mirror of
https://github.com/The-Art-of-Hacking/h4cker
synced 2024-11-21 18:33:03 +00:00
Create basic_openai_api.md
This commit is contained in:
parent
18ab8550b4
commit
a92d0d5ec8
1 changed files with 67 additions and 0 deletions
67
ai_research/labs/basic_openai_api.md
Normal file
67
ai_research/labs/basic_openai_api.md
Normal file
|
@ -0,0 +1,67 @@
|
|||
# Using the OpenAI API with Python
|
||||
|
||||
### Step 1: Setting Up the Environment
|
||||
|
||||
1. **Install Python**: Make sure you have Python 3.x installed. You can download it from the [official website](https://www.python.org/).
|
||||
2. **Set Up a Virtual Environment** (optional but recommended):
|
||||
```bash
|
||||
python3 -m venv openai-lab-env
|
||||
source openai-lab-env/bin/activate # On Windows, use `openai-lab-env\Scripts\activate`
|
||||
```
|
||||
3. **Install Necessary Packages**:
|
||||
```bash
|
||||
pip3 install openai requests
|
||||
```
|
||||
|
||||
### Step 2: Configuring API Credentials
|
||||
|
||||
4. **Register on OpenAI**:
|
||||
- Go to the [OpenAI website](https://www.openai.com/) and register to obtain API credentials.
|
||||
|
||||
5. **Configure API Credentials**:
|
||||
- Store your API credentials securely, possibly using environment variables. In your terminal, you can set it up using the following command (replace `your_api_key_here` with your actual API key):
|
||||
```bash
|
||||
export OPENAI_API_KEY=your_api_key_here
|
||||
```
|
||||
|
||||
### Step 3: Making API Calls
|
||||
|
||||
6. **Create a Python Script**:
|
||||
- Create a new Python script (let’s name it `openai_lab.py`) and open it in a text editor.
|
||||
|
||||
7. **Import Necessary Libraries**:
|
||||
```python
|
||||
import openai
|
||||
openai.api_key = 'your_api_key_here' # Alternatively, use the environment variable to store the API key
|
||||
```
|
||||
|
||||
8. **Make a Simple API Call**:
|
||||
```python
|
||||
# Generate the AI response using the GPT-3.5 model (16k)
|
||||
# https://beta.openai.com/docs/api-reference/create-completion
|
||||
response = openai.ChatCompletion.create(
|
||||
model="gpt-3.5-turbo-16k",
|
||||
messages=prompt,
|
||||
max_tokens=15000
|
||||
)
|
||||
|
||||
# print the AI response
|
||||
print(response.choices[0].message.content)
|
||||
```
|
||||
|
||||
### Step 4: Experimenting with the API
|
||||
|
||||
9. **Experiment with Different Parameters**:
|
||||
- Modify the `max_tokens`, `temperature`, and `top_p` parameters and observe how the responses change.
|
||||
|
||||
10. **Handle API Responses**:
|
||||
- Learn how to handle API responses and extract the required information.
|
||||
|
||||
### Step 5: Building a Simple Application
|
||||
|
||||
11. **Develop a Simple Application**:
|
||||
- Create a more complex script that could function as a Q&A system or a content generation tool. You can use [the "Article Generator" example](https://github.com/The-Art-of-Hacking/h4cker/blob/master/ai_research/ML_Fundamentals/ai_generated/article_generator.py) we discussed during class for reference.
|
||||
|
||||
12. **Testing Your Application**:
|
||||
- Run various tests to ensure the functionality and robustness of your application.
|
||||
|
Loading…
Reference in a new issue