* [**linpeas**](https://github.com/carlospolop/PEASS-ng/tree/master/linPEAS): It can also **enumerate containers**
* [**CDK**](https://github.com/cdk-team/CDK#installationdelivery): This tool is pretty **useful to enumerate the container you are into even try to escape automatically**
* [**amicontained**](https://github.com/genuinetools/amicontained): Useful tool to get the privileges the container has in order to find ways to escape from it
* [**deepce**](https://github.com/stealthcopter/deepce): Tool to enumerate and escape from containers
* [**grype**](https://github.com/anchore/grype): Get the CVEs contained in the software installed in the image
If somehow you find that the **docker socket is mounted** inside the docker container, you will be able to escape from it.\
This usually happen in docker containers that for some reason need to connect to docker daemon to perform actions.
```bash
#Search the socket
find / -name docker.sock 2>/dev/null
#It's usually in /run/docker.sock
```
In this case you can use regular docker commands to communicate with the docker daemon:
```bash
#List images to use one
docker images
#Run the image mounting the host disk and chroot on it
docker run -it -v /:/host/ ubuntu:18.04 chroot /host/ bash
```
{% hint style="info" %}
In case the **docker socket is in an unexpected place** you can still communicate with it using the **`docker`** command with the parameter **`-H unix:///path/to/docker.sock`**
Docker daemon might be also [listening in a port (by default 2375, 2376)](../../../pentesting/2375-pentesting-docker.md) or on Systemd-based systems, communication with the Docker daemon can occur over the Systemd socket `fd://`.
{% hint style="info" %}
Additionally, pay attention to the runtime sockets of other high-level runtimes:
You should check the capabilities of the container, if it has any of the following ones, you might be able to scape from it: **`CAP_SYS_ADMIN`**_,_ **`CAP_SYS_PTRACE`**, **`CAP_SYS_MODULE`**, **`DAC_READ_SEARCH`**, **`DAC_OVERRIDE, CAP_SYS_RAWIO`, `CAP_SYSLOG`, `CAP_NET_RAW`, `CAP_NET_ADMIN`**
A privileged container can be created with the flag `--privileged` or disabling specific defenses:
*`--cap-add=ALL`
*`--security-opt apparmor=unconfined`
*`--security-opt seccomp=unconfined`
*`--security-opt label:disable`
*`--pid=host`
*`--userns=host`
*`--uts=host`
*`--cgroupns=host`
The `--privileged` flag introduces significant security concerns, and the exploit relies on launching a docker container with it enabled. When using this flag, containers have full access to all devices and lack restrictions from seccomp, AppArmor, and Linux capabilities. You can r**ead all the effects of `--privileged`** in this page:
With these permissions you can just **move to the namespace of a process running in the host as root** like init (pid:1) just running: `nsenter --target 1 --mount --uts --ipc --net --pid -- bash`
Test it in a container executing:
```bash
docker run --rm -it --pid=host --privileged ubuntu bash
```
### Privileged
Just with the privileged flag you can try to **access the host's disk** or try to **escape abusing release\_agent or other escapes**.
Test the following bypasses in a container executing:
Well configured docker containers won't allow command like **fdisk -l**. However on miss-configured docker command where the flag `--privileged` or `--device=/dev/sda1` with caps is specified, it is possible to get the privileges to see the host drive.
Within the container, an attacker may attempt to gain further access to the underlying host OS via a writable hostPath volume created by the cluster. Below is some common things you can check within the container to see if you leverage this attacker vector:
In the previous exploits the **absolute path of the continer inside the hosts filesystem is disclosed**. However, this isn’t always the case. In cases where you **don’t know the absolute path of the continer inside the host** you can use this technique:
There are several files that might mounted that give **information about the underlaying host**. Some of them may even indicate **something to be executed by the host when something happens** (which will allow a attacker to escape from the container).\
In several occasions you will find that the **container has some volume mounted from the host**. If this volume wasn’t correctly configured you might be able to **access/modify sensitive data**: Read secrets, change ssh authorized\_keys…
```bash
docker run --rm -it -v /:/host ubuntu bash
```
### hostPID
If you can access the processes of the host you are going to be able to access a lot of sensitive information stored in those processes. Run test lab:
```
docker run --rm -it --pid=host ubuntu bash
```
For example, you will be able to list the processes using something like `ps auxn` and search for sensitive details in the commands.
Then, as you can **access each process of the host in /proc/ you can just steal their env secrets** running:
```bash
for e in `ls /proc/*/environ`; do echo; echo $e; xargs -0 -L1 -a $e; done
If you somehow has privileged **access over a process outside of the container**, you could run something like `nsenter --target <pid> --all` or `nsenter --target <pid> --mount --net --pid --cgroup` to **run a shell with the same ns restrictions** (hopefully none) **as that process.**
If a container was configured with the Docker [host networking driver (`--network=host`)](https://docs.docker.com/network/host/), that container's network stack is not isolated from the Docker host (the container shares the host's networking namespace), and the container does not get its own IP-address allocated. In other words, the **container binds all services directly to the host's IP**. Furthermore the container can **intercept ALL network traffic that the host** is sending and receiving on shared interface `tcpdump -i eth0`.
For instance, you can use this to **sniff and even spoof traffic** between host and metadata instance.
* [Writeup: How to contact Google SRE: Dropping a shell in cloud SQL](https://offensi.com/2020/08/18/how-to-contact-google-sre-dropping-a-shell-in-cloud-sql/)
You will be able also to access **network services binded to localhost** inside the host or even access the **metadata permissions of the node** (which might be different those a container can access):
If you only have `hostIPC=true`, you most likely can't do much. If any process on the host or any processes within another pod is using the host’s **inter-process communication mechanisms** (shared memory, semaphore arrays, message queues, etc.), you'll be able to read/write to those same mechanisms. The first place you'll want to look is `/dev/shm`, as it is shared between any pod with `hostIPC=true` and the host. You'll also want to check out the other IPC mechanisms with `ipcs`.
* **Inspect /dev/shm** - Look for any files in this shared memory location: `ls -la /dev/shm`
* **Inspect existing IPC facilities** – You can check to see if any IPC facilities are being used with `/usr/bin/ipcs`. Check it with: `ipcs -a`
In case you can execute `docker exec` as root (probably with sudo), you try to escalate privileges escaping from a container abusing CVE-2019-5736 (exploit [here](https://github.com/Frichetten/CVE-2019-5736-PoC/blob/master/main.go)). This technique will basically **overwrite** the _**/bin/sh**_ binary of the **host****from a container**, so anyone executing docker exec may trigger the payload.
Change the payload accordingly and build the main.go with `go build main.go`. The resulting binary should be placed in the docker container for execution.\
Upon execution, as soon as it displays `[+] Overwritten /bin/sh successfully` you need to execute the following from the host machine:
`docker exec -it <container-name> /bin/sh`
This will trigger the payload which is present in the main.go file.
For more information: [https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html](https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html)
There are other CVEs the container can be vulnerable too, you can find a list in [https://0xn3va.gitbook.io/cheat-sheets/container/escaping/cve-list](https://0xn3va.gitbook.io/cheat-sheets/container/escaping/cve-list)
If you are in **userspace** (**no kernel exploit** involved) the way to find new escapes mainly involve the following actions (these templates usually require a container in privileged mode):