mirror of
https://github.com/carlospolop/hacktricks
synced 2025-01-26 11:55:06 +00:00
131 lines
7.1 KiB
Markdown
131 lines
7.1 KiB
Markdown
|
# IPC Namespace
|
||
|
|
||
|
{% hint style="success" %}
|
||
|
Learn & practice AWS Hacking:<img src="/.gitbook/assets/arte.png" alt="" data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<img src="/.gitbook/assets/arte.png" alt="" data-size="line">\
|
||
|
Learn & practice GCP Hacking: <img src="/.gitbook/assets/grte.png" alt="" data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<img src="/.gitbook/assets/grte.png" alt="" data-size="line">](https://training.hacktricks.xyz/courses/grte)
|
||
|
|
||
|
<details>
|
||
|
|
||
|
<summary>Support HackTricks</summary>
|
||
|
|
||
|
* Check the [**subscription plans**](https://github.com/sponsors/carlospolop)!
|
||
|
* **Join the** 💬 [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** us on **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
|
||
|
* **Share hacking tricks by submitting PRs to the** [**HackTricks**](https://github.com/carlospolop/hacktricks) and [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.
|
||
|
|
||
|
</details>
|
||
|
{% endhint %}
|
||
|
{% endhint %}
|
||
|
|
||
|
## Basic Information
|
||
|
|
||
|
An IPC (Inter-Process Communication) namespace is a Linux kernel feature that provides **isolation** of System V IPC objects, such as message queues, shared memory segments, and semaphores. This isolation ensures that processes in **different IPC namespaces cannot directly access or modify each other's IPC objects**, providing an additional layer of security and privacy between process groups.
|
||
|
|
||
|
### How it works:
|
||
|
|
||
|
1. When a new IPC namespace is created, it starts with a **completely isolated set of System V IPC objects**. This means that processes running in the new IPC namespace cannot access or interfere with the IPC objects in other namespaces or the host system by default.
|
||
|
2. IPC objects created within a namespace are visible and **accessible only to processes within that namespace**. Each IPC object is identified by a unique key within its namespace. Although the key may be identical in different namespaces, the objects themselves are isolated and cannot be accessed across namespaces.
|
||
|
3. Processes can move between namespaces using the `setns()` system call or create new namespaces using the `unshare()` or `clone()` system calls with the `CLONE_NEWIPC` flag. When a process moves to a new namespace or creates one, it will start using the IPC objects associated with that namespace.
|
||
|
|
||
|
## Lab:
|
||
|
|
||
|
### Create different Namespaces
|
||
|
|
||
|
#### CLI
|
||
|
|
||
|
```bash
|
||
|
sudo unshare -i [--mount-proc] /bin/bash
|
||
|
```
|
||
|
|
||
|
By mounting a new instance of the `/proc` filesystem if you use the param `--mount-proc`, you ensure that the new mount namespace has an **accurate and isolated view of the process information specific to that namespace**.
|
||
|
|
||
|
<details>
|
||
|
|
||
|
<summary>Error: bash: fork: Cannot allocate memory</summary>
|
||
|
|
||
|
When `unshare` is executed without the `-f` option, an error is encountered due to the way Linux handles new PID (Process ID) namespaces. The key details and the solution are outlined below:
|
||
|
|
||
|
1. **Problem Explanation**:
|
||
|
- The Linux kernel allows a process to create new namespaces using the `unshare` system call. However, the process that initiates the creation of a new PID namespace (referred to as the "unshare" process) does not enter the new namespace; only its child processes do.
|
||
|
- Running `%unshare -p /bin/bash%` starts `/bin/bash` in the same process as `unshare`. Consequently, `/bin/bash` and its child processes are in the original PID namespace.
|
||
|
- The first child process of `/bin/bash` in the new namespace becomes PID 1. When this process exits, it triggers the cleanup of the namespace if there are no other processes, as PID 1 has the special role of adopting orphan processes. The Linux kernel will then disable PID allocation in that namespace.
|
||
|
|
||
|
2. **Consequence**:
|
||
|
- The exit of PID 1 in a new namespace leads to the cleaning of the `PIDNS_HASH_ADDING` flag. This results in the `alloc_pid` function failing to allocate a new PID when creating a new process, producing the "Cannot allocate memory" error.
|
||
|
|
||
|
3. **Solution**:
|
||
|
- The issue can be resolved by using the `-f` option with `unshare`. This option makes `unshare` fork a new process after creating the new PID namespace.
|
||
|
- Executing `%unshare -fp /bin/bash%` ensures that the `unshare` command itself becomes PID 1 in the new namespace. `/bin/bash` and its child processes are then safely contained within this new namespace, preventing the premature exit of PID 1 and allowing normal PID allocation.
|
||
|
|
||
|
By ensuring that `unshare` runs with the `-f` flag, the new PID namespace is correctly maintained, allowing `/bin/bash` and its sub-processes to operate without encountering the memory allocation error.
|
||
|
|
||
|
</details>
|
||
|
|
||
|
#### Docker
|
||
|
|
||
|
```bash
|
||
|
docker run -ti --name ubuntu1 -v /usr:/ubuntu1 ubuntu bash
|
||
|
```
|
||
|
|
||
|
###  Check which namespace is your process in
|
||
|
|
||
|
```bash
|
||
|
ls -l /proc/self/ns/ipc
|
||
|
lrwxrwxrwx 1 root root 0 Apr 4 20:37 /proc/self/ns/ipc -> 'ipc:[4026531839]'
|
||
|
```
|
||
|
|
||
|
### Find all IPC namespaces
|
||
|
|
||
|
{% code overflow="wrap" %}
|
||
|
```bash
|
||
|
sudo find /proc -maxdepth 3 -type l -name ipc -exec readlink {} \; 2>/dev/null | sort -u
|
||
|
# Find the processes with an specific namespace
|
||
|
sudo find /proc -maxdepth 3 -type l -name ipc -exec ls -l {} \; 2>/dev/null | grep <ns-number>
|
||
|
```
|
||
|
{% endcode %}
|
||
|
|
||
|
### Enter inside an IPC namespace
|
||
|
|
||
|
```bash
|
||
|
nsenter -i TARGET_PID --pid /bin/bash
|
||
|
```
|
||
|
|
||
|
Also, you can only **enter in another process namespace if you are root**. And you **cannot** **enter** in other namespace **without a descriptor** pointing to it (like `/proc/self/ns/net`).
|
||
|
|
||
|
### Create IPC object
|
||
|
|
||
|
```bash
|
||
|
# Container
|
||
|
sudo unshare -i /bin/bash
|
||
|
ipcmk -M 100
|
||
|
Shared memory id: 0
|
||
|
ipcs -m
|
||
|
|
||
|
------ Shared Memory Segments --------
|
||
|
key shmid owner perms bytes nattch status
|
||
|
0x2fba9021 0 root 644 100 0
|
||
|
|
||
|
# From the host
|
||
|
ipcs -m # Nothing is seen
|
||
|
```
|
||
|
|
||
|
## References
|
||
|
* [https://stackoverflow.com/questions/44666700/unshare-pid-bin-bash-fork-cannot-allocate-memory](https://stackoverflow.com/questions/44666700/unshare-pid-bin-bash-fork-cannot-allocate-memory)
|
||
|
|
||
|
|
||
|
{% hint style="success" %}
|
||
|
Learn & practice AWS Hacking:<img src="/.gitbook/assets/arte.png" alt="" data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<img src="/.gitbook/assets/arte.png" alt="" data-size="line">\
|
||
|
Learn & practice GCP Hacking: <img src="/.gitbook/assets/grte.png" alt="" data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<img src="/.gitbook/assets/grte.png" alt="" data-size="line">](https://training.hacktricks.xyz/courses/grte)
|
||
|
|
||
|
<details>
|
||
|
|
||
|
<summary>Support HackTricks</summary>
|
||
|
|
||
|
* Check the [**subscription plans**](https://github.com/sponsors/carlospolop)!
|
||
|
* **Join the** 💬 [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** us on **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
|
||
|
* **Share hacking tricks by submitting PRs to the** [**HackTricks**](https://github.com/carlospolop/hacktricks) and [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.
|
||
|
|
||
|
</details>
|
||
|
{% endhint %}
|
||
|
</details>
|
||
|
{% endhint %}
|