- Travaillez-vous dans une entreprise de cybersécurité ? Voulez-vous voir votre entreprise annoncée dans HackTricks ? ou voulez-vous avoir accès à la dernière version de PEASS ou télécharger HackTricks en PDF ? Consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop) !
- **Rejoignez le** [**💬**](https://emojipedia.org/speech-balloon/) **groupe Discord** ou le [**groupe telegram**](https://t.me/peass) ou **suivez** moi sur **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks_live)**.**
- **Partagez vos astuces de piratage en soumettant des PR au [repo hacktricks](https://github.com/carlospolop/hacktricks) et au [repo hacktricks-cloud](https://github.com/carlospolop/hacktricks-cloud)**.
En résumé, c'est un **processus isolé** via **cgroups** (ce que le processus peut utiliser, comme le CPU et la RAM) et des **espaces de noms** (ce que le processus peut voir, comme les répertoires ou les autres processus) :
Si vous trouvez que le **socket Docker est monté** à l'intérieur du conteneur Docker, vous pourrez vous échapper.\
Cela se produit généralement dans les conteneurs Docker qui, pour une raison quelconque, doivent se connecter au démon Docker pour effectuer des actions.
Dans le cas où le **socket docker est dans un emplacement inattendu**, vous pouvez toujours communiquer avec lui en utilisant la commande **`docker`** avec le paramètre **`-H unix:///path/to/docker.sock`**
Vous devez vérifier les capacités du conteneur, s'il possède l'une des capacités suivantes, vous pourriez être en mesure de vous échapper : **`CAP_SYS_ADMIN`**_,_ **`CAP_SYS_PTRACE`**, **`CAP_SYS_MODULE`**, **`DAC_READ_SEARCH`**, **`DAC_OVERRIDE`**
Les conteneurs Docker bien configurés n'autorisent pas les commandes telles que **fdisk -l**. Cependant, dans une commande Docker mal configurée où le drapeau --privileged est spécifié, il est possible d'obtenir les privilèges pour voir le disque de l'hôte.
Le drapeau `--privileged` introduit des problèmes de sécurité importants et l'exploit repose sur le lancement d'un conteneur Docker avec ce drapeau activé. Lorsque ce drapeau est utilisé, les conteneurs ont un accès complet à tous les périphériques et ne sont pas soumis aux restrictions de seccomp, AppArmor et des capacités Linux.
En fait, `--privileged` fournit beaucoup plus de permissions que nécessaire pour s'échapper d'un conteneur Docker via cette méthode. En réalité, les seuls prérequis sont :
La capacité `SYS_ADMIN` permet à un conteneur d'exécuter l'appel système `mount` (voir [man 7 capabilities](https://linux.die.net/man/7/capabilities)). [Docker démarre les conteneurs avec un ensemble restreint de capacités](https://docs.docker.com/engine/security/security/#linux-kernel-capabilities) par défaut et n'active pas la capacité `SYS_ADMIN` en raison des risques de sécurité que cela implique.
De plus, Docker [démarre les conteneurs avec la politique AppArmor par défaut `docker-default`](https://docs.docker.com/engine/security/apparmor/#understand-the-policies), qui [empêche l'utilisation de l'appel système `mount`](https://github.com/docker/docker-ce/blob/v18.09.8/components/engine/profiles/apparmor/template.go#L35) même lorsque le conteneur est exécuté avec `SYS_ADMIN`.
Maintenant que nous comprenons les prérequis pour utiliser cette technique et que nous avons affiné l'exploit de proof of concept, parcourons-le ligne par ligne pour démontrer comment il fonctionne.
Pour déclencher cette exploitation, nous avons besoin d'un cgroup où nous pouvons créer un fichier `release_agent` et déclencher l'invocation de `release_agent` en tuant tous les processus dans le cgroup. Le moyen le plus simple d'y parvenir est de monter un contrôleur cgroup et de créer un cgroup enfant.
Pour ce faire, nous créons un répertoire `/tmp/cgrp`, montons le contrôleur cgroup [RDMA](https://www.kernel.org/doc/Documentation/cgroup-v1/rdma.txt) et créons un cgroup enfant (nommé "x" à des fins d'exemple). Bien que tous les contrôleurs cgroup n'aient pas été testés, cette technique devrait fonctionner avec la majorité des contrôleurs cgroup.
Si vous suivez et obtenez "mount: /tmp/cgrp: special device cgroup does not exist", c'est parce que votre configuration n'a pas le contrôleur cgroup RDMA. Changez `rdma` en `memory` pour le corriger. Nous utilisons RDMA car le PoC original a été conçu pour fonctionner uniquement avec celui-ci.
Notez que les contrôleurs cgroup sont des ressources globales qui peuvent être montées plusieurs fois avec des autorisations différentes et les modifications apportées à un montage s'appliqueront à un autre.
Ensuite, nous activons les notifications cgroup lors de la libération du cgroup "x" en écrivant un 1 dans son fichier `notify_on_release`. Nous définissons également l'agent de libération du cgroup RDMA pour exécuter un script `/cmd` - que nous créerons plus tard dans le conteneur - en écrivant le chemin du script `/cmd` sur l'hôte dans le fichier `release_agent`. Pour ce faire, nous récupérons le chemin du conteneur sur l'hôte à partir du fichier `/etc/mtab`.
Les fichiers que nous ajoutons ou modifions dans le conteneur sont présents sur l'hôte, et il est possible de les modifier à partir des deux mondes : le chemin dans le conteneur et leur chemin sur l'hôte.
Maintenant, nous créons le script `/cmd` de sorte qu'il exécute la commande `ps aux` et enregistre sa sortie dans `/output` sur le conteneur en spécifiant le chemin complet du fichier de sortie sur l'hôte. À la fin, nous imprimons également le contenu du script `/cmd` pour voir son contenu :
Enfin, nous pouvons exécuter l'attaque en créant un processus qui se termine immédiatement à l'intérieur du sous-cgroupe "x". En créant un processus `/bin/sh` et en écrivant son PID dans le fichier `cgroup.procs` dans le répertoire du sous-cgroupe "x", le script sur l'hôte s'exécutera après la sortie de `/bin/sh`. La sortie de `ps aux` effectuée sur l'hôte est ensuite enregistrée dans le fichier `/output` à l'intérieur du conteneur :
Les PoCs précédents fonctionnent bien lorsque le conteneur est configuré avec un pilote de stockage qui expose le chemin d'accès complet de l'hôte du point de montage, par exemple `overlayfs`. Cependant, j'ai récemment rencontré quelques configurations qui ne divulguent pas évidemment le point de montage du système de fichiers hôte.
Par défaut, [Kata Containers](https://katacontainers.io) monte le système de fichiers racine d'un conteneur sur `9pfs`. Cela ne divulgue aucune information sur l'emplacement du système de fichiers du conteneur dans la machine virtuelle Kata Containers.
J'ai vu un conteneur avec ce montage racine dans un environnement en direct, je crois que le conteneur fonctionnait avec une configuration de pilote de stockage `devicemapper` spécifique, mais à ce stade, je n'ai pas été en mesure de reproduire ce comportement dans un environnement de test.
Évidemment, dans ces cas, il n'y a pas suffisamment d'informations pour identifier le chemin des fichiers de conteneurs sur le système de fichiers hôte, donc le PoC de Felix ne peut pas être utilisé tel quel. Cependant, nous pouvons toujours exécuter cette attaque avec un peu d'ingéniosité.
La seule information clé requise est le chemin complet, relatif à l'hôte de conteneur, d'un fichier à exécuter dans le conteneur. Sans être en mesure de le discerner à partir des points de montage dans le conteneur, nous devons chercher ailleurs.
Le pseudo-système de fichiers `/proc` de Linux expose les structures de données de processus du noyau pour tous les processus en cours d'exécution sur un système, y compris ceux s'exécutant dans différents espaces de noms, par exemple dans un conteneur. Cela peut être démontré en exécutant une commande dans un conteneur et en accédant au répertoire `/proc` du processus sur l'hôte : Conteneur.
En passant, la structure de données `/proc/<pid>/root` m'a longtemps laissé perplexe, je ne comprenais pas pourquoi avoir un lien symbolique vers `/` était utile, jusqu'à ce que je lise la définition réelle dans les pages de manuel :
> UNIX et Linux supportent l'idée d'une racine de système de fichiers par processus, définie par l'appel système chroot(2). Ce fichier est un lien symbolique qui pointe vers le répertoire racine du processus, et se comporte de la même manière que exe et fd/\*.
> Notez cependant que ce fichier n'est pas simplement un lien symbolique. Il fournit la même vue du système de fichiers (y compris les espaces de noms et l'ensemble des montages par processus) que le processus lui-même.
Cela change la condition requise pour l'attaque, passant de la connaissance du chemin complet, relatif à l'hôte du conteneur, d'un fichier à l'intérieur du conteneur, à la connaissance du pid de _n'importe quel_ processus s'exécutant dans le conteneur.
C'est en fait la partie facile, les identifiants de processus dans Linux sont numériques et attribués séquentiellement. Le processus `init` est attribué l'identifiant de processus `1` et tous les processus suivants sont attribués des identifiants incrémentaux. Pour identifier l'identifiant de processus de l'hôte d'un processus à l'intérieur d'un conteneur, une recherche incrémentale par force brute peut être utilisée : Container
Pour mener à bien cette attaque, la technique de force brute peut être utilisée pour deviner le pid du chemin `/proc/<pid>/root/payload.sh`, avec chaque itération écrivant le chemin pid deviné dans le fichier `release_agent` des cgroups, déclenchant le `release_agent`, et vérifiant si un fichier de sortie est créé.
Le seul inconvénient de cette technique est qu'elle n'est en aucun cas subtile et peut augmenter considérablement le nombre de pid. Comme aucun processus de longue durée n'est maintenu en cours d'exécution, cela ne devrait pas causer de problèmes de fiabilité, mais ne me citez pas là-dessus.
Le PoC ci-dessous met en œuvre ces techniques pour fournir une attaque plus générique que celle présentée initialement dans le PoC original de Felix pour s'échapper d'un conteneur privilégié en utilisant la fonctionnalité `release_agent` des cgroups :
Si vous pouvez exécuter `docker exec` en tant que root (probablement avec sudo), vous pouvez essayer d'escalader les privilèges en sortant d'un conteneur en exploitant CVE-2019-5736 (exploit [ici](https://github.com/Frichetten/CVE-2019-5736-PoC/blob/master/main.go)). Cette technique va essentiellement **écraser** le binaire _**/bin/sh**_ de l'**hôte** **à partir d'un conteneur**, de sorte que toute personne exécutant docker exec peut déclencher la charge utile.
Modifiez la charge utile en conséquence et compilez main.go avec `go build main.go`. Le binaire résultant doit être placé dans le conteneur Docker pour l'exécution.\
Lors de l'exécution, dès qu'il affiche `[+] Overwritten /bin/sh successfully`, vous devez exécuter ce qui suit depuis la machine hôte :
Pour plus d'informations : [https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html](https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html)
Dans certains cas, l'administrateur système peut installer des plugins pour Docker afin d'empêcher les utilisateurs à faible privilège d'interagir avec Docker sans pouvoir escalader les privilèges.
Dans ce cas, l'administrateur système **interdit aux utilisateurs de monter des volumes et d'exécuter des conteneurs avec le drapeau `--privileged`** ou de donner des capacités supplémentaires au conteneur :
Maintenant, l'utilisateur peut s'échapper du conteneur en utilisant l'une des techniques précédemment discutées et escalader les privilèges à l'intérieur de l'hôte.
Dans ce cas, l'administrateur système **a interdit aux utilisateurs d'exécuter des conteneurs avec le drapeau `--privileged`** ou de donner des capacités supplémentaires au conteneur, et il a seulement autorisé le montage du dossier `/tmp`:
Notez que vous ne pouvez peut-être pas monter le dossier `/tmp`, mais vous pouvez monter un **dossier différent accessible en écriture**. Vous pouvez trouver des répertoires accessibles en écriture en utilisant la commande : `find / -writable -type d 2>/dev/null`
**Notez que tous les répertoires d'une machine Linux ne prendront pas en charge le bit suid !** Pour vérifier quels répertoires prennent en charge le bit suid, exécutez la commande `mount | grep -v "nosuid"`. Par exemple, généralement `/dev/shm`, `/run`, `/proc`, `/sys/fs/cgroup` et `/var/lib/lxcfs` ne prennent pas en charge le bit suid.
Notez également que si vous pouvez **monter `/etc`** ou tout autre dossier **contenant des fichiers de configuration**, vous pouvez les modifier depuis le conteneur Docker en tant que root pour **les exploiter sur l'hôte** et escalader les privilèges (peut-être en modifiant `/etc/shadow`).
Il est possible que lorsque l'administrateur système a configuré le pare-feu Docker, il ait **oublié un paramètre important** de l'API ([https://docs.docker.com/engine/api/v1.40/#operation/ContainerList](https://docs.docker.com/engine/api/v1.40/#operation/ContainerList)) comme "**Binds**".\
Dans l'exemple suivant, il est possible d'exploiter cette mauvaise configuration pour créer et exécuter un conteneur qui monte le dossier racine (/) de l'hôte :
Il est possible que lorsque l'administrateur système a configuré le pare-feu docker, il ait **oublié un attribut important d'un paramètre de l'API** ([https://docs.docker.com/engine/api/v1.40/#operation/ContainerList](https://docs.docker.com/engine/api/v1.40/#operation/ContainerList)) comme "**Capabilities**" à l'intérieur de "**HostConfig**". Dans l'exemple suivant, il est possible d'exploiter cette mauvaise configuration pour créer et exécuter un conteneur avec la capacité **SYS_MODULE** :
(Info de [**ici**](https://medium.com/swlh/kubernetes-attack-path-part-2-post-initial-access-1e27aabda36d)) Dans le conteneur, un attaquant peut tenter d'obtenir un accès supplémentaire au système d'exploitation hôte sous-jacent via un volume hostPath inscriptible créé par le cluster. Voici quelques éléments courants que vous pouvez vérifier dans le conteneur pour voir si vous exploitez ce vecteur d'attaque :
Il ne s'agit pas d'une technique pour s'échapper d'un conteneur Docker, mais d'une fonctionnalité de sécurité que Docker utilise et que vous devriez connaître car elle pourrait vous empêcher de vous échapper de Docker :
Il ne s'agit pas d'une technique pour s'échapper d'un conteneur Docker, mais d'une fonctionnalité de sécurité que Docker utilise et que vous devriez connaître car elle pourrait vous empêcher de vous échapper de Docker :
Un plugin d'autorisation **approuve** ou **refuse** les **demandes** au démon Docker en fonction du contexte d'**authentification** actuel et du contexte de **commande**. Le contexte d'**authentification** contient tous les **détails de l'utilisateur** et la **méthode d'authentification**. Le contexte de **commande** contient toutes les données de **demande****pertinentes**.
**gVisor** est un noyau d'application, écrit en Go, qui implémente une partie substantielle de la surface du système Linux. Il comprend un runtime [Open Container Initiative (OCI)](https://www.opencontainers.org) appelé `runsc` qui fournit une **frontière d'isolation entre l'application et le noyau hôte**. Le runtime `runsc` s'intègre à Docker et Kubernetes, ce qui permet de lancer facilement des conteneurs sandbox.
**Kata Containers** est une communauté open source travaillant à la construction d'un runtime de conteneur sécurisé avec des machines virtuelles légères qui se comportent et fonctionnent comme des conteneurs, mais qui offrent une **isolation de charge de travail plus forte en utilisant la technologie de virtualisation matérielle** comme deuxième couche de défense.
Docker restreint et limite les conteneurs par défaut. Assouplir ces restrictions peut créer des problèmes de sécurité, même sans la pleine puissance du drapeau `--privileged`. Il est important de reconnaître l'impact de chaque permission supplémentaire et de limiter les autorisations globales au minimum nécessaire.
* Ne pas utiliser le drapeau `--privileged` ou monter un [socket Docker à l'intérieur du conteneur](https://raesene.github.io/blog/2016/03/06/The-Dangers-Of-Docker.sock/). Le socket Docker permet de lancer des conteneurs, il est donc facile de prendre le contrôle total de l'hôte, par exemple en exécutant un autre conteneur avec le drapeau `--privileged`.
* Ne pas exécuter en tant que root à l'intérieur du conteneur. Utiliser un [utilisateur différent](https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#user) ou des [espaces de noms utilisateur](https://docs.docker.com/engine/security/userns-remap/). Le root dans le conteneur est le même que sur l'hôte sauf s'il est remappé avec des espaces de noms utilisateur. Il est seulement légèrement restreint par, principalement, les espaces de noms Linux, les capacités et les cgroups.
* [Supprimer toutes les capacités](https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities) (`--cap-drop=all`) et n'activer que celles qui sont nécessaires (`--cap-add=...`). Beaucoup de charges de travail n'ont besoin d'aucune capacité et leur ajout augmente la portée d'une attaque potentielle.
* [Utiliser l'option de sécurité "no-new-privileges"](https://raesene.github.io/blog/2019/06/01/docker-capabilities-and-no-new-privs/) pour empêcher les processus de gagner plus de privilèges, par exemple via des binaires suid.
* [Limiter les ressources disponibles pour le conteneur](https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources). Les limites de ressources peuvent protéger la machine contre les attaques de déni de service.
* Ajuster les profils [seccomp](https://docs.docker.com/engine/security/seccomp/), [AppArmor](https://docs.docker.com/engine/security/apparmor/) (ou SELinux) pour restreindre les actions et les appels système disponibles pour le conteneur au minimum requis.
* Utiliser des [images Docker officielles](https://docs.docker.com/docker-hub/official_images/) ou construire les vôtres en vous basant sur elles. Ne pas hériter ou utiliser des images [compromises](https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/).
* Reconstruire régulièrement vos images pour appliquer les correctifs de sécurité. Cela va sans dire.
- Travaillez-vous dans une **entreprise de cybersécurité** ? Voulez-vous voir votre **entreprise annoncée dans HackTricks** ? ou voulez-vous avoir accès à la **dernière version de PEASS ou télécharger HackTricks en PDF** ? Consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop) !
- **Rejoignez le** [**💬**](https://emojipedia.org/speech-balloon/) [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe telegram**](https://t.me/peass) ou **suivez** moi sur **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks_live)**.**
- **Partagez vos astuces de piratage en soumettant des PR au [repo hacktricks](https://github.com/carlospolop/hacktricks) et au [repo hacktricks-cloud](https://github.com/carlospolop/hacktricks-cloud)**.