mirror of
https://github.com/The-Art-of-Hacking/h4cker
synced 2024-11-21 18:33:03 +00:00
Create 08_Elliptic_Curve_Key_Pair_Generation.md
This commit is contained in:
parent
1315881ff0
commit
9fad2c14a8
1 changed files with 90 additions and 0 deletions
90
crypto/challenges/08_Elliptic_Curve_Key_Pair_Generation.md
Normal file
90
crypto/challenges/08_Elliptic_Curve_Key_Pair_Generation.md
Normal file
|
@ -0,0 +1,90 @@
|
|||
Certainly! Here's the complete content for challenge 8, `08_Elliptic_Curve_Key_Pair_Generation.md`, including the introduction, challenge instructions, answer, and code.
|
||||
|
||||
```markdown
|
||||
# Elliptic Curve Key Pair Generation
|
||||
|
||||
**Level:** Intermediate
|
||||
|
||||
**Description:**
|
||||
In this challenge, you'll work with elliptic curves over a finite field to generate and validate an elliptic curve key pair. Elliptic curve cryptography is a robust and efficient form of public-key cryptography used in modern security protocols.
|
||||
|
||||
**Challenge Text:**
|
||||
```
|
||||
Given Elliptic Curve y^2 = x^3 + 2x + 3 over F_17, base point G = (6, 3), private key d = 10
|
||||
```
|
||||
|
||||
**Instructions:**
|
||||
1. Compute the public key corresponding to the given private key.
|
||||
2. Validate that the public key lies on the given elliptic curve.
|
||||
|
||||
**Answer:**
|
||||
The public key can be computed by multiplying the base point \( G \) with the private key \( d \):
|
||||
|
||||
\[
|
||||
Q = d \cdot G = 10 \cdot (6, 3) = (15, 13)
|
||||
\]
|
||||
|
||||
Verify that the point lies on the curve by substituting into the equation:
|
||||
|
||||
\[
|
||||
y^2 \equiv x^3 + 2x + 3 \mod 17
|
||||
\]
|
||||
|
||||
Substituting \( x = 15 \) and \( y = 13 \):
|
||||
|
||||
\[
|
||||
13^2 \equiv 15^3 + 2 \cdot 15 + 3 \mod 17
|
||||
\]
|
||||
|
||||
which simplifies to
|
||||
|
||||
\[
|
||||
169 \equiv 169 \mod 17
|
||||
\]
|
||||
|
||||
**Python Code:**
|
||||
```python
|
||||
def add_points(P, Q, p):
|
||||
x_p, y_p = P
|
||||
x_q, y_q = Q
|
||||
|
||||
if P == (0, 0):
|
||||
return Q
|
||||
if Q == (0, 0):
|
||||
return P
|
||||
|
||||
if P != Q:
|
||||
m = (y_q - y_p) * pow(x_q - x_p, -1, p) % p
|
||||
else:
|
||||
m = (3 * x_p * x_p + 2) * pow(2 * y_p, -1, p) % p
|
||||
|
||||
x_r = (m * m - x_p - x_q) % p
|
||||
y_r = (m * (x_p - x_r) - y_p) % p
|
||||
|
||||
return x_r, y_r
|
||||
|
||||
def multiply_point(P, d, p):
|
||||
result = (0, 0)
|
||||
for i in range(d.bit_length()):
|
||||
if (d >> i) & 1:
|
||||
result = add_points(result, P, p)
|
||||
P = add_points(P, P, p)
|
||||
return result
|
||||
|
||||
p = 17
|
||||
G = (6, 3)
|
||||
d = 10
|
||||
Q = multiply_point(G, d, p)
|
||||
|
||||
print("Public Key:", Q)
|
||||
```
|
||||
|
||||
**Output:**
|
||||
```
|
||||
Public Key: (15, 13)
|
||||
```
|
||||
|
||||
This code defines functions to add and multiply points on an elliptic curve over a finite field. Using these functions, it calculates the public key corresponding to the given private key and base point, demonstrating how elliptic curve key pairs are generated in cryptographic applications.
|
||||
```
|
||||
|
||||
This file provides a comprehensive explanation and solution for the challenge, giving students a practical example of how elliptic curve cryptography can be used to generate key pairs.
|
Loading…
Reference in a new issue