<summary><strong>Aprende hacking en AWS desde cero hasta experto con</strong><ahref="https://training.hacktricks.xyz/courses/arte"><strong>htARTE (HackTricks AWS Red Team Expert)</strong></a><strong>!</strong></summary>
* Si deseas ver tu **empresa anunciada en HackTricks** o **descargar HackTricks en PDF** ¡Consulta los [**PLANES DE SUSCRIPCIÓN**](https://github.com/sponsors/carlospolop)!
* Obtén [**productos oficiales de PEASS & HackTricks**](https://peass.creator-spring.com)
* Descubre [**La Familia PEASS**](https://opensea.io/collection/the-peass-family), nuestra colección exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family)
* **Únete al** 💬 [**grupo de Discord**](https://discord.gg/hRep4RUj7f) o al [**grupo de telegram**](https://t.me/peass) o **sígueme** en **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/carlospolopm)**.**
* **Comparte tus trucos de hacking enviando PRs a los repositorios de** [**HackTricks**](https://github.com/carlospolop/hacktricks) y [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud).
Mach utiliza **tareas** como la **unidad más pequeña** para compartir recursos, y cada tarea puede contener **múltiples hilos**. Estas **tareas y hilos se mapean en una relación 1:1 con procesos y hilos POSIX**.
La comunicación entre tareas ocurre a través de la Comunicación entre Procesos de Mach (IPC), utilizando canales de comunicación unidireccionales. **Los mensajes se transfieren entre puertos**, que actúan como **colas de mensajes** gestionadas por el kernel.
Cada proceso tiene una **tabla de IPC**, donde es posible encontrar los **puertos de Mach del proceso**. El nombre de un puerto de Mach es en realidad un número (un puntero al objeto del kernel).
Un proceso también puede enviar un nombre de puerto con algunos derechos **a una tarea diferente** y el kernel hará que esta entrada en la **tabla de IPC de la otra tarea** aparezca.
Los derechos de puerto, que definen qué operaciones puede realizar una tarea, son clave en esta comunicación. Los posibles **derechos de puerto** son ([definiciones desde aquí](https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html)):
* **Derecho de Recepción**, que permite recibir mensajes enviados al puerto. Los puertos de Mach son colas MPSC (múltiples productores, un solo consumidor), lo que significa que solo puede haber **un derecho de recepción para cada puerto** en todo el sistema (a diferencia de las tuberías, donde varios procesos pueden tener descriptores de archivo al extremo de lectura de una tubería).
* Una **tarea con el Derecho de Recepción** puede recibir mensajes y **crear Derechos de Envío**, lo que le permite enviar mensajes. Originalmente, solo la **propia tarea tiene el Derecho de Recepción sobre su puerto**.
* **Derecho de Envío**, que permite enviar mensajes al puerto.
* El Derecho de Envío se puede **clonar** para que una tarea que posee un Derecho de Envío pueda clonar el derecho y **concedérselo a una tercera tarea**.
* **Derecho de Envío-una-vez**, que permite enviar un mensaje al puerto y luego desaparece.
* **Derecho de conjunto de puertos**, que denota un _conjunto de puertos_ en lugar de un solo puerto. Desencolar un mensaje de un conjunto de puertos desencola un mensaje de uno de los puertos que contiene. Los conjuntos de puertos se pueden utilizar para escuchar en varios puertos simultáneamente, de manera similar a `select`/`poll`/`epoll`/`kqueue` en Unix.
* **Nombre muerto**, que no es un derecho de puerto real, sino simplemente un marcador de posición. Cuando se destruye un puerto, todos los derechos de puerto existentes para el puerto se convierten en nombres muertos.
**Las tareas pueden transferir DERECHOS DE ENVÍO a otros**, lo que les permite enviar mensajes de vuelta. **Los DERECHOS DE ENVÍO también se pueden clonar, por lo que una tarea puede duplicar y dar el derecho a una tercera tarea**. Esto, combinado con un proceso intermedio conocido como el **servidor de arranque**, permite una comunicación efectiva entre tareas.
3. La tarea **A** establece una **conexión** con el **servidor de arranque**, proporcionando el **nombre del servicio del puerto** y el **derecho de ENVÍO** a través de un procedimiento conocido como el registro de arranque.
4. La tarea **B** interactúa con el **servidor de arranque** para ejecutar una **búsqueda de arranque para el nombre del servicio**. Si tiene éxito, el **servidor duplica el derecho de ENVÍO** recibido de la tarea A y **lo transmite a la tarea B**.
5. Al adquirir un derecho de ENVÍO, la tarea **B** es capaz de **formular** un **mensaje** y enviarlo **a la tarea A**.
6. Para una comunicación bidireccional, generalmente la tarea **B** genera un nuevo puerto con un **derecho de RECEPCIÓN** y un **derecho de ENVÍO**, y le da el **derecho de ENVÍO a la tarea A** para que pueda enviar mensajes a la TAREA B (comunicación bidireccional).
El servidor de arranque **no puede autenticar** el nombre del servicio reclamado por una tarea. Esto significa que una **tarea** podría potencialmente **hacerse pasar por cualquier tarea del sistema**, como reclamar falsamente un nombre de servicio de autorización y luego aprobar cada solicitud.
Luego, Apple almacena los **nombres de los servicios proporcionados por el sistema** en archivos de configuración seguros, ubicados en directorios protegidos por SIP: `/System/Library/LaunchDaemons` y `/System/Library/LaunchAgents`. Junto a cada nombre de servicio, también se almacena el **binario asociado**. El servidor de arranque, creará y mantendrá un **derecho de RECEPCIÓN para cada uno de estos nombres de servicio**.
Para estos servicios predefinidos, el **proceso de búsqueda difiere ligeramente**. Cuando se busca un nombre de servicio, launchd inicia el servicio dinámicamente. El nuevo flujo de trabajo es el siguiente:
* La tarea **B** inicia una **búsqueda de arranque** para un nombre de servicio.
* **launchd** verifica si la tarea se está ejecutando y si no lo está, la **inicia**.
* La tarea **A** (el servicio) realiza un **registro de arranque**. Aquí, el **servidor de arranque** crea un derecho de ENVÍO, lo retiene y **transfiere el derecho de RECEPCIÓN a la tarea A**.
* launchd duplica el **derecho de ENVÍO y lo envía a la tarea B**.
* La tarea **B** genera un nuevo puerto con un **derecho de RECEPCIÓN** y un **derecho de ENVÍO**, y le da el **derecho de ENVÍO a la tarea A** (el svc) para que pueda enviar mensajes a la TAREA B (comunicación bidireccional).
Sin embargo, este proceso solo se aplica a tareas del sistema predefinidas. Las tareas no del sistema aún operan como se describió originalmente, lo que podría permitir potencialmente la suplantación.
[Encuentra más información aquí](https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/)
La función `mach_msg`, esencialmente una llamada al sistema, se utiliza para enviar y recibir mensajes de Mach. La función requiere que el mensaje se envíe como argumento inicial. Este mensaje debe comenzar con una estructura `mach_msg_header_t`, seguida del contenido real del mensaje. La estructura se define de la siguiente manera:
Los procesos que poseen un _**derecho de recepción**_ pueden recibir mensajes en un puerto Mach. Por otro lado, los **emisores** reciben un _**derecho de envío**_ o un _**derecho de envío único**_. El derecho de envío único es exclusivamente para enviar un único mensaje, después de lo cual se vuelve inválido.
Para lograr una **comunicación bidireccional** fácil, un proceso puede especificar un **puerto mach** en el **encabezado del mensaje** mach llamado el _puerto de respuesta_ (**`msgh_local_port`**) donde el **receptor** del mensaje puede **enviar una respuesta** a este mensaje. Los bits de control en **`msgh_bits`** se pueden utilizar para **indicar** que se debe derivar y transferir un **derecho de envío único** para este puerto (`MACH_MSG_TYPE_MAKE_SEND_ONCE`).
Tenga en cuenta que este tipo de comunicación bidireccional se utiliza en mensajes XPC que esperan una respuesta (`xpc_connection_send_message_with_reply` y `xpc_connection_send_message_with_reply_sync`). Pero **generalmente se crean puertos diferentes** como se explicó anteriormente para crear la comunicación bidireccional.
Tenga en cuenta que los **mensajes mach se envían a través de un **_**puerto mach**_, que es un canal de comunicación de **un solo receptor**, **múltiples emisores** integrado en el núcleo mach. **Múltiples procesos** pueden **enviar mensajes** a un puerto mach, pero en cualquier momento solo **un proceso puede leer** de él.
Puedes instalar esta herramienta en iOS descargándola desde [http://newosxbook.com/tools/binpack64-256.tar.gz ](http://newosxbook.com/tools/binpack64-256.tar.gz)
Observa cómo el **emisor****asigna** un puerto, crea un **derecho de envío** para el nombre `org.darlinghq.example` y lo envía al **servidor de arranque** mientras que el emisor solicitó el **derecho de envío** de ese nombre y lo utilizó para **enviar un mensaje**.
En macOS, la Comunicación entre Procesos (IPC) se puede lograr a través de mecanismos como **Mach ports**, **XPC services** y **UNIX domain sockets**. Estos mecanismos permiten a los procesos comunicarse entre sí y compartir recursos de manera segura.
#### Mach Ports
Los **Mach ports** son canales de comunicación unidireccionales que se utilizan para enviar mensajes entre procesos en macOS. Cada puerto Mach tiene un identificador único y se puede utilizar para enviar mensajes y notificaciones entre procesos.
#### XPC Services
Los **XPC services** son un mecanismo de IPC ligero y seguro que se utiliza para la comunicación entre procesos en macOS. Los servicios XPC permiten a los procesos comunicarse de forma segura y eficiente, evitando posibles vulnerabilidades de seguridad.
#### UNIX Domain Sockets
Los **UNIX domain sockets** son un mecanismo de IPC que permite la comunicación entre procesos en el mismo sistema. Estos sockets se utilizan para la comunicación local y permiten a los procesos intercambiar datos de manera eficiente.
En resumen, la Comunicación entre Procesos en macOS es fundamental para que los procesos puedan interactuar entre sí de manera segura y eficiente, utilizando mecanismos como Mach ports, XPC services y UNIX domain sockets.
- **Puerto del host**: Si un proceso tiene el privilegio de **Enviar** sobre este puerto, puede obtener **información** sobre el **sistema** (por ejemplo, `host_processor_info`).
- **Puerto de privilegio del host**: Un proceso con el derecho de **Enviar** sobre este puerto puede realizar **acciones privilegiadas** como cargar una extensión del kernel. El **proceso necesita ser root** para obtener este permiso.
- Además, para llamar a la API **`kext_request`** se necesitan otros permisos de **`com.apple.private.kext*`** que solo se otorgan a binarios de Apple.
- **Puerto del nombre de la tarea**: Una versión no privilegiada del _puerto de la tarea_. Hace referencia a la tarea, pero no permite controlarla. Lo único que parece estar disponible a través de él es `task_info()`.
- **Puerto de la tarea** (también conocido como puerto del kernel)**:** Con permiso de Envío sobre este puerto es posible controlar la tarea (leer/escribir memoria, crear hilos...).
- Llamar a `mach_task_self()` para **obtener el nombre** de este puerto para la tarea del llamador. Este puerto solo se **hereda** a través de **`exec()`**; una nueva tarea creada con `fork()` obtiene un nuevo puerto de tarea (como caso especial, una tarea también obtiene un nuevo puerto de tarea después de `exec()` en un binario suid). La única forma de generar una tarea y obtener su puerto es realizar la ["danza de intercambio de puertos"](https://robert.sesek.com/2014/1/changes\_to\_xnu\_mach\_ipc.html) mientras se hace un `fork()`.
- Estas son las restricciones para acceder al puerto (desde `macos_task_policy` del binario `AppleMobileFileIntegrity`):
- Si la aplicación tiene el permiso de **`com.apple.security.get-task-allow`**, los procesos del **mismo usuario pueden acceder al puerto de la tarea** (comúnmente agregado por Xcode para depurar). El proceso de **notarización** no lo permitirá en versiones de producción.
- Las aplicaciones con el permiso de **`com.apple.system-task-ports`** pueden obtener el **puerto de la tarea de cualquier** proceso, excepto el del kernel. En versiones anteriores se llamaba **`task_for_pid-allow`**. Esto solo se otorga a aplicaciones de Apple.
- **Root puede acceder a los puertos de tarea** de aplicaciones **no** compiladas con un tiempo de ejecución **fortificado** (y no de Apple).
macOS provides several mechanisms for Inter-Process Communication (IPC) between processes. These mechanisms include:
1.**Mach Messages**: Low-level messaging system used by macOS for IPC.
2.**XPC Services**: Lightweight interprocess communication mechanism provided by Apple.
3.**Distributed Objects**: Allows objects to be used across process boundaries.
4.**NSDistributedNotificationCenter**: A distributed notification center that allows sending notifications between processes.
5.**Apple Events**: Used for scripting and automation, allowing one application to control another.
Understanding these IPC mechanisms is crucial for macOS security and privilege escalation testing. By exploiting vulnerabilities in IPC mechanisms, an attacker can gain elevated privileges on a macOS system.
#### macOS IPC Security Considerations
When assessing the security of macOS IPC mechanisms, consider the following:
- **Secure Communication**: Ensure that IPC communications are encrypted and authenticated to prevent eavesdropping and tampering.
- **Input Validation**: Validate input data to prevent injection attacks and other security vulnerabilities.
- **Least Privilege**: Follow the principle of least privilege when defining entitlements for IPC mechanisms to restrict access to only necessary resources.
- **Secure Configuration**: Configure IPC mechanisms securely, following best practices to minimize security risks.
By understanding macOS IPC mechanisms and implementing security best practices, you can enhance the security of macOS systems and prevent privilege escalation attacks.
**Compila** el programa anterior y agrega los **permisos** necesarios para poder inyectar código con el mismo usuario (de lo contrario, necesitarás usar **sudo**).
En macOS, los **hilos** pueden ser manipulados a través de **Mach** o utilizando la **API `pthread` posix**. El hilo que generamos en la inyección anterior fue generado utilizando la API de Mach, por lo que **no es compatible con posix**.
Fue posible **inyectar un shellcode simple** para ejecutar un comando porque **no era necesario trabajar con APIs compatibles con posix**, solo con Mach. Las **inyecciones más complejas** necesitarían que el **hilo** también sea **compatible con posix**.
Por lo tanto, para **mejorar el hilo**, se debe llamar a **`pthread_create_from_mach_thread`** que creará un pthread válido. Luego, este nuevo pthread podría **llamar a dlopen** para **cargar una dylib** del sistema, por lo que en lugar de escribir nuevo shellcode para realizar diferentes acciones, es posible cargar bibliotecas personalizadas.
XPC, que significa Comunicación entre Procesos XNU (el kernel utilizado por macOS), es un marco para **comunicación entre procesos** en macOS e iOS. XPC proporciona un mecanismo para realizar **llamadas de método seguras y asíncronas entre diferentes procesos** en el sistema. Es parte del paradigma de seguridad de Apple, permitiendo la **creación de aplicaciones con privilegios separados** donde cada **componente** se ejecuta con **solo los permisos necesarios** para realizar su trabajo, limitando así el daño potencial de un proceso comprometido.
MIG fue creado para **simplificar el proceso de creación de código de IPC de Mach**. Básicamente **genera el código necesario** para que el servidor y el cliente se comuniquen con una definición dada. Aunque el código generado puede ser feo, un desarrollador solo necesitará importarlo y su código será mucho más simple que antes.
<summary><strong>Aprende hacking en AWS desde cero hasta experto con</strong><ahref="https://training.hacktricks.xyz/courses/arte"><strong>htARTE (HackTricks AWS Red Team Expert)</strong></a><strong>!</strong></summary>
* Si deseas ver tu **empresa anunciada en HackTricks** o **descargar HackTricks en PDF**, ¡Consulta los [**PLANES DE SUSCRIPCIÓN**](https://github.com/sponsors/carlospolop)!
* Obtén la [**merchandising oficial de PEASS & HackTricks**](https://peass.creator-spring.com)
* Descubre [**The PEASS Family**](https://opensea.io/collection/the-peass-family), nuestra colección exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family)
* **Únete al** 💬 [**grupo de Discord**](https://discord.gg/hRep4RUj7f) o al [**grupo de telegram**](https://t.me/peass) o **sígueme** en **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/carlospolopm)**.**
* **Comparte tus trucos de hacking enviando PR a los repositorios de** [**HackTricks**](https://github.com/carlospolop/hacktricks) y [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud).