* **Pridružite se** 💬 [**Discord grupi**](https://discord.gg/hRep4RUj7f) ili [**telegram grupi**](https://t.me/peass) ili nas **pratite** na **Twitteru** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
Da bi se poboljšala efikasnost načina na koji su delovi memorije smešteni, svaki deo memorije nije samo u jednoj povezanoj listi, već postoje različite vrste. To su "bins" i postoji 5 vrsta "bins": [62](https://sourceware.org/git/gitweb.cgi?p=glibc.git;a=blob;f=malloc/malloc.c;h=6e766d11bc85b6480fa5c9f2a76559f8acf9deb5;hb=HEAD#l1407) mali "bins", 63 velika "bins", 1 nesortirani "bin", 10 brzih "bins" i 64 "tcache bins" po niti.
Početna adresa za svaki nesortirani, mali i veliki "bin" je unutar istog niza. Indeks 0 se ne koristi, 1 je nesortirani "bin", "bins" 2-64 su mali "bins" i "bins" 65-127 su veliki "bins".
Iako niti pokušavaju da imaju svoj sopstveni "heap" (videti [Arenas](bins-and-memory-allocations.md#arenas) i [Subheaps](bins-and-memory-allocations.md#subheaps)), postoji mogućnost da proces sa puno niti (kao što je veb server) **će deliti "heap" sa drugim nitima**. U tom slučaju, glavno rešenje je korišćenje **brava**, što može **znatno usporiti niti**.
Stoga, "tcache" je sličan brzom "binu" po niti na način da je to **jednostruko povezana lista** koja ne spaja delove memorije. Svaka nit ima **64 jednostruko povezana "tcache bins"**. Svaki "bin" može imati maksimalno [7 delova iste veličine](https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=2527e2504761744df2bdb1abdc02d936ff907ad2;hb=d5c3fafc4307c9b7a4c7d5cb381fcdbfad340bcc#l323) u rasponu od [24 do 1032B na 64-bitnim sistemima i 12 do 516B na 32-bitnim sistemima](https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=2527e2504761744df2bdb1abdc02d936ff907ad2;hb=d5c3fafc4307c9b7a4c7d5cb381fcdbfad340bcc#l315).
Kada nit oslobodi deo memorije, ako nije prevelik da bi bio dodeljen u "tcache" i odgovarajući "tcache bin" **nije pun** (već ima 7 delova), **biće dodeljen tamo**. Ako ne može ići u "tcache", moraće da sačeka da se "heap lock" oslobodi kako bi mogao da izvrši globalnu operaciju oslobađanja.
Kada se deo memorije dodeli, ako postoji slobodan deo potrebne veličine u **Tcache-u, biće korišćen**, ako ne, moraće da sačeka da se "heap lock" oslobodi kako bi mogao da pronađe jedan u globalnim "bins" ili da napravi novi.\
Postoji i optimizacija, u ovom slučaju, dok ima "heap lock", nit **će popuniti svoj Tcache sa delovima "heap" (7) tražene veličine**, tako da ako mu je potrebno više, moći će da ih pronađe u Tcache-u.
U sledećem kodu je moguće videti **maksimalne binove** i **delove po indeksu**, strukturu **`tcache_entry`** kreiranu da bi se izbeglo duplo oslobađanje i **`tcache_perthread_struct`**, strukturu koju svaka nit koristi da bi sačuvala adrese za svaki indeks bin-a.
Tcache ima nekoliko binova u zavisnosti od veličine, a početni pokazivači na **prvi blok svakog indeksa i količina blokova po indeksu se nalaze unutar bloka**. To znači da je moguće pronaći sve početne tačke tcache-a i količinu Tcache blokova lociranjem bloka sa ovim informacijama (obično prvi).
Brzi binovi su dizajnirani da **ubrzaju dodelu memorije za male blokove** čuvanjem nedavno oslobođenih blokova u strukturi sa brzim pristupom. Ovi binovi koriste pristup poslednji unutra, prvi napolje (LIFO) pristup, što znači da je **najskorije oslobođeni blok prvi** koji će biti ponovo korišćen kada postoji nova zahtev za alokacijom. Ovo ponašanje je korisno za brzinu, jer je brže ubaciti i ukloniti sa vrha steka (LIFO) u poređenju sa redom (FIFO).
Dodatno, **brzi binovi koriste jednostruko povezane liste**, a ne dvostruko povezane, što dodatno poboljšava brzinu. Pošto se blokovi u brzim binovima ne spajaju sa susedima, nema potrebe za složenom strukturom koja omogućava uklanjanje iz sredine. Jednostruko povezana lista je jednostavnija i brža za ove operacije.
U osnovi, ono što se dešava ovde je da je zaglavlje (pokazivač na prvi blok koji treba proveriti) uvek usmereno ka poslednjem oslobođenom bloku te veličine. Dakle:
* Kada se alocira novi blok te veličine, zaglavlje pokazuje na slobodan blok za korišćenje. Pošto ovaj slobodan blok pokazuje na sledeći koji treba koristiti, ova adresa je sačuvana u zaglavlju tako da sledeća alokacija zna gde da dobije dostupan blok
* Kada se blok oslobodi, slobodan blok će sačuvati adresu trenutno dostupnog bloka i adresa ovog novootvorenog bloka će biti stavljena u zaglavlje
Maksimalna veličina povezane liste je `0x80` i organizovane su tako da će blok veličine `0x20` biti u indeksu `0`, blok veličine `0x30` bi bio u indeksu `1`...
Blokovi u brzim binovima nisu označeni kao dostupni tako da se čuvaju kao blokovi brzih binova neko vreme umesto što bi mogli da se spoje sa drugim slobodnim blokovima koji ih okružuju.
Kompajlirajte i debagujte sa prekidnom tačkom u `ret` opkodu iz `main` funkcije. Zatim, pomoću `gef` alata možete videti da je tcache bin pun i da je jedan blok u brzom binu:
───────────────────────────────────────────────────────────────────────── Fastbins for arena at 0xfffff7f90b00 ─────────────────────────────────────────────────────────────────────────
Neuređena kanta je **keš** koji koristi menadžer hipa kako bi ubrzao dodelu memorije. Evo kako funkcioniše: Kada program oslobodi komad, i ako taj komad ne može biti dodeljen u tcache ili brzoj kanti i ne sudara se sa vršnim komadom, menadžer hipa ga ne stavlja odmah u određenu malu ili veliku kantu. Umesto toga, prvo pokušava da ga **spoji sa bilo kojim susednim slobodnim komadima** kako bi stvorio veći blok slobodne memorije. Zatim, smešta ovaj novi komad u opštu kantu nazvanu "neuređena kanta".
Kada program **zatraži memoriju**, menadžer hipa **proverava neuređenu kantu** da vidi da li postoji dovoljno veliki komad. Ako pronađe jedan, odmah ga koristi. Ako ne pronađe odgovarajući komad u neuređenoj kanti, premestiće sve komade sa ove liste u njihove odgovarajuće kante, bilo male ili velike, na osnovu njihove veličine.
Dakle, neuređena kanta je način da se ubrza dodela memorije brzim ponovnim korišćenjem nedavno oslobođene memorije i smanjenjem potrebe za dugotrajnim pretragama i spajanjima.
Imajte na umu da čak i ako su komadi različitih kategorija, ako dostupan komad sudara sa drugim dostupnim komadom (čak i ako su originalno pripadali različitim kantama), biće spojeni.
Primetite kako alociramo i oslobađamo 9 blokova iste veličine tako da **popunimo tcache** i osmi je smešten u unsorted bin jer je **prevelik za fastbin** i deveti nije oslobođen tako da deveti i osmi **ne budu spojeni sa vršnim blokom**.
Kompajlirajte ga i debagujte sa prekidnom tačkom u `ret` opcode-u iz `main` funkcije. Zatim sa `gef` možete videti da je tcache bin pun i da je jedan blok u unsorted binu:
───────────────────────────────────────────────────────────────────────── Fastbins for arena at 0xfffff7f90b00 ─────────────────────────────────────────────────────────────────────────
Fastbins[idx=0, size=0x20] 0x00
Fastbins[idx=1, size=0x30] 0x00
Fastbins[idx=2, size=0x40] 0x00
Fastbins[idx=3, size=0x50] 0x00
Fastbins[idx=4, size=0x60] 0x00
Fastbins[idx=5, size=0x70] 0x00
Fastbins[idx=6, size=0x80] 0x00
─────────────────────────────────────────────────────────────────────── Unsorted Bin for arena at 0xfffff7f90b00 ───────────────────────────────────────────────────────────────────────
Mali binovi su brži od velikih binova, ali sporiji od brzih binova.
Svaki bin od 62 će imati **blokove iste veličine**: 16, 24, ... (sa maksimalnom veličinom od 504 bajta u 32 bitnom i 1024 u 64 bitnom režimu). Ovo pomaže u brzini pronalaženja binova gde treba alocirati prostor i ubacivanju i uklanjanju unosa sa ovih lista.
Ovako se računa veličina malog bina prema indeksu bina:
* Najmanja veličina: 2\*4\*indeks (npr. indeks 5 -> 40)
* Najveća veličina: 2\*8\*indeks (npr. indeks 5 -> 80)
```c
// From https://github.com/bminor/glibc/blob/a07e000e82cb71238259e674529c37c12dc7d423/malloc/malloc.c#L1711
Primetite kako alociramo i oslobađamo 9 blokova iste veličine tako da **popunimo tcache** i osmi je smešten u unsorted bin jer je **prevelik za fastbin**, a deveti nije oslobođen tako da deveti i osmi **ne budu spojeni sa vršnim blokom**. Zatim alociramo veći blok od 0x110 što dovodi do toga da **blok u unsorted binu pređe u small bin**.
Kompajlirajte i debagujte sa prekidnom tačkom u `ret` opcode-u iz `main` funkcije. Zatim, pomoću `gef` alata možete videti da je tcache bin pun i da je jedan blok u small binu:
───────────────────────────────────────────────────────────────────────── Fastbins for arena at 0xfffff7f90b00 ─────────────────────────────────────────────────────────────────────────
Fastbins[idx=0, size=0x20] 0x00
Fastbins[idx=1, size=0x30] 0x00
Fastbins[idx=2, size=0x40] 0x00
Fastbins[idx=3, size=0x50] 0x00
Fastbins[idx=4, size=0x60] 0x00
Fastbins[idx=5, size=0x70] 0x00
Fastbins[idx=6, size=0x80] 0x00
─────────────────────────────────────────────────────────────────────── Unsorted Bin for arena at 0xfffff7f90b00 ───────────────────────────────────────────────────────────────────────
[+] Found 0 chunks in unsorted bin.
──────────────────────────────────────────────────────────────────────── Small Bins for arena at 0xfffff7f90b00 ────────────────────────────────────────────────────────────────────────
Za razliku od malih kanti, koje upravljaju komadićima fiksnih veličina, **svaka velika kanta obrađuje opseg veličina komadića**. Ovo je fleksibilnije, omogućavajući sistemu da se prilagodi **različitim veličinama** bez potrebe za posebnom kantom za svaku veličinu.
U alokatoru memorije, velike kante počinju tamo gde se završavaju male kante. Opsezi za velike kante postaju sve veći, što znači da prva kanta može obuhvatiti komadiće od 512 do 576 bajtova, dok sledeća obuhvata 576 do 640 bajtova. Ovaj obrazac se nastavlja, pri čemu najveća kanta sadrži sve komadiće iznad 1MB.
Velike kante sporije rade u poređenju sa malim kantama jer moraju **sortirati i pretraživati listu različitih veličina komadića kako bi pronašle najbolje odgovarajući** za alokaciju. Kada se komadić ubaci u veliku kantu, mora biti sortiran, a prilikom alokacije memorije, sistem mora pronaći odgovarajući komadić. Ovaj dodatni rad ih čini **sporijim**, ali budući da su velike alokacije manje uobičajene od malih, to je prihvatljiva trgovina.
Izvrše se 2 velike alokacije, zatim se jedna oslobađa (stavlja se u unsorted bin) i vrši se veća alokacija (premeštanje oslobođene u unsorted bin u large bin).
Kompajlirajte to i debagujte sa prekidnom tačkom u `ret` opcode-u iz `main` funkcije. Zatim, pomoću `gef` alata možete videti da je tcache bin pun i da je jedan chunk u large bin-u:
──────────────────────────────────────────────────────────────────────────────── Tcachebins for thread 1 ────────────────────────────────────────────────────────────────────────────────
All tcachebins are empty
───────────────────────────────────────────────────────────────────────── Fastbins for arena at 0xfffff7f90b00 ─────────────────────────────────────────────────────────────────────────
Fastbins[idx=0, size=0x20] 0x00
Fastbins[idx=1, size=0x30] 0x00
Fastbins[idx=2, size=0x40] 0x00
Fastbins[idx=3, size=0x50] 0x00
Fastbins[idx=4, size=0x60] 0x00
Fastbins[idx=5, size=0x70] 0x00
Fastbins[idx=6, size=0x80] 0x00
─────────────────────────────────────────────────────────────────────── Unsorted Bin for arena at 0xfffff7f90b00 ───────────────────────────────────────────────────────────────────────
[+] Found 0 chunks in unsorted bin.
──────────────────────────────────────────────────────────────────────── Small Bins for arena at 0xfffff7f90b00 ────────────────────────────────────────────────────────────────────────
[+] Found 0 chunks in 0 small non-empty bins.
──────────────────────────────────────────────────────────────────────── Large Bins for arena at 0xfffff7f90b00 ────────────────────────────────────────────────────────────────────────
Osnovno, ovo je deo koji sadrži sav trenutno dostupan heap. Kada se izvrši malloc, ako nema dostupnog slobodnog chunk-a za korišćenje, ovaj top chunk će smanjiti svoju veličinu pružajući potreban prostor. Pokazivač na Top Chunk se čuva u strukturi `malloc_state`.
Nakon kompajliranja i debagovanja sa prekidnom tačkom u `ret` opkodu `main` funkcije, primetio sam da je malloc vratio adresu `0xaaaaaaac12a0` i ovo su blokovi:
Chunk(addr=0xaaaaaaac1ae0, size=0x20530, flags=PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA) ← top chunk
```
Gde se može videti da je vrhunski blok na adresi `0xaaaaaaac1ae0`. To nije iznenađenje jer je poslednji alocirani blok bio na `0xaaaaaaac12a0` sa veličinom `0x410` i `0xaaaaaaac12a0 + 0x410 = 0xaaaaaaac1ae0`.\
Takođe je moguće videti dužinu vrhunskog bloka na njegovom zaglavlju bloka:
Kada se koristi malloc i deo je podeljen (na primer iz nesortirane kante ili iz vršnog bloka), deo koji je kreiran od preostalog dela podeljenog bloka naziva se Poslednji ostatak i njegov pokazivač se čuva u strukturi `malloc_state`.
Naučite i vežbajte hakovanje AWS:<imgsrc="/.gitbook/assets/arte.png"alt=""data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<imgsrc="/.gitbook/assets/arte.png"alt=""data-size="line">\
Naučite i vežbajte hakovanje GCP: <imgsrc="/.gitbook/assets/grte.png"alt=""data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<imgsrc="/.gitbook/assets/grte.png"alt=""data-size="line">](https://training.hacktricks.xyz/courses/grte)
* **Pridružite se** 💬 [**Discord grupi**](https://discord.gg/hRep4RUj7f) ili [**telegram grupi**](https://t.me/peass) ili nas **pratite** na **Twitteru** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**