<summary><strong>Aprenda hacking AWS do zero ao avançado com</strong><ahref="https://training.hacktricks.xyz/courses/arte"><strong>htARTE (HackTricks AWS Red Team Expert)</strong></a><strong>!</strong></summary>
* Se você deseja ver sua **empresa anunciada no HackTricks** ou **baixar o HackTricks em PDF** Confira os [**PLANOS DE ASSINATURA**](https://github.com/sponsors/carlospolop)!
* Adquira o [**swag oficial PEASS & HackTricks**](https://peass.creator-spring.com)
* Descubra [**A Família PEASS**](https://opensea.io/collection/the-peass-family), nossa coleção exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family)
* **Junte-se ao** 💬 [**grupo Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo telegram**](https://t.me/peass) ou **siga-nos** no **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Compartilhe seus truques de hacking enviando PRs para os** [**HackTricks**](https://github.com/carlospolop/hacktricks) e [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) repositórios do github.
Para verificar se as chamadas de sistema estão sendo feitas corretamente, o programa anterior deve ser compilado e as chamadas de sistema devem aparecer em **strace ./PROGRAMA\_COMPILADO**
Ao criar shellcodes, um truque pode ser usado. A primeira instrução é um salto para uma chamada. A chamada chama o código original e também coloca o EIP na pilha. Após a instrução de chamada, inserimos a string necessária, para que possamos apontar para a string com esse EIP e continuar executando o código.
Consiste em um pequeno código que percorre as páginas de memória associadas a um processo em busca da shellcode ali armazenada (procura por alguma assinatura na shellcode). Útil nos casos em que há pouco espaço disponível para injetar código.
São shells cifrados que possuem um pequeno código que os descriptografa e salta para ele, usando o truque de Call-Pop, este seria um **exemplo de cifra de César**:
Observando como a pilha de um novo processo é construída no Linux, é possível desenvolver um exploit de forma que o programa seja iniciado em um ambiente onde a única variável seja a shellcode. O endereço dela pode ser calculado como: addr = 0xbfffffff - 4 - strlen(NOME_do_executável_completo) - strlen(shellcode).
O **sprintf** move uma string formatada para uma variável. Portanto, é possível abusar da formatação de uma string para causar um estouro de buffer na variável para onde o conteúdo é copiado. Por exemplo, a carga útil `%.44xAAAA` irá escrever 44B+"AAAA" na variável, o que pode causar um estouro de buffer.
O `atexit()` é uma função para a qual outras funções são passadas como parâmetros. Essas funções serão executadas ao executar um `exit()` ou o retorno do `main`. Se for possível modificar o endereço de qualquer uma dessas funções para apontar para uma shellcode, por exemplo, você ganhará controle sobre o processo, mas atualmente isso é mais complicado. Atualmente, os endereços das funções a serem executadas estão ocultos por várias estruturas e, finalmente, o endereço para o qual apontam não são os endereços das funções, mas são criptografados com XOR e deslocamentos com uma chave aleatória. Portanto, atualmente esse vetor de ataque não é muito útil, pelo menos em x86 e x64_86. A função de criptografia é `PTR_MANGLE`. Outras arquiteturas como m68k, mips32, mips64, aarch64, arm, hppa... não implementam a função de criptografia porque retornam o mesmo que receberam como entrada. Portanto, essas arquiteturas seriam atacáveis por esse vetor.
`Setjmp()` permite salvar o contexto (os registradores). `longjmp()` permite restaurar o contexto. Os registradores salvos são: `EBX, ESI, EDI, ESP, EIP, EBP`. O que acontece é que EIP e ESP são passados pela função `PTR_MANGLE`, então as arquiteturas vulneráveis a esse ataque são as mesmas mencionadas anteriormente. Eles são úteis para recuperação de erros ou interrupções. No entanto, pelo que li, os outros registradores não são protegidos, então se houver um `call ebx`, `call esi` ou `call edi` dentro da função chamada, o controle pode ser assumido. Ou também poderia modificar EBP para modificar o ESP.
Cada objeto de uma classe tem um VPtr que é um ponteiro para o array de sua classe. O VPtr faz parte do cabeçalho de cada objeto, então se for possível sobrescrever o VPtr, ele poderia ser modificado para apontar para um método fictício, de modo que a execução de uma função vá para a shellcode.
Intercepta chamadas para algumas funções inseguras por outras seguras. Não é padronizado (apenas para x86, não para compilações com -fomit-frame-pointer, não para compilações estáticas, nem todas as funções vulneráveis se tornam seguras e LD_PRELOAD não funciona em binários com suid).
Consiste em carregar as bibliotecas compartilhadas de 0x00000000 a 0x00ffffff para que sempre haja um byte 0x00. No entanto, isso realmente não impede quase nenhum ataque, especialmente em little endian.
Consiste em realizar um ROP de forma que a função strcpy@plt (da plt) seja chamada e aponte para a entrada da GOT e copie o primeiro byte da função que se deseja chamar (system()). Em seguida, o mesmo é feito apontando para GOT+1 e copiando o segundo byte de system()... Por fim, é chamado o endereço armazenado na GOT que será system().
Valgrind —> Procura por erros Memcheck RAD (Return Address Defender) Insure++
Al chamar unlink(), o P->fd usará os primeiros dados do 2º chunk, onde será inserido o endereço a ser sobrescrito - 12 (pois em FD->bk será somado 12 ao endereço guardado em FD). E nesse endereço será inserido o segundo endereço encontrado no 2º chunk, que deve ser o endereço da shellcode (P->bk falso).
**fake\_size = pack("\<I”, 0xfffffffc) #-4, para que piense que el “size” del 3º trozo está 4bytes detrás (apunta a prev\_size) pues es ahí donde mira si el 2º trozo está libre**
**got\_free = pack("\<I", 0x08048300 - 12) #Dirección de free() en la plt-12 (será la dirección que se sobrescrita para que se lanza la shellcode la 2º vez que se llame a free)**
**payload += prev\_size + fake\_size + got\_free + addr\_sc #Se modifica el 2º trozo, el got\_free apunta a donde vamos a guardar la direccion addr\_sc + 12**
El chunck a lo usamos para sobreescribir el b de forma que el el size tenga el bit PREV\_INUSE desactivado de forma que piense que el chunck a está libre.
Entonces, el programa se pensará que “a” está libre y en un bin, por lo que llamará a unlink() para desenlazarlo. Sin embargo, como la cabecera PREV\_SIZE vale -4. Se pensará que el trozo de “a” realmente empieza en b+4. Es decir, hará un unlink() a un trozo que comienza en b+4, por lo que en b+12 estará el puntero “fd” y en b+16 estará el puntero “bk”.
Se llama a frontlink cuando se libera algo y ninguno de sus trozos contiguos no son libres, no se llama a unlink() sino que se llama directamente a frontlink().
De esta forma logrando sobres cribar en dos mallocs de forma descontrolada y en uno de forma controlada pero que solo se libera ese uno, podemos hacer un exploit.
En caso de querer volver a usar uno se asignaría sin problemas. En caso de querer usar otro, se le asignaría el mismo espacio por lo que tendríamos los punteros “fd” y “bk” falseados con los datos que escribirá la reserva anterior.
Solo una llamada a free() es necesaria para provocar la ejecución de código arbitrario. Interesa buscar un segundo trozo que puede ser desbordado por uno anterior y liberado.
En \[1] comprueba el campo size el bit NON\_MAIN\_ARENA, el cual se puede alterar para que la comprobación devuelva true y ejecute heap\_for\_ptr() que hace un and a “mem” dejando a 0 los 2.5 bytes menos importantes (en nuestro caso de 0x0804a000 deja 0x08000000) y accede a 0x08000000->ar\_ptr (como si fuese un struct heap\_info)
De esta forma si podemos controlar un trozo por ejemplo en 0x0804a000 y se va a liberar un trozo en **0x081002a0** podemos llegar a la dirección 0x08100000 y escribir lo que queramos, por ejemplo **0x0804a000**. Cuando este segundo trozo se libere se encontrará que heap\_for\_ptr(ptr)->ar\_ptr devuelve lo que hemos escrito en 0x08100000 (pues se aplica a 0x081002a0 el and que vimos antes y de ahí se saca el valor de los 4 primeros bytes, el ar\_ptr)
Por lo tanto si en av->bins\[2] escribimos el valor de \_\_DTOR\_END\_\_-12 en la última instrucción se escribirá en \_\_DTOR\_END\_\_ la dirección del segundo trozo.
En la dirección que caiga la dirección del segundo trozo con los últimos 5 ceros hay que escribir la dirección a este primer trozo para que heap\_for\_ptr() piense que el ar\_ptr está al inicio del primer trozo y saque de ahí el av->bins\[2]
En el segundo fragmento e graças ao primeiro, sobrescrevemos o prev_size com um jump 0x0c e o size com algo para ativar -> NON_MAIN_ARENA
Dessa forma, \_int\_free(TROÇO1, TROÇO2) será chamado e seguirá as instruções para escrever em \_\_DTOR_END\_\_ o endereço do prev_size do TROÇO2, que saltará para a shellcode.
Essa técnica não é mais aplicável, pois foi aplicado quase o mesmo patch que para unlink. Verifica-se se o novo local apontado também está apontando para ele.
Dessa forma, se colocarmos em "fb" o endereço de uma função na GOT, nesse endereço será colocado o endereço do troço sobrescrito. Para isso, é necessário que a arena esteja próxima dos endereços de dtors. Mais especificamente, av->max_fast deve estar no endereço que vamos sobrescrever.
Então, se no campo size colocarmos um tamanho de 8 + NON_MAIN_ARENA + PREV_INUSE —> fastbin_index() nos retornará fastbins\[-1\], que apontará para av->max_fast
Além disso, é necessário que o troço contíguo ao liberado seja maior que 8 -> Dado que dissemos que o tamanho do troço liberado é 8, neste troço falso só precisamos colocar um tamanho maior que 8 (além disso, a shellcode estará no troço liberado, então no início teremos que colocar um jump que caia em nops).
Devido aos nulos de \_DTOR_END\_ e às poucas direções na GOT, nenhum desses endereços dessas seções serve para ser sobrescrito, então vejamos como aplicar fastbin para atacar a pilha.
Além disso, é necessário que o troço contíguo ao liberado seja maior que 8 -> Dado que dissemos que o tamanho do troço liberado é 16, neste troço falso só precisamos colocar um tamanho maior que 8 (além disso, a shellcode estará no troço liberado, então no início teremos que colocar um jump que caia em nops que vêm após o campo size do novo troço falso).
Neste caso, buscamos ter um ponteiro para um malloc que possa ser alterado pelo atacante (por exemplo, que o ponteiro esteja na pilha abaixo de um possível overflow para uma variável).
Assim, poderíamos fazer com que esse ponteiro apontasse para onde quer que fosse. No entanto, nem todo local é válido, o tamanho do troço falso deve ser menor que av->max_fast e mais especificamente igual ao tamanho solicitado em uma futura chamada para malloc()+8. Portanto, se soubermos que após esse ponteiro vulnerável é chamado um malloc(40), o tamanho do troço falso deve ser igual a 48.
Por exemplo, se o programa perguntar ao usuário por um número, poderíamos inserir 48 e apontar o ponteiro de malloc modificável para os próximos 4 bytes (que poderiam pertencer ao EBP com sorte, assim o 48 fica atrás, como se fosse o cabeçalho size). Além disso, o endereço ptr-4+48 deve atender a várias condições (sendo neste caso ptr=EBP), ou seja, 8 <ptr-4+48<av->system_mem.
Caso isso seja cumprido, quando o próximo malloc for chamado, que dissemos que era malloc(40), o endereço do EBP será atribuído como endereço. Caso o atacante também possa controlar o que é escrito nesse malloc, ele pode sobrescrever tanto o EBP quanto o EIP com o endereço desejado.
Acredito que isso ocorre porque, quando liberado com free(), é guardado que no endereço que aponta para o EBP da pilha há um troço de tamanho perfeito para o novo malloc() que deseja reservar, então ele atribui esse endereço.
O primeiro passo é sobrescrever o tamanho do troço wilderness com um valor muito grande (0xffffffff), para que qualquer solicitação de memória suficientemente grande seja tratada em \_int\_malloc() sem a necessidade de expandir o heap.
O segundo passo é alterar o av->top para que aponte para uma área de memória sob o controle do atacante, como a pilha. Em av->top, será colocado \&EIP - 8.
A vítima obtém o valor do endereço do troço wilderness atual (o av->top atual) e o restante é exatamente a soma desse endereço mais a quantidade de bytes solicitados por malloc(). Portanto, se \&EIP-8 estiver em 0xbffff224 e av->top contiver 0x080c2788, então a quantidade que precisamos reservar no malloc controlado para que av->top aponte para $EIP-8 para o próximo malloc() será:
É importante que o tamanho do novo troço wilderness seja maior que a solicitação feita pelo último malloc(). Ou seja, se o wilderness estiver apontando para \&EIP-8, o tamanho ficará exatamente no campo EBP da pilha.
Os troços liberados são inseridos no bin com base em seu tamanho. Mas antes de serem inseridos, são armazenados em unsorted bins. Quando um troço é liberado, ele não é imediatamente colocado em seu bin, mas permanece em unsorted bins. Em seguida, se um novo troço for alocado e o anteriormente liberado puder ser útil, ele será retornado, mas se for alocado um troço maior, o troço liberado em unsorted bins será colocado em seu bin apropriado.
Reservar dois mallocs, de modo que o primeiro possa sofrer overflow depois que o segundo for liberado e inserido em seu bin (ou seja, um malloc maior que o segundo pedaço deve ser reservado antes do overflow)
O malloc reservado ao qual o atacante dá o endereço escolhido precisa ser controlado pelo atacante.
O objetivo é o seguinte: se pudermos fazer um overflow em um heap que tem um pedaço liberado abaixo dele e em seu bin, podemos alterar seu ponteiro bk. Se alterarmos seu ponteiro bk e esse pedaço se tornar o primeiro da lista do bin e for reservado, o bin será enganado e informado de que o último pedaço da lista (o próximo a ser oferecido) está no endereço falso que definimos (como o stack ou GOT, por exemplo). Portanto, se outro pedaço for reservado e o atacante tiver permissões nele, ele receberá um pedaço na posição desejada e poderá escrever nele.
Após liberar o pedaço modificado, é necessário reservar um pedaço maior do que o liberado, para que o pedaço modificado saia dos bins não ordenados e seja inserido em seu bin.
Assim, o bin deve esperar até que malloc() seja chamado várias vezes para que o bin modificado seja usado novamente e engane o bin, fazendo-o acreditar que o próximo pedaço está no endereço falso. Em seguida, o pedaço desejado será fornecido.
Para que a vulnerabilidade seja explorada o mais rápido possível, o ideal seria: reserva do pedaço vulnerável, reserva do pedaço a ser modificado, liberação desse pedaço, reserva de um pedaço maior do que o a ser modificado, modificação do pedaço (vulnerabilidade), reserva de um pedaço do mesmo tamanho do vulnerado e reserva de um segundo pedaço do mesmo tamanho, que será o que aponta para o endereço escolhido.
Para proteger esse ataque, é usada a verificação típica de que o pedaço "não" é falso: verifica-se se bck->fd está apontando para a vítima. Ou seja, no nosso caso, se o ponteiro fd* do pedaço falso apontado no stack está apontando para a vítima. Para superar essa proteção, o atacante deve ser capaz de escrever de alguma forma (provavelmente no stack) no endereço adequado o endereço da vítima. Para que pareça um pedaço verdadeiro.
O ataque é semelhante ao anterior, ou seja, é necessário modificar o ponteiro bk e todas essas chamadas para malloc(), mas também é necessário modificar o tamanho do pedaço modificado de forma que esse tamanho - nb seja <MINSIZE.
Por exemplo, é necessário definir o tamanho como 1552 para que 1552 - 1544 = 8 <MINSIZE(asubtraçãonãopodesernegativaporqueécomparadacomumvalornãoassinado)
Basicamente consiste em reservar toda a memória possível para heaps e preenchê-los com um colchão de nops seguido de uma shellcode. Além disso, o colchão é preenchido com 0x0c. Assim, tenta-se saltar para o endereço 0x0c0c0c0c e, se alguma direção for sobrescrita com esse colchão, o controle será transferido para lá. Basicamente, a tática é reservar o máximo possível para ver se algum ponteiro é sobrescrito e saltar para 0x0c0c0c0c, esperando que haja nops lá.
Consiste em cimentar a memória por meio de reservas e liberações, de modo que pedaços reservados fiquem entre pedaços livres. O buffer a ser transbordado será colocado em um desses espaços.
<summary><strong>Aprenda hacking AWS do zero ao hero com</strong><ahref="https://training.hacktricks.xyz/courses/arte"><strong>htARTE (HackTricks AWS Red Team Expert)</strong></a><strong>!</strong></summary>
* Se você deseja ver sua **empresa anunciada no HackTricks** ou **baixar o HackTricks em PDF**, confira os [**PLANOS DE ASSINATURA**](https://github.com/sponsors/carlospolop)!
* **Junte-se ao** 💬 [**grupo Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo telegram**](https://t.me/peass) ou nos siga no **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Compartilhe seus truques de hacking enviando PRs para os repositórios** [**HackTricks**](https://github.com/carlospolop/hacktricks) e [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud).