* Travaillez-vous dans une **entreprise de cybersécurité** ? Voulez-vous voir votre **entreprise annoncée dans HackTricks** ? ou voulez-vous avoir accès à la **dernière version de PEASS ou télécharger HackTricks en PDF** ? Consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop) !
* Découvrez [**The PEASS Family**](https://opensea.io/collection/the-peass-family), notre collection exclusive de [**NFT**](https://opensea.io/collection/the-peass-family)
* Obtenez le [**swag officiel PEASS & HackTricks**](https://peass.creator-spring.com)
* **Rejoignez le** [**💬**](https://emojipedia.org/speech-balloon/) [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe Telegram**](https://t.me/peass) ou **suivez** moi sur **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Partagez vos astuces de piratage en soumettant des PR au** [**repo hacktricks**](https://github.com/carlospolop/hacktricks) **et au** [**repo hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).
Mach utilise des **tâches** comme **plus petite unité** pour partager des ressources, et chaque tâche peut contenir **plusieurs threads**. Ces **tâches et threads sont mappés 1:1 sur les processus et threads POSIX**.
La communication entre les tâches se fait via la Communication Inter-Processus (IPC) de Mach, en utilisant des canaux de communication unidirectionnels. Les **messages sont transférés entre les ports**, qui agissent comme des **files d'attente de messages** gérées par le noyau.
Les droits de port, qui définissent les opérations qu'une tâche peut effectuer, sont essentiels pour cette communication. Les **droits de port possibles** sont :
* Le **droit de réception**, qui permet de recevoir les messages envoyés au port. Les ports Mach sont des files d'attente MPSC (multiple-producteur, unique-consommateur), ce qui signifie qu'il ne peut y avoir qu'un seul droit de réception pour chaque port dans tout le système (contrairement aux tubes, où plusieurs processus peuvent tous détenir des descripteurs de fichier pour l'extrémité de lecture d'un tube).
* Une **tâche avec le droit de réception** peut recevoir des messages et **créer des droits d'envoi**, ce qui lui permet d'envoyer des messages. À l'origine, seule la **propre tâche a le droit de réception sur son port**.
* Le **droit d'envoi**, qui permet d'envoyer des messages au port.
* Le **droit de jeu de ports**, qui indique un _ensemble de ports_ plutôt qu'un seul port. Le défilement d'un message à partir d'un ensemble de ports défile un message à partir de l'un des ports qu'il contient. Les ensembles de ports peuvent être utilisés pour écouter plusieurs ports simultanément, un peu comme `select`/`poll`/`epoll`/`kqueue` dans Unix.
* Le **nom mort**, qui n'est pas un droit de port réel, mais simplement un espace réservé. Lorsqu'un port est détruit, tous les droits de port existants sur le port se transforment en noms morts.
**Les tâches peuvent transférer des droits d'ENVOI à d'autres**, leur permettant d'envoyer des messages en retour. **Les droits d'ENVOI peuvent également être clonés**, de sorte qu'une tâche peut dupliquer et donner le droit à une troisième tâche. Cela, combiné à un processus intermédiaire appelé **serveur d'amorçage**, permet une communication efficace entre les tâches.
3. La tâche **A** établit une **connexion** avec le **serveur d'amorçage**, fournissant le **nom de service du port** et le **droit d'envoi** via une procédure appelée enregistrement d'amorçage.
4. La tâche **B** interagit avec le **serveur d'amorçage** pour exécuter une **recherche d'amorçage pour le service**. Si elle réussit, le **serveur duplique le droit d'envoi** reçu de la tâche A et **le transmet à la tâche B**.
Le serveur d'amorçage ne peut pas authentifier le nom de service revendiqué par une tâche. Cela signifie qu'une **tâche** pourrait potentiellement **usurper n'importe quelle tâche système**, en revendiquant faussement un nom de service d'autorisation, puis en approuvant chaque demande.
Ensuite, Apple stocke les **noms des services fournis par le système** dans des fichiers de configuration sécurisés, situés dans des répertoires protégés par SIP : `/System/Library/LaunchDaemons` et `/System/Library/LaunchAgents`. À côté de chaque nom de service, le **binaire associé est également stocké**. Le serveur d'amorçage créera et détiendra un **droit de réception pour chacun de ces noms de service**.
Pour ces services prédéfinis, le **processus de recherche diffère légèrement**. Lorsqu'un nom de service est recherché, launchd lance le service dynamiquement. Le nouveau flux de travail est le suivant :
* La tâche **A** (le service) effectue un **enregistrement de vérification d'amorçage**. Ici, le **serveur d'amorçage** crée un droit d'envoi, le conserve et **transfère le droit de réception à la tâche A**.
Cependant, ce processus ne s'applique qu'aux tâches système prédéfinies. Les tâches non système fonctionnent toujours comme décrit initialement, ce qui pourrait potentiellement permettre l'usurpation.
Notez comment l'**expéditeur** **alloue** un port, crée un **droit d'envoi** pour le nom `org.darlinghq.example` et l'envoie au **serveur d'amorçage** tandis que l'expéditeur demande le **droit d'envoi** de ce nom et l'utilise pour **envoyer un message**.
* **Port hôte**: Si un processus a le **privilège d'envoi** sur ce port, il peut obtenir des **informations** sur le **système** (par exemple, `host_processor_info`).
* **Port privilégié de l'hôte**: Un processus avec le droit d'**envoi** sur ce port peut effectuer des **actions privilégiées** telles que le chargement d'une extension du noyau. Le **processus doit être root** pour obtenir cette permission.
* De plus, pour appeler l'API **`kext_request`**, il est nécessaire de disposer d'autres autorisations **`com.apple.private.kext*`** qui ne sont accordées qu'aux binaires Apple.
* **Port du nom de la tâche**: Une version non privilégiée du _port de la tâche_. Il fait référence à la tâche, mais ne permet pas de la contrôler. La seule chose qui semble être disponible à travers lui est `task_info()`.
* **Port de la tâche** (alias port du noyau)**:** Avec l'autorisation d'envoi sur ce port, il est possible de contrôler la tâche (lecture/écriture de mémoire, création de threads...).
* Appelez `mach_task_self()` pour **obtenir le nom** de ce port pour la tâche appelante. Ce port n'est **hérité** qu'à travers **`exec()`**; une nouvelle tâche créée avec `fork()` obtient un nouveau port de tâche (dans un cas particulier, une tâche obtient également un nouveau port de tâche après `exec()` dans un binaire suid). La seule façon de créer une tâche et d'obtenir son port est d'effectuer la ["danse de l'échange de port"](https://robert.sesek.com/2014/1/changes\_to\_xnu\_mach\_ipc.html) tout en effectuant un `fork()`.
* Si l'application a l'autorisation **`com.apple.security.get-task-allow`**, les processus de l'**utilisateur peuvent accéder au port de la tâche** (communément ajoutée par Xcode pour le débogage). Le processus de **notarisation** ne le permettra pas pour les versions de production.
* Les applications ayant l'autorisation **`com.apple.system-task-ports`** peuvent obtenir le **port de la tâche pour n'importe quel** processus, sauf le noyau. Dans les anciennes versions, cela s'appelait **`task_for_pid-allow`**. Cela n'est accordé qu'aux applications Apple.
**Compilez** le programme précédent et ajoutez les **droits** nécessaires pour pouvoir injecter du code avec le même utilisateur (sinon vous devrez utiliser **sudo**).
Dans macOS, les **threads** peuvent être manipulés via **Mach** ou en utilisant l'API **posix `pthread`**. Le thread que nous avons généré lors de l'injection précédente a été généré en utilisant l'API Mach, donc **il n'est pas conforme à posix**.
Il était possible d'**injecter un simple shellcode** pour exécuter une commande car cela ne nécessitait pas de travailler avec des API conformes à posix, seulement avec Mach. Des **injections plus complexes** nécessiteraient que le **thread** soit également conforme à posix.
Par conséquent, pour **améliorer le thread**, il devrait appeler **`pthread_create_from_mach_thread`** qui va **créer un pthread valide**. Ensuite, ce nouveau pthread pourrait **appeler dlopen** pour **charger une dylib** du système, donc au lieu d'écrire un nouveau shellcode pour effectuer différentes actions, il est possible de charger des bibliothèques personnalisées.
XPC, qui signifie Communication inter-processus XNU (le noyau utilisé par macOS), est un framework pour la **communication entre les processus** sur macOS et iOS. XPC fournit un mécanisme pour effectuer des **appels de méthode asynchrones et sécurisés entre différents processus** du système. Il fait partie du paradigme de sécurité d'Apple, permettant la **création d'applications avec des privilèges séparés** où chaque **composant** s'exécute avec **seulement les autorisations nécessaires** pour effectuer son travail, limitant ainsi les dommages potentiels d'un processus compromis.
XPC utilise une forme de communication inter-processus (IPC), qui est un ensemble de méthodes permettant à différents programmes s'exécutant sur le même système d'échanger des données.
1.**Sécurité** : En séparant le travail en différents processus, chaque processus peut se voir accorder uniquement les autorisations dont il a besoin. Cela signifie que même si un processus est compromis, il a une capacité limitée à causer des dommages.
2.**Stabilité** : XPC aide à isoler les plantages dans le composant où ils se produisent. Si un processus plante, il peut être redémarré sans affecter le reste du système.
3.**Performance** : XPC permet une concurrence facile, car différentes tâches peuvent être exécutées simultanément dans différents processus.
Le seul **inconvénient** est que **séparer une application en plusieurs processus** qui communiquent via XPC est **moins efficace**. Mais dans les systèmes d'aujourd'hui, cela n'est presque pas perceptible et les avantages sont meilleurs.
Les composants XPC d'une application se trouvent **à l'intérieur de l'application elle-même**. Par exemple, dans Safari, vous pouvez les trouver dans **`/Applications/Safari.app/Contents/XPCServices`**. Ils ont l'extension **`.xpc`** (comme **`com.apple.Safari.SandboxBroker.xpc`**) et sont **également des bundles** avec le binaire principal à l'intérieur : `/Applications/Safari.app/Contents/XPCServices/com.apple.Safari.SandboxBroker.xpc/Contents/MacOS/com.apple.Safari.SandboxBroker` et un `Info.plist : /Applications/Safari.app/Contents/XPCServices/com.apple.Safari.SandboxBroker.xpc/Contents/Info.plist`
Comme vous pouvez le penser, un **composant XPC aura des autorisations et des privilèges différents** des autres composants XPC ou du binaire principal de l'application. SAUF si un service XPC est configuré avec [**JoinExistingSession**](https://developer.apple.com/documentation/bundleresources/information\_property\_list/xpcservice/joinexistingsession) défini sur "True" dans son fichier **Info.plist**. Dans ce cas, le service XPC s'exécutera dans la **même session de sécurité que l'application** qui l'a appelé.
Les services XPC sont **démarrés** par **launchd** lorsque cela est nécessaire et **arrêtés** une fois que toutes les tâches sont **terminées** pour libérer les ressources système. Les composants XPC spécifiques à l'application ne peuvent être utilisés que par l'application, réduisant ainsi les risques liés aux vulnérabilités potentielles.
Les services XPC à l'échelle du système sont accessibles à tous les utilisateurs. Ces services, qu'ils soient de type launchd ou Mach, doivent être **définis dans des fichiers plist** situés dans des répertoires spécifiés tels que **`/System/Library/LaunchDaemons`**, **`/Library/LaunchDaemons`**, **`/System/Library/LaunchAgents`** ou **`/Library/LaunchAgents`**.
Ceux dans **`LaunchDameons`** sont exécutés par root. Donc, si un processus non privilégié peut communiquer avec l'un d'entre eux, il pourrait être en mesure d'escalader les privilèges.
Les applications peuvent **s'abonner** à différents **messages d'événement**, ce qui leur permet d'être **initiées à la demande** lorsque de tels événements se produisent. La **configuration** de ces services est effectuée dans des fichiers **plist de lancement**, situés dans les **mêmes répertoires que les précédents** et contenant une clé supplémentaire **`LaunchEvent`**.
Lorsqu'un processus essaie d'appeler une méthode via une connexion XPC, le **service XPC doit vérifier si ce processus est autorisé à se connecter**. Voici les moyens courants de vérifier cela et les pièges courants :
Apple permet également aux applications de **configurer certains droits et la manière de les obtenir** afin que si le processus appelant les possède, il soit **autorisé à appeler une méthode** du service XPC :
Le fichier `xpc_client.c` est un exemple de code source en langage C qui illustre l'utilisation de l'API XPC pour la communication inter-processus (IPC) sur macOS. L'API XPC permet aux processus de communiquer entre eux de manière sécurisée et efficace en utilisant des messages structurés.
Dans cet exemple, un client XPC est créé et utilisé pour envoyer un message à un service XPC distant. Le client XPC utilise la fonction `xpc_connection_create` pour créer une connexion vers le service distant, puis utilise la fonction `xpc_dictionary_create` pour créer un dictionnaire XPC contenant les données à envoyer.
Une fois que le dictionnaire XPC est créé, le client XPC utilise la fonction `xpc_connection_send_message` pour envoyer le message au service distant. Le service distant peut ensuite recevoir le message en utilisant une méthode similaire.
Il est important de noter que l'API XPC offre des mécanismes de sécurité intégrés pour protéger la communication inter-processus. Par exemple, les connexions XPC peuvent être configurées pour utiliser des autorisations spécifiques, et les messages XPC peuvent être chiffrés pour assurer la confidentialité des données.
Ce fichier `xpc_client.c` est un exemple de base pour comprendre comment utiliser l'API XPC pour la communication inter-processus sur macOS. Il peut être utilisé comme point de départ pour développer des applications qui nécessitent une communication sécurisée entre les processus.
{% tab title="xyz.hacktricks.svcoc.plist" %}xyz.hacktricks.svcoc.plist est un fichier de configuration utilisé par le système d'exploitation macOS pour gérer les services de communication inter-processus (IPC). L'IPC est un mécanisme qui permet à différents processus de communiquer entre eux, que ce soit sur la même machine ou sur des machines différentes.
Ce fichier de configuration spécifie les paramètres et les autorisations pour les services IPC spécifiques. Il peut être utilisé pour restreindre l'accès aux services IPC, limiter les privilèges des processus ou définir des règles de sécurité supplémentaires.
Lors de la sécurisation d'un système macOS, il est important de vérifier et de configurer correctement les fichiers de configuration IPC tels que xyz.hacktricks.svcoc.plist pour éviter les vulnérabilités de sécurité et les escalades de privilèges.
Le code Dylib est une bibliothèque dynamique utilisée dans le système d'exploitation macOS. Il peut être utilisé pour créer des clients qui communiquent avec d'autres processus via l'IPC (Inter-Process Communication). L'IPC est un mécanisme permettant aux processus de partager des informations et de communiquer entre eux.
Dans cet exemple, nous avons un client qui est intégré dans le code Dylib. Le client utilise l'IPC pour communiquer avec d'autres processus et échanger des données. L'utilisation de l'IPC peut être utile dans de nombreux scénarios, tels que la coordination entre les processus, le partage de ressources ou la mise en œuvre de fonctionnalités avancées.
Lorsque vous développez un client à l'intérieur du code Dylib, il est important de prendre en compte la sécurité. Assurez-vous de mettre en œuvre des mécanismes de sécurité appropriés pour protéger les données échangées et empêcher toute exploitation ou violation de la confidentialité.
En résumé, un client à l'intérieur du code Dylib est un moyen puissant de communiquer avec d'autres processus via l'IPC dans macOS. Cependant, il est essentiel de prendre des mesures de sécurité appropriées pour garantir la protection des données et prévenir les violations de sécurité.
```
// gcc -dynamiclib -framework Foundation oc_xpc_client.m -o oc_xpc_client.dylib
* Travaillez-vous dans une **entreprise de cybersécurité** ? Voulez-vous voir votre **entreprise annoncée dans HackTricks** ? ou voulez-vous avoir accès à la **dernière version de PEASS ou télécharger HackTricks en PDF** ? Consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop) !
* **Rejoignez le** [**💬**](https://emojipedia.org/speech-balloon/) [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe Telegram**](https://t.me/peass) ou **suivez** moi sur **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Partagez vos astuces de piratage en soumettant des PR au** [**repo hacktricks**](https://github.com/carlospolop/hacktricks) **et au** [**repo hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).