hacktricks/binary-exploitation/basic-binary-exploitation-methodology/elf-tricks.md

390 lines
23 KiB
Markdown
Raw Normal View History

# Informacje podstawowe o ELF
<details>
<summary><strong>Naucz się hakować AWS od zera do bohatera z</strong> <a href="https://training.hacktricks.xyz/courses/arte"><strong>htARTE (HackTricks AWS Red Team Expert)</strong></a><strong>!</strong></summary>
* Czy pracujesz w **firmie z branży cyberbezpieczeństwa**? Chcesz zobaczyć, jak Twoja **firma jest reklamowana na HackTricks**? lub chcesz mieć dostęp do **najnowszej wersji PEASS lub pobrać HackTricks w formacie PDF**? Sprawdź [**PLANY SUBSKRYPCYJNE**](https://github.com/sponsors/carlospolop)!
* Odkryj [**Rodzinę PEASS**](https://opensea.io/collection/the-peass-family), naszą kolekcję ekskluzywnych [**NFT**](https://opensea.io/collection/the-peass-family)
* Zdobądź [**oficjalne gadżety PEASS & HackTricks**](https://peass.creator-spring.com)
* **Dołącz do** [**💬**](https://emojipedia.org/speech-balloon/) [**grupy Discord**](https://discord.gg/hRep4RUj7f) lub [**grupy telegramowej**](https://t.me/peass) lub **śledź** mnie na **Twitterze** 🐦[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Podziel się swoimi sztuczkami hakerskimi, przesyłając PR-y do** [**repozytorium hacktricks**](https://github.com/carlospolop/hacktricks) **i** [**repozytorium hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).
</details>
## Nagłówki programu
Opisują one loaderowi, jak załadować **ELF** do pamięci:
```bash
readelf -lW lnstat
Elf file type is DYN (Position-Independent Executable file)
Entry point 0x1c00
There are 9 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000040 0x0000000000000040 0x0000000000000040 0x0001f8 0x0001f8 R 0x8
INTERP 0x000238 0x0000000000000238 0x0000000000000238 0x00001b 0x00001b R 0x1
[Requesting program interpreter: /lib/ld-linux-aarch64.so.1]
LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x003f7c 0x003f7c R E 0x10000
LOAD 0x00fc48 0x000000000001fc48 0x000000000001fc48 0x000528 0x001190 RW 0x10000
DYNAMIC 0x00fc58 0x000000000001fc58 0x000000000001fc58 0x000200 0x000200 RW 0x8
NOTE 0x000254 0x0000000000000254 0x0000000000000254 0x0000e0 0x0000e0 R 0x4
GNU_EH_FRAME 0x003610 0x0000000000003610 0x0000000000003610 0x0001b4 0x0001b4 R 0x4
GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 0x000000 0x000000 RW 0x10
GNU_RELRO 0x00fc48 0x000000000001fc48 0x000000000001fc48 0x0003b8 0x0003b8 R 0x1
Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.gnu.build-id .note.ABI-tag .note.package .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame
03 .init_array .fini_array .dynamic .got .data .bss
04 .dynamic
05 .note.gnu.build-id .note.ABI-tag .note.package
06 .eh_frame_hdr
07
08 .init_array .fini_array .dynamic .got
```
Poprzedni program ma **9 nagłówków programu**, następnie **mapowanie segmentów** wskazuje, w którym nagłówku programu (od 00 do 08) **znajduje się każda sekcja**.
### PHDR - Nagłówek programu
Zawiera tabele nagłówków programów oraz same metadane.
### INTERP
Wskazuje ścieżkę do ładowacza, który ma załadować binarny plik do pamięci.
### LOAD
Te nagłówki służą do wskazania, **jak załadować binarny plik do pamięci**.\
Każdy nagłówek **LOAD** wskazuje obszar **pamięci** (rozmiar, uprawnienia i wyrównanie) oraz wskazuje bajty ELF **do skopiowania tam**.
Na przykład drugi ma rozmiar 0x1190, powinien znajdować się pod adresem 0x1fc48 z uprawnieniami do odczytu i zapisu oraz zostanie wypełniony wartościami 0x528 od przesunięcia 0xfc48 (nie wypełnia całej zarezerwowanej przestrzeni). Ta pamięć będzie zawierać sekcje `.init_array .fini_array .dynamic .got .data .bss`.
### DYNAMIC
Ten nagłówek pomaga łączyć programy z ich zależnościami bibliotecznymi i stosować relokacje. Sprawdź sekcję **`.dynamic`**.
### NOTE
Przechowuje informacje metadanych dostawcy o binarnym pliku.
### GNU\_EH\_FRAME
Definiuje lokalizację tabel odwijania stosu, używanych przez debuggery i funkcje obsługi wyjątków C++.
### GNU\_STACK
Zawiera konfigurację obrony przed wykonywaniem kodu ze stosu. Jeśli jest włączona, binarny plik nie będzie mógł wykonywać kodu ze stosu.
### GNU\_RELRO
Wskazuje konfigurację RELRO (Relocation Read-Only) binarnego pliku. Ta ochrona oznacza jako tylko do odczytu pewne sekcje pamięci (takie jak `GOT` lub tabele `init` i `fini`) po załadowaniu programu i przed jego uruchomieniem.
W poprzednim przykładzie kopiowanych jest 0x3b8 bajtów do 0x1fc48 jako tylko do odczytu, wpływając na sekcje `.init_array .fini_array .dynamic .got .data .bss`.
Zauważ, że RELRO może być częściowy lub pełny, wersja częściowa nie chroni sekcji **`.plt.got`**, która jest używana do **opóźnionego wiązania** i wymaga, aby ta przestrzeń pamięci miała **uprawnienia do zapisu**, aby zapisać adresy bibliotek za pierwszym razem, gdy ich lokalizacja jest wyszukiwana.
### TLS
Definiuje tabelę wpisów TLS, która przechowuje informacje o zmiennych lokalnych wątku.
## Nagłówki sekcji
Nagłówki sekcji dają bardziej szczegółowy widok binarnego pliku ELF.
```
objdump lnstat -h
lnstat: file format elf64-littleaarch64
Sections:
Idx Name Size VMA LMA File off Algn
0 .interp 0000001b 0000000000000238 0000000000000238 00000238 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA
1 .note.gnu.build-id 00000024 0000000000000254 0000000000000254 00000254 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .note.ABI-tag 00000020 0000000000000278 0000000000000278 00000278 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
3 .note.package 0000009c 0000000000000298 0000000000000298 00000298 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
4 .gnu.hash 0000001c 0000000000000338 0000000000000338 00000338 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
5 .dynsym 00000498 0000000000000358 0000000000000358 00000358 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
6 .dynstr 000001fe 00000000000007f0 00000000000007f0 000007f0 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA
7 .gnu.version 00000062 00000000000009ee 00000000000009ee 000009ee 2**1
CONTENTS, ALLOC, LOAD, READONLY, DATA
8 .gnu.version_r 00000050 0000000000000a50 0000000000000a50 00000a50 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
9 .rela.dyn 00000228 0000000000000aa0 0000000000000aa0 00000aa0 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
10 .rela.plt 000003c0 0000000000000cc8 0000000000000cc8 00000cc8 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
11 .init 00000018 0000000000001088 0000000000001088 00001088 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
12 .plt 000002a0 00000000000010a0 00000000000010a0 000010a0 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE
13 .text 00001c34 0000000000001340 0000000000001340 00001340 2**6
CONTENTS, ALLOC, LOAD, READONLY, CODE
14 .fini 00000014 0000000000002f74 0000000000002f74 00002f74 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
15 .rodata 00000686 0000000000002f88 0000000000002f88 00002f88 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
16 .eh_frame_hdr 000001b4 0000000000003610 0000000000003610 00003610 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
17 .eh_frame 000007b4 00000000000037c8 00000000000037c8 000037c8 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
18 .init_array 00000008 000000000001fc48 000000000001fc48 0000fc48 2**3
CONTENTS, ALLOC, LOAD, DATA
19 .fini_array 00000008 000000000001fc50 000000000001fc50 0000fc50 2**3
CONTENTS, ALLOC, LOAD, DATA
20 .dynamic 00000200 000000000001fc58 000000000001fc58 0000fc58 2**3
CONTENTS, ALLOC, LOAD, DATA
21 .got 000001a8 000000000001fe58 000000000001fe58 0000fe58 2**3
CONTENTS, ALLOC, LOAD, DATA
22 .data 00000170 0000000000020000 0000000000020000 00010000 2**3
CONTENTS, ALLOC, LOAD, DATA
23 .bss 00000c68 0000000000020170 0000000000020170 00010170 2**3
ALLOC
24 .gnu_debugaltlink 00000049 0000000000000000 0000000000000000 00010170 2**0
CONTENTS, READONLY
25 .gnu_debuglink 00000034 0000000000000000 0000000000000000 000101bc 2**2
CONTENTS, READONLY
```
### Sekcje metadanych
* **Tabela ciągów**: Zawiera wszystkie ciągi potrzebne przez plik ELF (ale nie te, które faktycznie są używane przez program). Na przykład zawiera nazwy sekcji takie jak `.text` lub `.data`. Jeśli sekcja `.text` znajduje się na przesunięciu 45 w tabeli ciągów, użyje liczby **45** w polu **nazwa**.
* Aby znaleźć, gdzie znajduje się tabela ciągów, ELF zawiera wskaźnik do tabeli ciągów.
* **Tabela symboli**: Zawiera informacje o symbolach, takie jak nazwa (przesunięcie w tabeli ciągów), adres, rozmiar i więcej metadanych o symbolu.
### Główne sekcje
* **`.text`**: Instrukcje programu do wykonania.
* **`.data`**: Zmienne globalne zdefiniowane wartością w programie.
* **`.bss`**: Zmienne globalne pozostawione niezainicjowane (lub zainicjowane na zero). Zmienne tutaj są automatycznie inicjowane na zero, zapobiegając tym samym dodawaniu niepotrzebnych zer do pliku binarnego.
* **`.rodata`**: Stałe zmienne globalne (sekcja tylko do odczytu).
* **`.tdata`** i **`.tbss`**: Podobne do .data i .bss, gdy używane są zmienne lokalne wątku (`__thread_local` w C++ lub `__thread` w).
* **`.dynamic`**: Patrz poniżej.
## Symbole
Symbole to nazwane lokalizacje w programie, które mogą być funkcją, globalnym obiektem danych, zmiennymi lokalnymi wątku...
```
readelf -s lnstat
Symbol table '.dynsym' contains 49 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000001088 0 SECTION LOCAL DEFAULT 12 .init
2: 0000000000020000 0 SECTION LOCAL DEFAULT 23 .data
3: 0000000000000000 0 FUNC GLOBAL DEFAULT UND strtok@GLIBC_2.17 (2)
4: 0000000000000000 0 FUNC GLOBAL DEFAULT UND s[...]@GLIBC_2.17 (2)
5: 0000000000000000 0 FUNC GLOBAL DEFAULT UND strlen@GLIBC_2.17 (2)
6: 0000000000000000 0 FUNC GLOBAL DEFAULT UND fputs@GLIBC_2.17 (2)
7: 0000000000000000 0 FUNC GLOBAL DEFAULT UND exit@GLIBC_2.17 (2)
8: 0000000000000000 0 FUNC GLOBAL DEFAULT UND _[...]@GLIBC_2.34 (3)
9: 0000000000000000 0 FUNC GLOBAL DEFAULT UND perror@GLIBC_2.17 (2)
10: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterT[...]
11: 0000000000000000 0 FUNC WEAK DEFAULT UND _[...]@GLIBC_2.17 (2)
12: 0000000000000000 0 FUNC GLOBAL DEFAULT UND putc@GLIBC_2.17 (2)
[...]
```
Każdy wpis symbolu zawiera:
- **Nazwę**
- **Atrybuty wiązania** (słabe, lokalne lub globalne): Symbol lokalny może być dostępny tylko przez program, podczas gdy symbole globalne są udostępniane poza programem. Obiekt słaby to na przykład funkcja, która może zostać zastąpiona inną.
- **Typ**: NOTYPE (brak określonego typu), OBJECT (zmienna danych globalnych), FUNC (funkcja), SECTION (sekcja), FILE (plik źródłowy dla debuggerów), TLS (zmienna lokalna wątku), GNU_IFUNC (funkcja pośrednia do relokacji)
- Indeks **sekcji**, w której się znajduje
- **Wartość** (adres w pamięci)
- **Rozmiar**
## Sekcja dynamiczna
```
readelf -d lnstat
Dynamic section at offset 0xfc58 contains 28 entries:
Tag Type Name/Value
0x0000000000000001 (NEEDED) Shared library: [libc.so.6]
0x0000000000000001 (NEEDED) Shared library: [ld-linux-aarch64.so.1]
0x000000000000000c (INIT) 0x1088
0x000000000000000d (FINI) 0x2f74
0x0000000000000019 (INIT_ARRAY) 0x1fc48
0x000000000000001b (INIT_ARRAYSZ) 8 (bytes)
0x000000000000001a (FINI_ARRAY) 0x1fc50
0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)
0x000000006ffffef5 (GNU_HASH) 0x338
0x0000000000000005 (STRTAB) 0x7f0
0x0000000000000006 (SYMTAB) 0x358
0x000000000000000a (STRSZ) 510 (bytes)
0x000000000000000b (SYMENT) 24 (bytes)
0x0000000000000015 (DEBUG) 0x0
0x0000000000000003 (PLTGOT) 0x1fe58
0x0000000000000002 (PLTRELSZ) 960 (bytes)
0x0000000000000014 (PLTREL) RELA
0x0000000000000017 (JMPREL) 0xcc8
0x0000000000000007 (RELA) 0xaa0
0x0000000000000008 (RELASZ) 552 (bytes)
0x0000000000000009 (RELAENT) 24 (bytes)
0x000000000000001e (FLAGS) BIND_NOW
0x000000006ffffffb (FLAGS_1) Flags: NOW PIE
0x000000006ffffffe (VERNEED) 0xa50
0x000000006fffffff (VERNEEDNUM) 2
0x000000006ffffff0 (VERSYM) 0x9ee
0x000000006ffffff9 (RELACOUNT) 15
0x0000000000000000 (NULL) 0x0
```
Katalog NEEDED wskazuje, że program **musi załadować wymienioną bibliotekę**, aby kontynuować. Katalog NEEDED zostaje uzupełniony, gdy współdzielona **biblioteka jest w pełni operacyjna i gotowa do użycia**.
## Przesunięcia
Ładowacz musi również przesunąć zależności po ich załadowaniu. Te przesunięcia są wskazane w tabeli przesunięć w formatach REL lub RELA, a liczba przesunięć jest podana w sekcjach dynamicznych RELSZ lub RELASZ.
```
readelf -r lnstat
Relocation section '.rela.dyn' at offset 0xaa0 contains 23 entries:
Offset Info Type Sym. Value Sym. Name + Addend
00000001fc48 000000000403 R_AARCH64_RELATIV 1d10
00000001fc50 000000000403 R_AARCH64_RELATIV 1cc0
00000001fff0 000000000403 R_AARCH64_RELATIV 1340
000000020008 000000000403 R_AARCH64_RELATIV 20008
000000020010 000000000403 R_AARCH64_RELATIV 3330
000000020030 000000000403 R_AARCH64_RELATIV 3338
000000020050 000000000403 R_AARCH64_RELATIV 3340
000000020070 000000000403 R_AARCH64_RELATIV 3348
000000020090 000000000403 R_AARCH64_RELATIV 3350
0000000200b0 000000000403 R_AARCH64_RELATIV 3358
0000000200d0 000000000403 R_AARCH64_RELATIV 3360
0000000200f0 000000000403 R_AARCH64_RELATIV 3370
000000020110 000000000403 R_AARCH64_RELATIV 3378
000000020130 000000000403 R_AARCH64_RELATIV 3380
000000020150 000000000403 R_AARCH64_RELATIV 3388
00000001ffb8 000a00000401 R_AARCH64_GLOB_DA 0000000000000000 _ITM_deregisterTM[...] + 0
00000001ffc0 000b00000401 R_AARCH64_GLOB_DA 0000000000000000 __cxa_finalize@GLIBC_2.17 + 0
00000001ffc8 000f00000401 R_AARCH64_GLOB_DA 0000000000000000 stderr@GLIBC_2.17 + 0
00000001ffd0 001000000401 R_AARCH64_GLOB_DA 0000000000000000 optarg@GLIBC_2.17 + 0
00000001ffd8 001400000401 R_AARCH64_GLOB_DA 0000000000000000 stdout@GLIBC_2.17 + 0
00000001ffe0 001e00000401 R_AARCH64_GLOB_DA 0000000000000000 __gmon_start__ + 0
00000001ffe8 001f00000401 R_AARCH64_GLOB_DA 0000000000000000 __stack_chk_guard@GLIBC_2.17 + 0
00000001fff8 002e00000401 R_AARCH64_GLOB_DA 0000000000000000 _ITM_registerTMCl[...] + 0
Relocation section '.rela.plt' at offset 0xcc8 contains 40 entries:
Offset Info Type Sym. Value Sym. Name + Addend
00000001fe70 000300000402 R_AARCH64_JUMP_SL 0000000000000000 strtok@GLIBC_2.17 + 0
00000001fe78 000400000402 R_AARCH64_JUMP_SL 0000000000000000 strtoul@GLIBC_2.17 + 0
00000001fe80 000500000402 R_AARCH64_JUMP_SL 0000000000000000 strlen@GLIBC_2.17 + 0
00000001fe88 000600000402 R_AARCH64_JUMP_SL 0000000000000000 fputs@GLIBC_2.17 + 0
00000001fe90 000700000402 R_AARCH64_JUMP_SL 0000000000000000 exit@GLIBC_2.17 + 0
00000001fe98 000800000402 R_AARCH64_JUMP_SL 0000000000000000 __libc_start_main@GLIBC_2.34 + 0
00000001fea0 000900000402 R_AARCH64_JUMP_SL 0000000000000000 perror@GLIBC_2.17 + 0
00000001fea8 000b00000402 R_AARCH64_JUMP_SL 0000000000000000 __cxa_finalize@GLIBC_2.17 + 0
00000001feb0 000c00000402 R_AARCH64_JUMP_SL 0000000000000000 putc@GLIBC_2.17 + 0
00000001feb8 000d00000402 R_AARCH64_JUMP_SL 0000000000000000 opendir@GLIBC_2.17 + 0
00000001fec0 000e00000402 R_AARCH64_JUMP_SL 0000000000000000 fputc@GLIBC_2.17 + 0
00000001fec8 001100000402 R_AARCH64_JUMP_SL 0000000000000000 snprintf@GLIBC_2.17 + 0
00000001fed0 001200000402 R_AARCH64_JUMP_SL 0000000000000000 __snprintf_chk@GLIBC_2.17 + 0
00000001fed8 001300000402 R_AARCH64_JUMP_SL 0000000000000000 malloc@GLIBC_2.17 + 0
00000001fee0 001500000402 R_AARCH64_JUMP_SL 0000000000000000 gettimeofday@GLIBC_2.17 + 0
00000001fee8 001600000402 R_AARCH64_JUMP_SL 0000000000000000 sleep@GLIBC_2.17 + 0
00000001fef0 001700000402 R_AARCH64_JUMP_SL 0000000000000000 __vfprintf_chk@GLIBC_2.17 + 0
00000001fef8 001800000402 R_AARCH64_JUMP_SL 0000000000000000 calloc@GLIBC_2.17 + 0
00000001ff00 001900000402 R_AARCH64_JUMP_SL 0000000000000000 rewind@GLIBC_2.17 + 0
00000001ff08 001a00000402 R_AARCH64_JUMP_SL 0000000000000000 strdup@GLIBC_2.17 + 0
00000001ff10 001b00000402 R_AARCH64_JUMP_SL 0000000000000000 closedir@GLIBC_2.17 + 0
00000001ff18 001c00000402 R_AARCH64_JUMP_SL 0000000000000000 __stack_chk_fail@GLIBC_2.17 + 0
00000001ff20 001d00000402 R_AARCH64_JUMP_SL 0000000000000000 strrchr@GLIBC_2.17 + 0
00000001ff28 001e00000402 R_AARCH64_JUMP_SL 0000000000000000 __gmon_start__ + 0
00000001ff30 002000000402 R_AARCH64_JUMP_SL 0000000000000000 abort@GLIBC_2.17 + 0
00000001ff38 002100000402 R_AARCH64_JUMP_SL 0000000000000000 feof@GLIBC_2.17 + 0
00000001ff40 002200000402 R_AARCH64_JUMP_SL 0000000000000000 getopt_long@GLIBC_2.17 + 0
00000001ff48 002300000402 R_AARCH64_JUMP_SL 0000000000000000 __fprintf_chk@GLIBC_2.17 + 0
00000001ff50 002400000402 R_AARCH64_JUMP_SL 0000000000000000 strcmp@GLIBC_2.17 + 0
00000001ff58 002500000402 R_AARCH64_JUMP_SL 0000000000000000 free@GLIBC_2.17 + 0
00000001ff60 002600000402 R_AARCH64_JUMP_SL 0000000000000000 readdir64@GLIBC_2.17 + 0
00000001ff68 002700000402 R_AARCH64_JUMP_SL 0000000000000000 strndup@GLIBC_2.17 + 0
00000001ff70 002800000402 R_AARCH64_JUMP_SL 0000000000000000 strchr@GLIBC_2.17 + 0
00000001ff78 002900000402 R_AARCH64_JUMP_SL 0000000000000000 fwrite@GLIBC_2.17 + 0
```plaintext
00000001ff80 002a00000402 R_AARCH64_JUMP_SL 0000000000000000 fflush@GLIBC_2.17 + 0
00000001ff88 002b00000402 R_AARCH64_JUMP_SL 0000000000000000 fopen64@GLIBC_2.17 + 0
00000001ff90 002c00000402 R_AARCH64_JUMP_SL 0000000000000000 __isoc99_sscanf@GLIBC_2.17 + 0
00000001ff98 002d00000402 R_AARCH64_JUMP_SL 0000000000000000 strncpy@GLIBC_2.17 + 0
00000001ffa0 002f00000402 R_AARCH64_JUMP_SL 0000000000000000 __assert_fail@GLIBC_2.17 + 0
00000001ffa8 003000000402 R_AARCH64_JUMP_SL 0000000000000000 fgets@GLIBC_2.17 + 0
```
### Statyczne przemieszczenia
Jeśli **program jest załadowany w innym miejscu** niż preferowany adres (zwykle 0x400000) z powodu zajęcia adresu lub z powodu **ASLR** lub innych powodów, statyczne przemieszczenie **poprawia wskaźniki**, które miały wartości oczekujące, że binarny zostanie załadowany w preferowanym adresie.
Na przykład dowolna sekcja typu `R_AARCH64_RELATIV` powinna zmienić adres w przemieszczeniu plus wartość dodaną.
### Dynamiczne przemieszczenia i GOT
Przemieszczenie może również odnosić się do symbolu zewnętrznego (jak funkcja zależności). Na przykład funkcja malloc z libC. Wtedy, ładowacz podczas ładowania libC pod adresem sprawdzającym, gdzie jest załadowana funkcja malloc, zapisze ten adres w tabeli GOT (Global Offset Table) (wskazanej w tabeli przemieszczeń), gdzie powinien być określony adres malloc.
### Tabela łączenia procedur
Sekcja PLT pozwala na leniwe wiązanie, co oznacza, że rozwiązanie lokalizacji funkcji będzie wykonywane za pierwszym razem, gdy zostanie ona użyta.
Więc gdy program wywołuje malloc, faktycznie wywołuje odpowiadającą lokalizację `malloc` w PLT (`malloc@plt`). Za pierwszym razem, gdy jest wywoływana, rozwiązuje adres `malloc` i przechowuje go, więc następnym razem, gdy jest wywoływana malloc, używany jest ten adres zamiast kodu PLT.
## Inicjalizacja programu
Po załadowaniu programu nadszedł czas na jego uruchomienie. Jednak pierwszy kod, który jest uruchamiany, **nie zawsze jest funkcją `main`**. Dzieje się tak na przykład w C++, gdy **zmienna globalna jest obiektem klasy**, ten obiekt musi być **zainicjowany** **przed** uruchomieniem funkcji main, jak w:
```cpp
#include <stdio.h>
// g++ autoinit.cpp -o autoinit
class AutoInit {
public:
AutoInit() {
printf("Hello AutoInit!\n");
}
~AutoInit() {
printf("Goodbye AutoInit!\n");
}
};
AutoInit autoInit;
int main() {
printf("Main\n");
return 0;
}
```
Zauważ, że te zmienne globalne znajdują się w `.data` lub `.bss`, ale w listach `__CTOR_LIST__` i `__DTOR_LIST__` obiekty do zainicjowania i zniszczenia są przechowywane w celu śledzenia ich.
Z kodu C można uzyskać ten sam wynik, korzystając z rozszerzeń GNU:
```c
__attributte__((constructor)) //Add a constructor to execute before
__attributte__((destructor)) //Add to the destructor list
```
Z perspektywy kompilatora, aby wykonać te czynności przed i po wykonaniu funkcji `main`, można utworzyć funkcję `init` i funkcję `fini`, które będą odwoływane w sekcji dynamicznej jako **`INIT`** i **`FIN`** oraz umieszczone w sekcjach `init` i `fini` pliku ELF.
Inną opcją, jak wspomniano, jest odwołanie do list **`__CTOR_LIST__`** i **`__DTOR_LIST__** w wpisach **`INIT_ARRAY`** i **`FINI_ARRAY`** sekcji dynamicznej, a ich długość jest określana przez **`INIT_ARRAYSZ`** i **`FINI_ARRAYSZ`**. Każdy wpis to wskaźnik funkcji, który zostanie wywołany bez argumentów.
Ponadto możliwe jest posiadanie **`PREINIT_ARRAY`** z **wskaźnikami**, które zostaną wykonane **przed** wskaźnikami **`INIT_ARRAY`**.
### Kolejność inicjalizacji
1. Program jest wczytywany do pamięci, statyczne zmienne globalne są inicjowane w sekcji **`.data`**, a niezainicjowane są zerowane w sekcji **`.bss`**.
2. Wszystkie **zależności** programu lub bibliotek są **inicjowane**, a następnie wykonywane jest **dynamiczne łączenie**.
3. Wykonywane są funkcje **`PREINIT_ARRAY`**.
4. Wykonywane są funkcje **`INIT_ARRAY`**.
5. Jeśli istnieje wpis **`INIT`**, zostaje on wywołany.
6. Jeśli to biblioteka, dlopen kończy działanie tutaj, jeśli to program, nadszedł czas na wywołanie **prawdziwego punktu wejścia** (funkcji `main`).
## Pamięć lokalna wątku (TLS)
Są one definiowane za pomocą słowa kluczowego **`__thread_local`** w C++ lub rozszerzenia GNU **`__thread`**.
Każdy wątek będzie utrzymywał unikalne miejsce dla tej zmiennej, dzięki czemu tylko wątek może uzyskać dostęp do swojej zmiennej.
Gdy jest to używane, sekcje **`.tdata`** i **`.tbss`** są używane w pliku ELF. Są to odpowiedniki `.data` (zainicjowane) i `.bss` (niezainicjowane), ale dla TLS.
Każda zmienna ma wpis w nagłówku TLS określający rozmiar i przesunięcie TLS, czyli przesunięcie, które będzie używane w lokalnej przestrzeni danych wątku.
`__TLS_MODULE_BASE` to symbol używany do odwołania do bazowego adresu pamięci lokalnej wątku i wskazuje na obszar w pamięci zawierający wszystkie dane lokalne wątku modułu.