**](exploiting-\_\_viewstate-knowing-the-secret.md)**.**
Don't allow the datastream to define the type of object that the stream will be deserialized to. You can prevent this by for example using the `DataContractSerializer` or `XmlSerializer` if at all possible.
Where `JSON.Net` is being used make sure the `TypeNameHandling` is only set to `None`.
If `JavaScriptSerializer` is to be used then do not use it with a `JavaScriptTypeResolver`.
If you must deserialise data streams that define their own type, then restrict the types that are allowed to be deserialized. One should be aware that this is still risky as many native .Net types potentially dangerous in themselves. e.g.
`FileInfo` objects that reference files actually on the server can when deserialized, change the properties of those files e.g. to read-only, creating a potential denial of service attack.
Even if you have limited the types that can be deserialised remember that some types have properties that are risky. `System.ComponentModel.DataAnnotations.ValidationException`, for example has a property `Value` of type `Object`. if this type is the type allowed for deserialization then an attacker can set the `Value` property to any object type they choose.
Attackers should be prevented from steering the type that will be instantiated. If this is possible then even `DataContractSerializer` or `XmlSerializer` can be subverted e.g.
var suspectObject = myBinaryFormatter.Deserialize(untrustedData);
//Check below is too late! Execution may have already occurred.
if (suspectObject is SomeDangerousObjectType)
{
//generate warnings and dispose of suspectObject
}
```
For `BinaryFormatter` and `JSON.Net` it is possible to create a safer form of white list control using a custom `SerializationBinder`.
Try to keep up-to-date on known .Net insecure deserialization gadgets and pay special attention where such types can be created by your deserialization processes. **A deserializer can only instantiate types that it knows about**.
Try to keep any code that might create potential gadgets separate from any code that has internet connectivity. As an example `System.Windows.Data.ObjectDataProvider` used in WPF applications is a known gadget that allows arbitrary method invocation. It would be risky to have this a reference to this assembly in a REST service project that deserializes untrusted data.
Ruby has two methods to implement serialization inside the **marshal** library: first method is **dump** that converts object into bytes streams **(serialize)**. And the second method is **load** to convert bytes stream to object again (**deserialize**).\
Ruby 2.X generic deserialization to RCE gadget chain (more info in [https://www.elttam.com/blog/ruby-deserialization/](https://www.elttam.com/blog/ruby-deserialization/)):
IO.popen("ruby -e 'Marshal.load(STDIN.read) rescue nil'", "r+") do |pipe|
pipe.print payload
pipe.close_write
puts pipe.gets
puts
end
puts "Payload (hex):"
puts payload.unpack('H*')[0]
puts
require "base64"
puts "Payload (Base64 encoded):"
puts Base64.encode64(payload)
```
Other RCE chain to exploit Ruby On Rails: [https://codeclimate.com/blog/rails-remote-code-execution-vulnerability-explained/](https://codeclimate.com/blog/rails-remote-code-execution-vulnerability-explained/)
<summary><strong>Support HackTricks and get benefits!</strong></summary>
Do you work in a **cybersecurity company**? Do you want to see your **company advertised in HackTricks**? or do you want to have access the **latest version of the PEASS or download HackTricks in PDF**? Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
**Join the** [**💬**](https://emojipedia.org/speech-balloon/) [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/carlospolopm)**.**
**Share your hacking tricks submitting PRs to the** [**hacktricks github repo**](https://github.com/carlospolop/hacktricks)**.**