mirror of
https://github.com/superseriousbusiness/gotosocial
synced 2024-12-23 11:13:12 +00:00
5446 lines
146 KiB
Go
5446 lines
146 KiB
Go
// Inferno utils/6l/span.c
|
|
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/span.c
|
|
//
|
|
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
|
|
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
|
|
// Portions Copyright © 1997-1999 Vita Nuova Limited
|
|
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
|
|
// Portions Copyright © 2004,2006 Bruce Ellis
|
|
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
|
|
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
|
|
// Portions Copyright © 2009 The Go Authors. All rights reserved.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
|
|
package x86
|
|
|
|
import (
|
|
"github.com/twitchyliquid64/golang-asm/obj"
|
|
"github.com/twitchyliquid64/golang-asm/objabi"
|
|
"github.com/twitchyliquid64/golang-asm/sys"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"log"
|
|
"strings"
|
|
)
|
|
|
|
var (
|
|
plan9privates *obj.LSym
|
|
deferreturn *obj.LSym
|
|
)
|
|
|
|
// Instruction layout.
|
|
|
|
// Loop alignment constants:
|
|
// want to align loop entry to loopAlign-byte boundary,
|
|
// and willing to insert at most maxLoopPad bytes of NOP to do so.
|
|
// We define a loop entry as the target of a backward jump.
|
|
//
|
|
// gcc uses maxLoopPad = 10 for its 'generic x86-64' config,
|
|
// and it aligns all jump targets, not just backward jump targets.
|
|
//
|
|
// As of 6/1/2012, the effect of setting maxLoopPad = 10 here
|
|
// is very slight but negative, so the alignment is disabled by
|
|
// setting MaxLoopPad = 0. The code is here for reference and
|
|
// for future experiments.
|
|
//
|
|
const (
|
|
loopAlign = 16
|
|
maxLoopPad = 0
|
|
)
|
|
|
|
// Bit flags that are used to express jump target properties.
|
|
const (
|
|
// branchBackwards marks targets that are located behind.
|
|
// Used to express jumps to loop headers.
|
|
branchBackwards = (1 << iota)
|
|
// branchShort marks branches those target is close,
|
|
// with offset is in -128..127 range.
|
|
branchShort
|
|
// branchLoopHead marks loop entry.
|
|
// Used to insert padding for misaligned loops.
|
|
branchLoopHead
|
|
)
|
|
|
|
// opBytes holds optab encoding bytes.
|
|
// Each ytab reserves fixed amount of bytes in this array.
|
|
//
|
|
// The size should be the minimal number of bytes that
|
|
// are enough to hold biggest optab op lines.
|
|
type opBytes [31]uint8
|
|
|
|
type Optab struct {
|
|
as obj.As
|
|
ytab []ytab
|
|
prefix uint8
|
|
op opBytes
|
|
}
|
|
|
|
type movtab struct {
|
|
as obj.As
|
|
ft uint8
|
|
f3t uint8
|
|
tt uint8
|
|
code uint8
|
|
op [4]uint8
|
|
}
|
|
|
|
const (
|
|
Yxxx = iota
|
|
Ynone
|
|
Yi0 // $0
|
|
Yi1 // $1
|
|
Yu2 // $x, x fits in uint2
|
|
Yi8 // $x, x fits in int8
|
|
Yu8 // $x, x fits in uint8
|
|
Yu7 // $x, x in 0..127 (fits in both int8 and uint8)
|
|
Ys32
|
|
Yi32
|
|
Yi64
|
|
Yiauto
|
|
Yal
|
|
Ycl
|
|
Yax
|
|
Ycx
|
|
Yrb
|
|
Yrl
|
|
Yrl32 // Yrl on 32-bit system
|
|
Yrf
|
|
Yf0
|
|
Yrx
|
|
Ymb
|
|
Yml
|
|
Ym
|
|
Ybr
|
|
Ycs
|
|
Yss
|
|
Yds
|
|
Yes
|
|
Yfs
|
|
Ygs
|
|
Ygdtr
|
|
Yidtr
|
|
Yldtr
|
|
Ymsw
|
|
Ytask
|
|
Ycr0
|
|
Ycr1
|
|
Ycr2
|
|
Ycr3
|
|
Ycr4
|
|
Ycr5
|
|
Ycr6
|
|
Ycr7
|
|
Ycr8
|
|
Ydr0
|
|
Ydr1
|
|
Ydr2
|
|
Ydr3
|
|
Ydr4
|
|
Ydr5
|
|
Ydr6
|
|
Ydr7
|
|
Ytr0
|
|
Ytr1
|
|
Ytr2
|
|
Ytr3
|
|
Ytr4
|
|
Ytr5
|
|
Ytr6
|
|
Ytr7
|
|
Ymr
|
|
Ymm
|
|
Yxr0 // X0 only. "<XMM0>" notation in Intel manual.
|
|
YxrEvexMulti4 // [ X<n> - X<n+3> ]; multisource YxrEvex
|
|
Yxr // X0..X15
|
|
YxrEvex // X0..X31
|
|
Yxm
|
|
YxmEvex // YxrEvex+Ym
|
|
Yxvm // VSIB vector array; vm32x/vm64x
|
|
YxvmEvex // Yxvm which permits High-16 X register as index.
|
|
YyrEvexMulti4 // [ Y<n> - Y<n+3> ]; multisource YyrEvex
|
|
Yyr // Y0..Y15
|
|
YyrEvex // Y0..Y31
|
|
Yym
|
|
YymEvex // YyrEvex+Ym
|
|
Yyvm // VSIB vector array; vm32y/vm64y
|
|
YyvmEvex // Yyvm which permits High-16 Y register as index.
|
|
YzrMulti4 // [ Z<n> - Z<n+3> ]; multisource YzrEvex
|
|
Yzr // Z0..Z31
|
|
Yzm // Yzr+Ym
|
|
Yzvm // VSIB vector array; vm32z/vm64z
|
|
Yk0 // K0
|
|
Yknot0 // K1..K7; write mask
|
|
Yk // K0..K7; used for KOP
|
|
Ykm // Yk+Ym; used for KOP
|
|
Ytls
|
|
Ytextsize
|
|
Yindir
|
|
Ymax
|
|
)
|
|
|
|
const (
|
|
Zxxx = iota
|
|
Zlit
|
|
Zlitm_r
|
|
Zlitr_m
|
|
Zlit_m_r
|
|
Z_rp
|
|
Zbr
|
|
Zcall
|
|
Zcallcon
|
|
Zcallduff
|
|
Zcallind
|
|
Zcallindreg
|
|
Zib_
|
|
Zib_rp
|
|
Zibo_m
|
|
Zibo_m_xm
|
|
Zil_
|
|
Zil_rp
|
|
Ziq_rp
|
|
Zilo_m
|
|
Zjmp
|
|
Zjmpcon
|
|
Zloop
|
|
Zo_iw
|
|
Zm_o
|
|
Zm_r
|
|
Z_m_r
|
|
Zm2_r
|
|
Zm_r_xm
|
|
Zm_r_i_xm
|
|
Zm_r_xm_nr
|
|
Zr_m_xm_nr
|
|
Zibm_r // mmx1,mmx2/mem64,imm8
|
|
Zibr_m
|
|
Zmb_r
|
|
Zaut_r
|
|
Zo_m
|
|
Zo_m64
|
|
Zpseudo
|
|
Zr_m
|
|
Zr_m_xm
|
|
Zrp_
|
|
Z_ib
|
|
Z_il
|
|
Zm_ibo
|
|
Zm_ilo
|
|
Zib_rr
|
|
Zil_rr
|
|
Zbyte
|
|
|
|
Zvex_rm_v_r
|
|
Zvex_rm_v_ro
|
|
Zvex_r_v_rm
|
|
Zvex_i_rm_vo
|
|
Zvex_v_rm_r
|
|
Zvex_i_rm_r
|
|
Zvex_i_r_v
|
|
Zvex_i_rm_v_r
|
|
Zvex
|
|
Zvex_rm_r_vo
|
|
Zvex_i_r_rm
|
|
Zvex_hr_rm_v_r
|
|
|
|
Zevex_first
|
|
Zevex_i_r_k_rm
|
|
Zevex_i_r_rm
|
|
Zevex_i_rm_k_r
|
|
Zevex_i_rm_k_vo
|
|
Zevex_i_rm_r
|
|
Zevex_i_rm_v_k_r
|
|
Zevex_i_rm_v_r
|
|
Zevex_i_rm_vo
|
|
Zevex_k_rmo
|
|
Zevex_r_k_rm
|
|
Zevex_r_v_k_rm
|
|
Zevex_r_v_rm
|
|
Zevex_rm_k_r
|
|
Zevex_rm_v_k_r
|
|
Zevex_rm_v_r
|
|
Zevex_last
|
|
|
|
Zmax
|
|
)
|
|
|
|
const (
|
|
Px = 0
|
|
Px1 = 1 // symbolic; exact value doesn't matter
|
|
P32 = 0x32 // 32-bit only
|
|
Pe = 0x66 // operand escape
|
|
Pm = 0x0f // 2byte opcode escape
|
|
Pq = 0xff // both escapes: 66 0f
|
|
Pb = 0xfe // byte operands
|
|
Pf2 = 0xf2 // xmm escape 1: f2 0f
|
|
Pf3 = 0xf3 // xmm escape 2: f3 0f
|
|
Pef3 = 0xf5 // xmm escape 2 with 16-bit prefix: 66 f3 0f
|
|
Pq3 = 0x67 // xmm escape 3: 66 48 0f
|
|
Pq4 = 0x68 // xmm escape 4: 66 0F 38
|
|
Pq4w = 0x69 // Pq4 with Rex.w 66 0F 38
|
|
Pq5 = 0x6a // xmm escape 5: F3 0F 38
|
|
Pq5w = 0x6b // Pq5 with Rex.w F3 0F 38
|
|
Pfw = 0xf4 // Pf3 with Rex.w: f3 48 0f
|
|
Pw = 0x48 // Rex.w
|
|
Pw8 = 0x90 // symbolic; exact value doesn't matter
|
|
Py = 0x80 // defaults to 64-bit mode
|
|
Py1 = 0x81 // symbolic; exact value doesn't matter
|
|
Py3 = 0x83 // symbolic; exact value doesn't matter
|
|
Pavx = 0x84 // symbolic: exact value doesn't matter
|
|
|
|
RxrEvex = 1 << 4 // AVX512 extension to REX.R/VEX.R
|
|
Rxw = 1 << 3 // =1, 64-bit operand size
|
|
Rxr = 1 << 2 // extend modrm reg
|
|
Rxx = 1 << 1 // extend sib index
|
|
Rxb = 1 << 0 // extend modrm r/m, sib base, or opcode reg
|
|
)
|
|
|
|
const (
|
|
// Encoding for VEX prefix in tables.
|
|
// The P, L, and W fields are chosen to match
|
|
// their eventual locations in the VEX prefix bytes.
|
|
|
|
// Encoding for VEX prefix in tables.
|
|
// The P, L, and W fields are chosen to match
|
|
// their eventual locations in the VEX prefix bytes.
|
|
|
|
// Using spare bit to make leading [E]VEX encoding byte different from
|
|
// 0x0f even if all other VEX fields are 0.
|
|
avxEscape = 1 << 6
|
|
|
|
// P field - 2 bits
|
|
vex66 = 1 << 0
|
|
vexF3 = 2 << 0
|
|
vexF2 = 3 << 0
|
|
// L field - 1 bit
|
|
vexLZ = 0 << 2
|
|
vexLIG = 0 << 2
|
|
vex128 = 0 << 2
|
|
vex256 = 1 << 2
|
|
// W field - 1 bit
|
|
vexWIG = 0 << 7
|
|
vexW0 = 0 << 7
|
|
vexW1 = 1 << 7
|
|
// M field - 5 bits, but mostly reserved; we can store up to 3
|
|
vex0F = 1 << 3
|
|
vex0F38 = 2 << 3
|
|
vex0F3A = 3 << 3
|
|
)
|
|
|
|
var ycover [Ymax * Ymax]uint8
|
|
|
|
var reg [MAXREG]int
|
|
|
|
var regrex [MAXREG + 1]int
|
|
|
|
var ynone = []ytab{
|
|
{Zlit, 1, argList{}},
|
|
}
|
|
|
|
var ytext = []ytab{
|
|
{Zpseudo, 0, argList{Ymb, Ytextsize}},
|
|
{Zpseudo, 1, argList{Ymb, Yi32, Ytextsize}},
|
|
}
|
|
|
|
var ynop = []ytab{
|
|
{Zpseudo, 0, argList{}},
|
|
{Zpseudo, 0, argList{Yiauto}},
|
|
{Zpseudo, 0, argList{Yml}},
|
|
{Zpseudo, 0, argList{Yrf}},
|
|
{Zpseudo, 0, argList{Yxr}},
|
|
{Zpseudo, 0, argList{Yiauto}},
|
|
{Zpseudo, 0, argList{Yml}},
|
|
{Zpseudo, 0, argList{Yrf}},
|
|
{Zpseudo, 1, argList{Yxr}},
|
|
}
|
|
|
|
var yfuncdata = []ytab{
|
|
{Zpseudo, 0, argList{Yi32, Ym}},
|
|
}
|
|
|
|
var ypcdata = []ytab{
|
|
{Zpseudo, 0, argList{Yi32, Yi32}},
|
|
}
|
|
|
|
var yxorb = []ytab{
|
|
{Zib_, 1, argList{Yi32, Yal}},
|
|
{Zibo_m, 2, argList{Yi32, Ymb}},
|
|
{Zr_m, 1, argList{Yrb, Ymb}},
|
|
{Zm_r, 1, argList{Ymb, Yrb}},
|
|
}
|
|
|
|
var yaddl = []ytab{
|
|
{Zibo_m, 2, argList{Yi8, Yml}},
|
|
{Zil_, 1, argList{Yi32, Yax}},
|
|
{Zilo_m, 2, argList{Yi32, Yml}},
|
|
{Zr_m, 1, argList{Yrl, Yml}},
|
|
{Zm_r, 1, argList{Yml, Yrl}},
|
|
}
|
|
|
|
var yincl = []ytab{
|
|
{Z_rp, 1, argList{Yrl}},
|
|
{Zo_m, 2, argList{Yml}},
|
|
}
|
|
|
|
var yincq = []ytab{
|
|
{Zo_m, 2, argList{Yml}},
|
|
}
|
|
|
|
var ycmpb = []ytab{
|
|
{Z_ib, 1, argList{Yal, Yi32}},
|
|
{Zm_ibo, 2, argList{Ymb, Yi32}},
|
|
{Zm_r, 1, argList{Ymb, Yrb}},
|
|
{Zr_m, 1, argList{Yrb, Ymb}},
|
|
}
|
|
|
|
var ycmpl = []ytab{
|
|
{Zm_ibo, 2, argList{Yml, Yi8}},
|
|
{Z_il, 1, argList{Yax, Yi32}},
|
|
{Zm_ilo, 2, argList{Yml, Yi32}},
|
|
{Zm_r, 1, argList{Yml, Yrl}},
|
|
{Zr_m, 1, argList{Yrl, Yml}},
|
|
}
|
|
|
|
var yshb = []ytab{
|
|
{Zo_m, 2, argList{Yi1, Ymb}},
|
|
{Zibo_m, 2, argList{Yu8, Ymb}},
|
|
{Zo_m, 2, argList{Ycx, Ymb}},
|
|
}
|
|
|
|
var yshl = []ytab{
|
|
{Zo_m, 2, argList{Yi1, Yml}},
|
|
{Zibo_m, 2, argList{Yu8, Yml}},
|
|
{Zo_m, 2, argList{Ycl, Yml}},
|
|
{Zo_m, 2, argList{Ycx, Yml}},
|
|
}
|
|
|
|
var ytestl = []ytab{
|
|
{Zil_, 1, argList{Yi32, Yax}},
|
|
{Zilo_m, 2, argList{Yi32, Yml}},
|
|
{Zr_m, 1, argList{Yrl, Yml}},
|
|
{Zm_r, 1, argList{Yml, Yrl}},
|
|
}
|
|
|
|
var ymovb = []ytab{
|
|
{Zr_m, 1, argList{Yrb, Ymb}},
|
|
{Zm_r, 1, argList{Ymb, Yrb}},
|
|
{Zib_rp, 1, argList{Yi32, Yrb}},
|
|
{Zibo_m, 2, argList{Yi32, Ymb}},
|
|
}
|
|
|
|
var ybtl = []ytab{
|
|
{Zibo_m, 2, argList{Yi8, Yml}},
|
|
{Zr_m, 1, argList{Yrl, Yml}},
|
|
}
|
|
|
|
var ymovw = []ytab{
|
|
{Zr_m, 1, argList{Yrl, Yml}},
|
|
{Zm_r, 1, argList{Yml, Yrl}},
|
|
{Zil_rp, 1, argList{Yi32, Yrl}},
|
|
{Zilo_m, 2, argList{Yi32, Yml}},
|
|
{Zaut_r, 2, argList{Yiauto, Yrl}},
|
|
}
|
|
|
|
var ymovl = []ytab{
|
|
{Zr_m, 1, argList{Yrl, Yml}},
|
|
{Zm_r, 1, argList{Yml, Yrl}},
|
|
{Zil_rp, 1, argList{Yi32, Yrl}},
|
|
{Zilo_m, 2, argList{Yi32, Yml}},
|
|
{Zm_r_xm, 1, argList{Yml, Ymr}}, // MMX MOVD
|
|
{Zr_m_xm, 1, argList{Ymr, Yml}}, // MMX MOVD
|
|
{Zm_r_xm, 2, argList{Yml, Yxr}}, // XMM MOVD (32 bit)
|
|
{Zr_m_xm, 2, argList{Yxr, Yml}}, // XMM MOVD (32 bit)
|
|
{Zaut_r, 2, argList{Yiauto, Yrl}},
|
|
}
|
|
|
|
var yret = []ytab{
|
|
{Zo_iw, 1, argList{}},
|
|
{Zo_iw, 1, argList{Yi32}},
|
|
}
|
|
|
|
var ymovq = []ytab{
|
|
// valid in 32-bit mode
|
|
{Zm_r_xm_nr, 1, argList{Ym, Ymr}}, // 0x6f MMX MOVQ (shorter encoding)
|
|
{Zr_m_xm_nr, 1, argList{Ymr, Ym}}, // 0x7f MMX MOVQ
|
|
{Zm_r_xm_nr, 2, argList{Yxr, Ymr}}, // Pf2, 0xd6 MOVDQ2Q
|
|
{Zm_r_xm_nr, 2, argList{Yxm, Yxr}}, // Pf3, 0x7e MOVQ xmm1/m64 -> xmm2
|
|
{Zr_m_xm_nr, 2, argList{Yxr, Yxm}}, // Pe, 0xd6 MOVQ xmm1 -> xmm2/m64
|
|
|
|
// valid only in 64-bit mode, usually with 64-bit prefix
|
|
{Zr_m, 1, argList{Yrl, Yml}}, // 0x89
|
|
{Zm_r, 1, argList{Yml, Yrl}}, // 0x8b
|
|
{Zilo_m, 2, argList{Ys32, Yrl}}, // 32 bit signed 0xc7,(0)
|
|
{Ziq_rp, 1, argList{Yi64, Yrl}}, // 0xb8 -- 32/64 bit immediate
|
|
{Zilo_m, 2, argList{Yi32, Yml}}, // 0xc7,(0)
|
|
{Zm_r_xm, 1, argList{Ymm, Ymr}}, // 0x6e MMX MOVD
|
|
{Zr_m_xm, 1, argList{Ymr, Ymm}}, // 0x7e MMX MOVD
|
|
{Zm_r_xm, 2, argList{Yml, Yxr}}, // Pe, 0x6e MOVD xmm load
|
|
{Zr_m_xm, 2, argList{Yxr, Yml}}, // Pe, 0x7e MOVD xmm store
|
|
{Zaut_r, 1, argList{Yiauto, Yrl}}, // 0 built-in LEAQ
|
|
}
|
|
|
|
var ymovbe = []ytab{
|
|
{Zlitm_r, 3, argList{Ym, Yrl}},
|
|
{Zlitr_m, 3, argList{Yrl, Ym}},
|
|
}
|
|
|
|
var ym_rl = []ytab{
|
|
{Zm_r, 1, argList{Ym, Yrl}},
|
|
}
|
|
|
|
var yrl_m = []ytab{
|
|
{Zr_m, 1, argList{Yrl, Ym}},
|
|
}
|
|
|
|
var ymb_rl = []ytab{
|
|
{Zmb_r, 1, argList{Ymb, Yrl}},
|
|
}
|
|
|
|
var yml_rl = []ytab{
|
|
{Zm_r, 1, argList{Yml, Yrl}},
|
|
}
|
|
|
|
var yrl_ml = []ytab{
|
|
{Zr_m, 1, argList{Yrl, Yml}},
|
|
}
|
|
|
|
var yml_mb = []ytab{
|
|
{Zr_m, 1, argList{Yrb, Ymb}},
|
|
{Zm_r, 1, argList{Ymb, Yrb}},
|
|
}
|
|
|
|
var yrb_mb = []ytab{
|
|
{Zr_m, 1, argList{Yrb, Ymb}},
|
|
}
|
|
|
|
var yxchg = []ytab{
|
|
{Z_rp, 1, argList{Yax, Yrl}},
|
|
{Zrp_, 1, argList{Yrl, Yax}},
|
|
{Zr_m, 1, argList{Yrl, Yml}},
|
|
{Zm_r, 1, argList{Yml, Yrl}},
|
|
}
|
|
|
|
var ydivl = []ytab{
|
|
{Zm_o, 2, argList{Yml}},
|
|
}
|
|
|
|
var ydivb = []ytab{
|
|
{Zm_o, 2, argList{Ymb}},
|
|
}
|
|
|
|
var yimul = []ytab{
|
|
{Zm_o, 2, argList{Yml}},
|
|
{Zib_rr, 1, argList{Yi8, Yrl}},
|
|
{Zil_rr, 1, argList{Yi32, Yrl}},
|
|
{Zm_r, 2, argList{Yml, Yrl}},
|
|
}
|
|
|
|
var yimul3 = []ytab{
|
|
{Zibm_r, 2, argList{Yi8, Yml, Yrl}},
|
|
{Zibm_r, 2, argList{Yi32, Yml, Yrl}},
|
|
}
|
|
|
|
var ybyte = []ytab{
|
|
{Zbyte, 1, argList{Yi64}},
|
|
}
|
|
|
|
var yin = []ytab{
|
|
{Zib_, 1, argList{Yi32}},
|
|
{Zlit, 1, argList{}},
|
|
}
|
|
|
|
var yint = []ytab{
|
|
{Zib_, 1, argList{Yi32}},
|
|
}
|
|
|
|
var ypushl = []ytab{
|
|
{Zrp_, 1, argList{Yrl}},
|
|
{Zm_o, 2, argList{Ym}},
|
|
{Zib_, 1, argList{Yi8}},
|
|
{Zil_, 1, argList{Yi32}},
|
|
}
|
|
|
|
var ypopl = []ytab{
|
|
{Z_rp, 1, argList{Yrl}},
|
|
{Zo_m, 2, argList{Ym}},
|
|
}
|
|
|
|
var ywrfsbase = []ytab{
|
|
{Zm_o, 2, argList{Yrl}},
|
|
}
|
|
|
|
var yrdrand = []ytab{
|
|
{Zo_m, 2, argList{Yrl}},
|
|
}
|
|
|
|
var yclflush = []ytab{
|
|
{Zo_m, 2, argList{Ym}},
|
|
}
|
|
|
|
var ybswap = []ytab{
|
|
{Z_rp, 2, argList{Yrl}},
|
|
}
|
|
|
|
var yscond = []ytab{
|
|
{Zo_m, 2, argList{Ymb}},
|
|
}
|
|
|
|
var yjcond = []ytab{
|
|
{Zbr, 0, argList{Ybr}},
|
|
{Zbr, 0, argList{Yi0, Ybr}},
|
|
{Zbr, 1, argList{Yi1, Ybr}},
|
|
}
|
|
|
|
var yloop = []ytab{
|
|
{Zloop, 1, argList{Ybr}},
|
|
}
|
|
|
|
var ycall = []ytab{
|
|
{Zcallindreg, 0, argList{Yml}},
|
|
{Zcallindreg, 2, argList{Yrx, Yrx}},
|
|
{Zcallind, 2, argList{Yindir}},
|
|
{Zcall, 0, argList{Ybr}},
|
|
{Zcallcon, 1, argList{Yi32}},
|
|
}
|
|
|
|
var yduff = []ytab{
|
|
{Zcallduff, 1, argList{Yi32}},
|
|
}
|
|
|
|
var yjmp = []ytab{
|
|
{Zo_m64, 2, argList{Yml}},
|
|
{Zjmp, 0, argList{Ybr}},
|
|
{Zjmpcon, 1, argList{Yi32}},
|
|
}
|
|
|
|
var yfmvd = []ytab{
|
|
{Zm_o, 2, argList{Ym, Yf0}},
|
|
{Zo_m, 2, argList{Yf0, Ym}},
|
|
{Zm_o, 2, argList{Yrf, Yf0}},
|
|
{Zo_m, 2, argList{Yf0, Yrf}},
|
|
}
|
|
|
|
var yfmvdp = []ytab{
|
|
{Zo_m, 2, argList{Yf0, Ym}},
|
|
{Zo_m, 2, argList{Yf0, Yrf}},
|
|
}
|
|
|
|
var yfmvf = []ytab{
|
|
{Zm_o, 2, argList{Ym, Yf0}},
|
|
{Zo_m, 2, argList{Yf0, Ym}},
|
|
}
|
|
|
|
var yfmvx = []ytab{
|
|
{Zm_o, 2, argList{Ym, Yf0}},
|
|
}
|
|
|
|
var yfmvp = []ytab{
|
|
{Zo_m, 2, argList{Yf0, Ym}},
|
|
}
|
|
|
|
var yfcmv = []ytab{
|
|
{Zm_o, 2, argList{Yrf, Yf0}},
|
|
}
|
|
|
|
var yfadd = []ytab{
|
|
{Zm_o, 2, argList{Ym, Yf0}},
|
|
{Zm_o, 2, argList{Yrf, Yf0}},
|
|
{Zo_m, 2, argList{Yf0, Yrf}},
|
|
}
|
|
|
|
var yfxch = []ytab{
|
|
{Zo_m, 2, argList{Yf0, Yrf}},
|
|
{Zm_o, 2, argList{Yrf, Yf0}},
|
|
}
|
|
|
|
var ycompp = []ytab{
|
|
{Zo_m, 2, argList{Yf0, Yrf}}, // botch is really f0,f1
|
|
}
|
|
|
|
var ystsw = []ytab{
|
|
{Zo_m, 2, argList{Ym}},
|
|
{Zlit, 1, argList{Yax}},
|
|
}
|
|
|
|
var ysvrs_mo = []ytab{
|
|
{Zm_o, 2, argList{Ym}},
|
|
}
|
|
|
|
// unaryDst version of "ysvrs_mo".
|
|
var ysvrs_om = []ytab{
|
|
{Zo_m, 2, argList{Ym}},
|
|
}
|
|
|
|
var ymm = []ytab{
|
|
{Zm_r_xm, 1, argList{Ymm, Ymr}},
|
|
{Zm_r_xm, 2, argList{Yxm, Yxr}},
|
|
}
|
|
|
|
var yxm = []ytab{
|
|
{Zm_r_xm, 1, argList{Yxm, Yxr}},
|
|
}
|
|
|
|
var yxm_q4 = []ytab{
|
|
{Zm_r, 1, argList{Yxm, Yxr}},
|
|
}
|
|
|
|
var yxcvm1 = []ytab{
|
|
{Zm_r_xm, 2, argList{Yxm, Yxr}},
|
|
{Zm_r_xm, 2, argList{Yxm, Ymr}},
|
|
}
|
|
|
|
var yxcvm2 = []ytab{
|
|
{Zm_r_xm, 2, argList{Yxm, Yxr}},
|
|
{Zm_r_xm, 2, argList{Ymm, Yxr}},
|
|
}
|
|
|
|
var yxr = []ytab{
|
|
{Zm_r_xm, 1, argList{Yxr, Yxr}},
|
|
}
|
|
|
|
var yxr_ml = []ytab{
|
|
{Zr_m_xm, 1, argList{Yxr, Yml}},
|
|
}
|
|
|
|
var ymr = []ytab{
|
|
{Zm_r, 1, argList{Ymr, Ymr}},
|
|
}
|
|
|
|
var ymr_ml = []ytab{
|
|
{Zr_m_xm, 1, argList{Ymr, Yml}},
|
|
}
|
|
|
|
var yxcmpi = []ytab{
|
|
{Zm_r_i_xm, 2, argList{Yxm, Yxr, Yi8}},
|
|
}
|
|
|
|
var yxmov = []ytab{
|
|
{Zm_r_xm, 1, argList{Yxm, Yxr}},
|
|
{Zr_m_xm, 1, argList{Yxr, Yxm}},
|
|
}
|
|
|
|
var yxcvfl = []ytab{
|
|
{Zm_r_xm, 1, argList{Yxm, Yrl}},
|
|
}
|
|
|
|
var yxcvlf = []ytab{
|
|
{Zm_r_xm, 1, argList{Yml, Yxr}},
|
|
}
|
|
|
|
var yxcvfq = []ytab{
|
|
{Zm_r_xm, 2, argList{Yxm, Yrl}},
|
|
}
|
|
|
|
var yxcvqf = []ytab{
|
|
{Zm_r_xm, 2, argList{Yml, Yxr}},
|
|
}
|
|
|
|
var yps = []ytab{
|
|
{Zm_r_xm, 1, argList{Ymm, Ymr}},
|
|
{Zibo_m_xm, 2, argList{Yi8, Ymr}},
|
|
{Zm_r_xm, 2, argList{Yxm, Yxr}},
|
|
{Zibo_m_xm, 3, argList{Yi8, Yxr}},
|
|
}
|
|
|
|
var yxrrl = []ytab{
|
|
{Zm_r, 1, argList{Yxr, Yrl}},
|
|
}
|
|
|
|
var ymrxr = []ytab{
|
|
{Zm_r, 1, argList{Ymr, Yxr}},
|
|
{Zm_r_xm, 1, argList{Yxm, Yxr}},
|
|
}
|
|
|
|
var ymshuf = []ytab{
|
|
{Zibm_r, 2, argList{Yi8, Ymm, Ymr}},
|
|
}
|
|
|
|
var ymshufb = []ytab{
|
|
{Zm2_r, 2, argList{Yxm, Yxr}},
|
|
}
|
|
|
|
// It should never have more than 1 entry,
|
|
// because some optab entries you opcode secuences that
|
|
// are longer than 2 bytes (zoffset=2 here),
|
|
// ROUNDPD and ROUNDPS and recently added BLENDPD,
|
|
// to name a few.
|
|
var yxshuf = []ytab{
|
|
{Zibm_r, 2, argList{Yu8, Yxm, Yxr}},
|
|
}
|
|
|
|
var yextrw = []ytab{
|
|
{Zibm_r, 2, argList{Yu8, Yxr, Yrl}},
|
|
{Zibr_m, 2, argList{Yu8, Yxr, Yml}},
|
|
}
|
|
|
|
var yextr = []ytab{
|
|
{Zibr_m, 3, argList{Yu8, Yxr, Ymm}},
|
|
}
|
|
|
|
var yinsrw = []ytab{
|
|
{Zibm_r, 2, argList{Yu8, Yml, Yxr}},
|
|
}
|
|
|
|
var yinsr = []ytab{
|
|
{Zibm_r, 3, argList{Yu8, Ymm, Yxr}},
|
|
}
|
|
|
|
var ypsdq = []ytab{
|
|
{Zibo_m, 2, argList{Yi8, Yxr}},
|
|
}
|
|
|
|
var ymskb = []ytab{
|
|
{Zm_r_xm, 2, argList{Yxr, Yrl}},
|
|
{Zm_r_xm, 1, argList{Ymr, Yrl}},
|
|
}
|
|
|
|
var ycrc32l = []ytab{
|
|
{Zlitm_r, 0, argList{Yml, Yrl}},
|
|
}
|
|
|
|
var ycrc32b = []ytab{
|
|
{Zlitm_r, 0, argList{Ymb, Yrl}},
|
|
}
|
|
|
|
var yprefetch = []ytab{
|
|
{Zm_o, 2, argList{Ym}},
|
|
}
|
|
|
|
var yaes = []ytab{
|
|
{Zlitm_r, 2, argList{Yxm, Yxr}},
|
|
}
|
|
|
|
var yxbegin = []ytab{
|
|
{Zjmp, 1, argList{Ybr}},
|
|
}
|
|
|
|
var yxabort = []ytab{
|
|
{Zib_, 1, argList{Yu8}},
|
|
}
|
|
|
|
var ylddqu = []ytab{
|
|
{Zm_r, 1, argList{Ym, Yxr}},
|
|
}
|
|
|
|
var ypalignr = []ytab{
|
|
{Zibm_r, 2, argList{Yu8, Yxm, Yxr}},
|
|
}
|
|
|
|
var ysha256rnds2 = []ytab{
|
|
{Zlit_m_r, 0, argList{Yxr0, Yxm, Yxr}},
|
|
}
|
|
|
|
var yblendvpd = []ytab{
|
|
{Z_m_r, 1, argList{Yxr0, Yxm, Yxr}},
|
|
}
|
|
|
|
var ymmxmm0f38 = []ytab{
|
|
{Zlitm_r, 3, argList{Ymm, Ymr}},
|
|
{Zlitm_r, 5, argList{Yxm, Yxr}},
|
|
}
|
|
|
|
var yextractps = []ytab{
|
|
{Zibr_m, 2, argList{Yu2, Yxr, Yml}},
|
|
}
|
|
|
|
var ysha1rnds4 = []ytab{
|
|
{Zibm_r, 2, argList{Yu2, Yxm, Yxr}},
|
|
}
|
|
|
|
// You are doasm, holding in your hand a *obj.Prog with p.As set to, say,
|
|
// ACRC32, and p.From and p.To as operands (obj.Addr). The linker scans optab
|
|
// to find the entry with the given p.As and then looks through the ytable for
|
|
// that instruction (the second field in the optab struct) for a line whose
|
|
// first two values match the Ytypes of the p.From and p.To operands. The
|
|
// function oclass computes the specific Ytype of an operand and then the set
|
|
// of more general Ytypes that it satisfies is implied by the ycover table, set
|
|
// up in instinit. For example, oclass distinguishes the constants 0 and 1
|
|
// from the more general 8-bit constants, but instinit says
|
|
//
|
|
// ycover[Yi0*Ymax+Ys32] = 1
|
|
// ycover[Yi1*Ymax+Ys32] = 1
|
|
// ycover[Yi8*Ymax+Ys32] = 1
|
|
//
|
|
// which means that Yi0, Yi1, and Yi8 all count as Ys32 (signed 32)
|
|
// if that's what an instruction can handle.
|
|
//
|
|
// In parallel with the scan through the ytable for the appropriate line, there
|
|
// is a z pointer that starts out pointing at the strange magic byte list in
|
|
// the Optab struct. With each step past a non-matching ytable line, z
|
|
// advances by the 4th entry in the line. When a matching line is found, that
|
|
// z pointer has the extra data to use in laying down the instruction bytes.
|
|
// The actual bytes laid down are a function of the 3rd entry in the line (that
|
|
// is, the Ztype) and the z bytes.
|
|
//
|
|
// For example, let's look at AADDL. The optab line says:
|
|
// {AADDL, yaddl, Px, opBytes{0x83, 00, 0x05, 0x81, 00, 0x01, 0x03}},
|
|
//
|
|
// and yaddl says
|
|
// var yaddl = []ytab{
|
|
// {Yi8, Ynone, Yml, Zibo_m, 2},
|
|
// {Yi32, Ynone, Yax, Zil_, 1},
|
|
// {Yi32, Ynone, Yml, Zilo_m, 2},
|
|
// {Yrl, Ynone, Yml, Zr_m, 1},
|
|
// {Yml, Ynone, Yrl, Zm_r, 1},
|
|
// }
|
|
//
|
|
// so there are 5 possible types of ADDL instruction that can be laid down, and
|
|
// possible states used to lay them down (Ztype and z pointer, assuming z
|
|
// points at opBytes{0x83, 00, 0x05,0x81, 00, 0x01, 0x03}) are:
|
|
//
|
|
// Yi8, Yml -> Zibo_m, z (0x83, 00)
|
|
// Yi32, Yax -> Zil_, z+2 (0x05)
|
|
// Yi32, Yml -> Zilo_m, z+2+1 (0x81, 0x00)
|
|
// Yrl, Yml -> Zr_m, z+2+1+2 (0x01)
|
|
// Yml, Yrl -> Zm_r, z+2+1+2+1 (0x03)
|
|
//
|
|
// The Pconstant in the optab line controls the prefix bytes to emit. That's
|
|
// relatively straightforward as this program goes.
|
|
//
|
|
// The switch on yt.zcase in doasm implements the various Z cases. Zibo_m, for
|
|
// example, is an opcode byte (z[0]) then an asmando (which is some kind of
|
|
// encoded addressing mode for the Yml arg), and then a single immediate byte.
|
|
// Zilo_m is the same but a long (32-bit) immediate.
|
|
var optab =
|
|
// as, ytab, andproto, opcode
|
|
[...]Optab{
|
|
{obj.AXXX, nil, 0, opBytes{}},
|
|
{AAAA, ynone, P32, opBytes{0x37}},
|
|
{AAAD, ynone, P32, opBytes{0xd5, 0x0a}},
|
|
{AAAM, ynone, P32, opBytes{0xd4, 0x0a}},
|
|
{AAAS, ynone, P32, opBytes{0x3f}},
|
|
{AADCB, yxorb, Pb, opBytes{0x14, 0x80, 02, 0x10, 0x12}},
|
|
{AADCL, yaddl, Px, opBytes{0x83, 02, 0x15, 0x81, 02, 0x11, 0x13}},
|
|
{AADCQ, yaddl, Pw, opBytes{0x83, 02, 0x15, 0x81, 02, 0x11, 0x13}},
|
|
{AADCW, yaddl, Pe, opBytes{0x83, 02, 0x15, 0x81, 02, 0x11, 0x13}},
|
|
{AADCXL, yml_rl, Pq4, opBytes{0xf6}},
|
|
{AADCXQ, yml_rl, Pq4w, opBytes{0xf6}},
|
|
{AADDB, yxorb, Pb, opBytes{0x04, 0x80, 00, 0x00, 0x02}},
|
|
{AADDL, yaddl, Px, opBytes{0x83, 00, 0x05, 0x81, 00, 0x01, 0x03}},
|
|
{AADDPD, yxm, Pq, opBytes{0x58}},
|
|
{AADDPS, yxm, Pm, opBytes{0x58}},
|
|
{AADDQ, yaddl, Pw, opBytes{0x83, 00, 0x05, 0x81, 00, 0x01, 0x03}},
|
|
{AADDSD, yxm, Pf2, opBytes{0x58}},
|
|
{AADDSS, yxm, Pf3, opBytes{0x58}},
|
|
{AADDSUBPD, yxm, Pq, opBytes{0xd0}},
|
|
{AADDSUBPS, yxm, Pf2, opBytes{0xd0}},
|
|
{AADDW, yaddl, Pe, opBytes{0x83, 00, 0x05, 0x81, 00, 0x01, 0x03}},
|
|
{AADOXL, yml_rl, Pq5, opBytes{0xf6}},
|
|
{AADOXQ, yml_rl, Pq5w, opBytes{0xf6}},
|
|
{AADJSP, nil, 0, opBytes{}},
|
|
{AANDB, yxorb, Pb, opBytes{0x24, 0x80, 04, 0x20, 0x22}},
|
|
{AANDL, yaddl, Px, opBytes{0x83, 04, 0x25, 0x81, 04, 0x21, 0x23}},
|
|
{AANDNPD, yxm, Pq, opBytes{0x55}},
|
|
{AANDNPS, yxm, Pm, opBytes{0x55}},
|
|
{AANDPD, yxm, Pq, opBytes{0x54}},
|
|
{AANDPS, yxm, Pm, opBytes{0x54}},
|
|
{AANDQ, yaddl, Pw, opBytes{0x83, 04, 0x25, 0x81, 04, 0x21, 0x23}},
|
|
{AANDW, yaddl, Pe, opBytes{0x83, 04, 0x25, 0x81, 04, 0x21, 0x23}},
|
|
{AARPL, yrl_ml, P32, opBytes{0x63}},
|
|
{ABOUNDL, yrl_m, P32, opBytes{0x62}},
|
|
{ABOUNDW, yrl_m, Pe, opBytes{0x62}},
|
|
{ABSFL, yml_rl, Pm, opBytes{0xbc}},
|
|
{ABSFQ, yml_rl, Pw, opBytes{0x0f, 0xbc}},
|
|
{ABSFW, yml_rl, Pq, opBytes{0xbc}},
|
|
{ABSRL, yml_rl, Pm, opBytes{0xbd}},
|
|
{ABSRQ, yml_rl, Pw, opBytes{0x0f, 0xbd}},
|
|
{ABSRW, yml_rl, Pq, opBytes{0xbd}},
|
|
{ABSWAPL, ybswap, Px, opBytes{0x0f, 0xc8}},
|
|
{ABSWAPQ, ybswap, Pw, opBytes{0x0f, 0xc8}},
|
|
{ABTCL, ybtl, Pm, opBytes{0xba, 07, 0xbb}},
|
|
{ABTCQ, ybtl, Pw, opBytes{0x0f, 0xba, 07, 0x0f, 0xbb}},
|
|
{ABTCW, ybtl, Pq, opBytes{0xba, 07, 0xbb}},
|
|
{ABTL, ybtl, Pm, opBytes{0xba, 04, 0xa3}},
|
|
{ABTQ, ybtl, Pw, opBytes{0x0f, 0xba, 04, 0x0f, 0xa3}},
|
|
{ABTRL, ybtl, Pm, opBytes{0xba, 06, 0xb3}},
|
|
{ABTRQ, ybtl, Pw, opBytes{0x0f, 0xba, 06, 0x0f, 0xb3}},
|
|
{ABTRW, ybtl, Pq, opBytes{0xba, 06, 0xb3}},
|
|
{ABTSL, ybtl, Pm, opBytes{0xba, 05, 0xab}},
|
|
{ABTSQ, ybtl, Pw, opBytes{0x0f, 0xba, 05, 0x0f, 0xab}},
|
|
{ABTSW, ybtl, Pq, opBytes{0xba, 05, 0xab}},
|
|
{ABTW, ybtl, Pq, opBytes{0xba, 04, 0xa3}},
|
|
{ABYTE, ybyte, Px, opBytes{1}},
|
|
{obj.ACALL, ycall, Px, opBytes{0xff, 02, 0xff, 0x15, 0xe8}},
|
|
{ACBW, ynone, Pe, opBytes{0x98}},
|
|
{ACDQ, ynone, Px, opBytes{0x99}},
|
|
{ACDQE, ynone, Pw, opBytes{0x98}},
|
|
{ACLAC, ynone, Pm, opBytes{01, 0xca}},
|
|
{ACLC, ynone, Px, opBytes{0xf8}},
|
|
{ACLD, ynone, Px, opBytes{0xfc}},
|
|
{ACLDEMOTE, yclflush, Pm, opBytes{0x1c, 00}},
|
|
{ACLFLUSH, yclflush, Pm, opBytes{0xae, 07}},
|
|
{ACLFLUSHOPT, yclflush, Pq, opBytes{0xae, 07}},
|
|
{ACLI, ynone, Px, opBytes{0xfa}},
|
|
{ACLTS, ynone, Pm, opBytes{0x06}},
|
|
{ACLWB, yclflush, Pq, opBytes{0xae, 06}},
|
|
{ACMC, ynone, Px, opBytes{0xf5}},
|
|
{ACMOVLCC, yml_rl, Pm, opBytes{0x43}},
|
|
{ACMOVLCS, yml_rl, Pm, opBytes{0x42}},
|
|
{ACMOVLEQ, yml_rl, Pm, opBytes{0x44}},
|
|
{ACMOVLGE, yml_rl, Pm, opBytes{0x4d}},
|
|
{ACMOVLGT, yml_rl, Pm, opBytes{0x4f}},
|
|
{ACMOVLHI, yml_rl, Pm, opBytes{0x47}},
|
|
{ACMOVLLE, yml_rl, Pm, opBytes{0x4e}},
|
|
{ACMOVLLS, yml_rl, Pm, opBytes{0x46}},
|
|
{ACMOVLLT, yml_rl, Pm, opBytes{0x4c}},
|
|
{ACMOVLMI, yml_rl, Pm, opBytes{0x48}},
|
|
{ACMOVLNE, yml_rl, Pm, opBytes{0x45}},
|
|
{ACMOVLOC, yml_rl, Pm, opBytes{0x41}},
|
|
{ACMOVLOS, yml_rl, Pm, opBytes{0x40}},
|
|
{ACMOVLPC, yml_rl, Pm, opBytes{0x4b}},
|
|
{ACMOVLPL, yml_rl, Pm, opBytes{0x49}},
|
|
{ACMOVLPS, yml_rl, Pm, opBytes{0x4a}},
|
|
{ACMOVQCC, yml_rl, Pw, opBytes{0x0f, 0x43}},
|
|
{ACMOVQCS, yml_rl, Pw, opBytes{0x0f, 0x42}},
|
|
{ACMOVQEQ, yml_rl, Pw, opBytes{0x0f, 0x44}},
|
|
{ACMOVQGE, yml_rl, Pw, opBytes{0x0f, 0x4d}},
|
|
{ACMOVQGT, yml_rl, Pw, opBytes{0x0f, 0x4f}},
|
|
{ACMOVQHI, yml_rl, Pw, opBytes{0x0f, 0x47}},
|
|
{ACMOVQLE, yml_rl, Pw, opBytes{0x0f, 0x4e}},
|
|
{ACMOVQLS, yml_rl, Pw, opBytes{0x0f, 0x46}},
|
|
{ACMOVQLT, yml_rl, Pw, opBytes{0x0f, 0x4c}},
|
|
{ACMOVQMI, yml_rl, Pw, opBytes{0x0f, 0x48}},
|
|
{ACMOVQNE, yml_rl, Pw, opBytes{0x0f, 0x45}},
|
|
{ACMOVQOC, yml_rl, Pw, opBytes{0x0f, 0x41}},
|
|
{ACMOVQOS, yml_rl, Pw, opBytes{0x0f, 0x40}},
|
|
{ACMOVQPC, yml_rl, Pw, opBytes{0x0f, 0x4b}},
|
|
{ACMOVQPL, yml_rl, Pw, opBytes{0x0f, 0x49}},
|
|
{ACMOVQPS, yml_rl, Pw, opBytes{0x0f, 0x4a}},
|
|
{ACMOVWCC, yml_rl, Pq, opBytes{0x43}},
|
|
{ACMOVWCS, yml_rl, Pq, opBytes{0x42}},
|
|
{ACMOVWEQ, yml_rl, Pq, opBytes{0x44}},
|
|
{ACMOVWGE, yml_rl, Pq, opBytes{0x4d}},
|
|
{ACMOVWGT, yml_rl, Pq, opBytes{0x4f}},
|
|
{ACMOVWHI, yml_rl, Pq, opBytes{0x47}},
|
|
{ACMOVWLE, yml_rl, Pq, opBytes{0x4e}},
|
|
{ACMOVWLS, yml_rl, Pq, opBytes{0x46}},
|
|
{ACMOVWLT, yml_rl, Pq, opBytes{0x4c}},
|
|
{ACMOVWMI, yml_rl, Pq, opBytes{0x48}},
|
|
{ACMOVWNE, yml_rl, Pq, opBytes{0x45}},
|
|
{ACMOVWOC, yml_rl, Pq, opBytes{0x41}},
|
|
{ACMOVWOS, yml_rl, Pq, opBytes{0x40}},
|
|
{ACMOVWPC, yml_rl, Pq, opBytes{0x4b}},
|
|
{ACMOVWPL, yml_rl, Pq, opBytes{0x49}},
|
|
{ACMOVWPS, yml_rl, Pq, opBytes{0x4a}},
|
|
{ACMPB, ycmpb, Pb, opBytes{0x3c, 0x80, 07, 0x38, 0x3a}},
|
|
{ACMPL, ycmpl, Px, opBytes{0x83, 07, 0x3d, 0x81, 07, 0x39, 0x3b}},
|
|
{ACMPPD, yxcmpi, Px, opBytes{Pe, 0xc2}},
|
|
{ACMPPS, yxcmpi, Pm, opBytes{0xc2, 0}},
|
|
{ACMPQ, ycmpl, Pw, opBytes{0x83, 07, 0x3d, 0x81, 07, 0x39, 0x3b}},
|
|
{ACMPSB, ynone, Pb, opBytes{0xa6}},
|
|
{ACMPSD, yxcmpi, Px, opBytes{Pf2, 0xc2}},
|
|
{ACMPSL, ynone, Px, opBytes{0xa7}},
|
|
{ACMPSQ, ynone, Pw, opBytes{0xa7}},
|
|
{ACMPSS, yxcmpi, Px, opBytes{Pf3, 0xc2}},
|
|
{ACMPSW, ynone, Pe, opBytes{0xa7}},
|
|
{ACMPW, ycmpl, Pe, opBytes{0x83, 07, 0x3d, 0x81, 07, 0x39, 0x3b}},
|
|
{ACOMISD, yxm, Pe, opBytes{0x2f}},
|
|
{ACOMISS, yxm, Pm, opBytes{0x2f}},
|
|
{ACPUID, ynone, Pm, opBytes{0xa2}},
|
|
{ACVTPL2PD, yxcvm2, Px, opBytes{Pf3, 0xe6, Pe, 0x2a}},
|
|
{ACVTPL2PS, yxcvm2, Pm, opBytes{0x5b, 0, 0x2a, 0}},
|
|
{ACVTPD2PL, yxcvm1, Px, opBytes{Pf2, 0xe6, Pe, 0x2d}},
|
|
{ACVTPD2PS, yxm, Pe, opBytes{0x5a}},
|
|
{ACVTPS2PL, yxcvm1, Px, opBytes{Pe, 0x5b, Pm, 0x2d}},
|
|
{ACVTPS2PD, yxm, Pm, opBytes{0x5a}},
|
|
{ACVTSD2SL, yxcvfl, Pf2, opBytes{0x2d}},
|
|
{ACVTSD2SQ, yxcvfq, Pw, opBytes{Pf2, 0x2d}},
|
|
{ACVTSD2SS, yxm, Pf2, opBytes{0x5a}},
|
|
{ACVTSL2SD, yxcvlf, Pf2, opBytes{0x2a}},
|
|
{ACVTSQ2SD, yxcvqf, Pw, opBytes{Pf2, 0x2a}},
|
|
{ACVTSL2SS, yxcvlf, Pf3, opBytes{0x2a}},
|
|
{ACVTSQ2SS, yxcvqf, Pw, opBytes{Pf3, 0x2a}},
|
|
{ACVTSS2SD, yxm, Pf3, opBytes{0x5a}},
|
|
{ACVTSS2SL, yxcvfl, Pf3, opBytes{0x2d}},
|
|
{ACVTSS2SQ, yxcvfq, Pw, opBytes{Pf3, 0x2d}},
|
|
{ACVTTPD2PL, yxcvm1, Px, opBytes{Pe, 0xe6, Pe, 0x2c}},
|
|
{ACVTTPS2PL, yxcvm1, Px, opBytes{Pf3, 0x5b, Pm, 0x2c}},
|
|
{ACVTTSD2SL, yxcvfl, Pf2, opBytes{0x2c}},
|
|
{ACVTTSD2SQ, yxcvfq, Pw, opBytes{Pf2, 0x2c}},
|
|
{ACVTTSS2SL, yxcvfl, Pf3, opBytes{0x2c}},
|
|
{ACVTTSS2SQ, yxcvfq, Pw, opBytes{Pf3, 0x2c}},
|
|
{ACWD, ynone, Pe, opBytes{0x99}},
|
|
{ACWDE, ynone, Px, opBytes{0x98}},
|
|
{ACQO, ynone, Pw, opBytes{0x99}},
|
|
{ADAA, ynone, P32, opBytes{0x27}},
|
|
{ADAS, ynone, P32, opBytes{0x2f}},
|
|
{ADECB, yscond, Pb, opBytes{0xfe, 01}},
|
|
{ADECL, yincl, Px1, opBytes{0x48, 0xff, 01}},
|
|
{ADECQ, yincq, Pw, opBytes{0xff, 01}},
|
|
{ADECW, yincq, Pe, opBytes{0xff, 01}},
|
|
{ADIVB, ydivb, Pb, opBytes{0xf6, 06}},
|
|
{ADIVL, ydivl, Px, opBytes{0xf7, 06}},
|
|
{ADIVPD, yxm, Pe, opBytes{0x5e}},
|
|
{ADIVPS, yxm, Pm, opBytes{0x5e}},
|
|
{ADIVQ, ydivl, Pw, opBytes{0xf7, 06}},
|
|
{ADIVSD, yxm, Pf2, opBytes{0x5e}},
|
|
{ADIVSS, yxm, Pf3, opBytes{0x5e}},
|
|
{ADIVW, ydivl, Pe, opBytes{0xf7, 06}},
|
|
{ADPPD, yxshuf, Pq, opBytes{0x3a, 0x41, 0}},
|
|
{ADPPS, yxshuf, Pq, opBytes{0x3a, 0x40, 0}},
|
|
{AEMMS, ynone, Pm, opBytes{0x77}},
|
|
{AEXTRACTPS, yextractps, Pq, opBytes{0x3a, 0x17, 0}},
|
|
{AENTER, nil, 0, opBytes{}}, // botch
|
|
{AFXRSTOR, ysvrs_mo, Pm, opBytes{0xae, 01, 0xae, 01}},
|
|
{AFXSAVE, ysvrs_om, Pm, opBytes{0xae, 00, 0xae, 00}},
|
|
{AFXRSTOR64, ysvrs_mo, Pw, opBytes{0x0f, 0xae, 01, 0x0f, 0xae, 01}},
|
|
{AFXSAVE64, ysvrs_om, Pw, opBytes{0x0f, 0xae, 00, 0x0f, 0xae, 00}},
|
|
{AHLT, ynone, Px, opBytes{0xf4}},
|
|
{AIDIVB, ydivb, Pb, opBytes{0xf6, 07}},
|
|
{AIDIVL, ydivl, Px, opBytes{0xf7, 07}},
|
|
{AIDIVQ, ydivl, Pw, opBytes{0xf7, 07}},
|
|
{AIDIVW, ydivl, Pe, opBytes{0xf7, 07}},
|
|
{AIMULB, ydivb, Pb, opBytes{0xf6, 05}},
|
|
{AIMULL, yimul, Px, opBytes{0xf7, 05, 0x6b, 0x69, Pm, 0xaf}},
|
|
{AIMULQ, yimul, Pw, opBytes{0xf7, 05, 0x6b, 0x69, Pm, 0xaf}},
|
|
{AIMULW, yimul, Pe, opBytes{0xf7, 05, 0x6b, 0x69, Pm, 0xaf}},
|
|
{AIMUL3W, yimul3, Pe, opBytes{0x6b, 00, 0x69, 00}},
|
|
{AIMUL3L, yimul3, Px, opBytes{0x6b, 00, 0x69, 00}},
|
|
{AIMUL3Q, yimul3, Pw, opBytes{0x6b, 00, 0x69, 00}},
|
|
{AINB, yin, Pb, opBytes{0xe4, 0xec}},
|
|
{AINW, yin, Pe, opBytes{0xe5, 0xed}},
|
|
{AINL, yin, Px, opBytes{0xe5, 0xed}},
|
|
{AINCB, yscond, Pb, opBytes{0xfe, 00}},
|
|
{AINCL, yincl, Px1, opBytes{0x40, 0xff, 00}},
|
|
{AINCQ, yincq, Pw, opBytes{0xff, 00}},
|
|
{AINCW, yincq, Pe, opBytes{0xff, 00}},
|
|
{AINSB, ynone, Pb, opBytes{0x6c}},
|
|
{AINSL, ynone, Px, opBytes{0x6d}},
|
|
{AINSERTPS, yxshuf, Pq, opBytes{0x3a, 0x21, 0}},
|
|
{AINSW, ynone, Pe, opBytes{0x6d}},
|
|
{AICEBP, ynone, Px, opBytes{0xf1}},
|
|
{AINT, yint, Px, opBytes{0xcd}},
|
|
{AINTO, ynone, P32, opBytes{0xce}},
|
|
{AIRETL, ynone, Px, opBytes{0xcf}},
|
|
{AIRETQ, ynone, Pw, opBytes{0xcf}},
|
|
{AIRETW, ynone, Pe, opBytes{0xcf}},
|
|
{AJCC, yjcond, Px, opBytes{0x73, 0x83, 00}},
|
|
{AJCS, yjcond, Px, opBytes{0x72, 0x82}},
|
|
{AJCXZL, yloop, Px, opBytes{0xe3}},
|
|
{AJCXZW, yloop, Px, opBytes{0xe3}},
|
|
{AJCXZQ, yloop, Px, opBytes{0xe3}},
|
|
{AJEQ, yjcond, Px, opBytes{0x74, 0x84}},
|
|
{AJGE, yjcond, Px, opBytes{0x7d, 0x8d}},
|
|
{AJGT, yjcond, Px, opBytes{0x7f, 0x8f}},
|
|
{AJHI, yjcond, Px, opBytes{0x77, 0x87}},
|
|
{AJLE, yjcond, Px, opBytes{0x7e, 0x8e}},
|
|
{AJLS, yjcond, Px, opBytes{0x76, 0x86}},
|
|
{AJLT, yjcond, Px, opBytes{0x7c, 0x8c}},
|
|
{AJMI, yjcond, Px, opBytes{0x78, 0x88}},
|
|
{obj.AJMP, yjmp, Px, opBytes{0xff, 04, 0xeb, 0xe9}},
|
|
{AJNE, yjcond, Px, opBytes{0x75, 0x85}},
|
|
{AJOC, yjcond, Px, opBytes{0x71, 0x81, 00}},
|
|
{AJOS, yjcond, Px, opBytes{0x70, 0x80, 00}},
|
|
{AJPC, yjcond, Px, opBytes{0x7b, 0x8b}},
|
|
{AJPL, yjcond, Px, opBytes{0x79, 0x89}},
|
|
{AJPS, yjcond, Px, opBytes{0x7a, 0x8a}},
|
|
{AHADDPD, yxm, Pq, opBytes{0x7c}},
|
|
{AHADDPS, yxm, Pf2, opBytes{0x7c}},
|
|
{AHSUBPD, yxm, Pq, opBytes{0x7d}},
|
|
{AHSUBPS, yxm, Pf2, opBytes{0x7d}},
|
|
{ALAHF, ynone, Px, opBytes{0x9f}},
|
|
{ALARL, yml_rl, Pm, opBytes{0x02}},
|
|
{ALARQ, yml_rl, Pw, opBytes{0x0f, 0x02}},
|
|
{ALARW, yml_rl, Pq, opBytes{0x02}},
|
|
{ALDDQU, ylddqu, Pf2, opBytes{0xf0}},
|
|
{ALDMXCSR, ysvrs_mo, Pm, opBytes{0xae, 02, 0xae, 02}},
|
|
{ALEAL, ym_rl, Px, opBytes{0x8d}},
|
|
{ALEAQ, ym_rl, Pw, opBytes{0x8d}},
|
|
{ALEAVEL, ynone, P32, opBytes{0xc9}},
|
|
{ALEAVEQ, ynone, Py, opBytes{0xc9}},
|
|
{ALEAVEW, ynone, Pe, opBytes{0xc9}},
|
|
{ALEAW, ym_rl, Pe, opBytes{0x8d}},
|
|
{ALOCK, ynone, Px, opBytes{0xf0}},
|
|
{ALODSB, ynone, Pb, opBytes{0xac}},
|
|
{ALODSL, ynone, Px, opBytes{0xad}},
|
|
{ALODSQ, ynone, Pw, opBytes{0xad}},
|
|
{ALODSW, ynone, Pe, opBytes{0xad}},
|
|
{ALONG, ybyte, Px, opBytes{4}},
|
|
{ALOOP, yloop, Px, opBytes{0xe2}},
|
|
{ALOOPEQ, yloop, Px, opBytes{0xe1}},
|
|
{ALOOPNE, yloop, Px, opBytes{0xe0}},
|
|
{ALTR, ydivl, Pm, opBytes{0x00, 03}},
|
|
{ALZCNTL, yml_rl, Pf3, opBytes{0xbd}},
|
|
{ALZCNTQ, yml_rl, Pfw, opBytes{0xbd}},
|
|
{ALZCNTW, yml_rl, Pef3, opBytes{0xbd}},
|
|
{ALSLL, yml_rl, Pm, opBytes{0x03}},
|
|
{ALSLW, yml_rl, Pq, opBytes{0x03}},
|
|
{ALSLQ, yml_rl, Pw, opBytes{0x0f, 0x03}},
|
|
{AMASKMOVOU, yxr, Pe, opBytes{0xf7}},
|
|
{AMASKMOVQ, ymr, Pm, opBytes{0xf7}},
|
|
{AMAXPD, yxm, Pe, opBytes{0x5f}},
|
|
{AMAXPS, yxm, Pm, opBytes{0x5f}},
|
|
{AMAXSD, yxm, Pf2, opBytes{0x5f}},
|
|
{AMAXSS, yxm, Pf3, opBytes{0x5f}},
|
|
{AMINPD, yxm, Pe, opBytes{0x5d}},
|
|
{AMINPS, yxm, Pm, opBytes{0x5d}},
|
|
{AMINSD, yxm, Pf2, opBytes{0x5d}},
|
|
{AMINSS, yxm, Pf3, opBytes{0x5d}},
|
|
{AMONITOR, ynone, Px, opBytes{0x0f, 0x01, 0xc8, 0}},
|
|
{AMWAIT, ynone, Px, opBytes{0x0f, 0x01, 0xc9, 0}},
|
|
{AMOVAPD, yxmov, Pe, opBytes{0x28, 0x29}},
|
|
{AMOVAPS, yxmov, Pm, opBytes{0x28, 0x29}},
|
|
{AMOVB, ymovb, Pb, opBytes{0x88, 0x8a, 0xb0, 0xc6, 00}},
|
|
{AMOVBLSX, ymb_rl, Pm, opBytes{0xbe}},
|
|
{AMOVBLZX, ymb_rl, Pm, opBytes{0xb6}},
|
|
{AMOVBQSX, ymb_rl, Pw, opBytes{0x0f, 0xbe}},
|
|
{AMOVBQZX, ymb_rl, Pw, opBytes{0x0f, 0xb6}},
|
|
{AMOVBWSX, ymb_rl, Pq, opBytes{0xbe}},
|
|
{AMOVSWW, ymb_rl, Pe, opBytes{0x0f, 0xbf}},
|
|
{AMOVBWZX, ymb_rl, Pq, opBytes{0xb6}},
|
|
{AMOVZWW, ymb_rl, Pe, opBytes{0x0f, 0xb7}},
|
|
{AMOVO, yxmov, Pe, opBytes{0x6f, 0x7f}},
|
|
{AMOVOU, yxmov, Pf3, opBytes{0x6f, 0x7f}},
|
|
{AMOVHLPS, yxr, Pm, opBytes{0x12}},
|
|
{AMOVHPD, yxmov, Pe, opBytes{0x16, 0x17}},
|
|
{AMOVHPS, yxmov, Pm, opBytes{0x16, 0x17}},
|
|
{AMOVL, ymovl, Px, opBytes{0x89, 0x8b, 0xb8, 0xc7, 00, 0x6e, 0x7e, Pe, 0x6e, Pe, 0x7e, 0}},
|
|
{AMOVLHPS, yxr, Pm, opBytes{0x16}},
|
|
{AMOVLPD, yxmov, Pe, opBytes{0x12, 0x13}},
|
|
{AMOVLPS, yxmov, Pm, opBytes{0x12, 0x13}},
|
|
{AMOVLQSX, yml_rl, Pw, opBytes{0x63}},
|
|
{AMOVLQZX, yml_rl, Px, opBytes{0x8b}},
|
|
{AMOVMSKPD, yxrrl, Pq, opBytes{0x50}},
|
|
{AMOVMSKPS, yxrrl, Pm, opBytes{0x50}},
|
|
{AMOVNTO, yxr_ml, Pe, opBytes{0xe7}},
|
|
{AMOVNTDQA, ylddqu, Pq4, opBytes{0x2a}},
|
|
{AMOVNTPD, yxr_ml, Pe, opBytes{0x2b}},
|
|
{AMOVNTPS, yxr_ml, Pm, opBytes{0x2b}},
|
|
{AMOVNTQ, ymr_ml, Pm, opBytes{0xe7}},
|
|
{AMOVQ, ymovq, Pw8, opBytes{0x6f, 0x7f, Pf2, 0xd6, Pf3, 0x7e, Pe, 0xd6, 0x89, 0x8b, 0xc7, 00, 0xb8, 0xc7, 00, 0x6e, 0x7e, Pe, 0x6e, Pe, 0x7e, 0}},
|
|
{AMOVQOZX, ymrxr, Pf3, opBytes{0xd6, 0x7e}},
|
|
{AMOVSB, ynone, Pb, opBytes{0xa4}},
|
|
{AMOVSD, yxmov, Pf2, opBytes{0x10, 0x11}},
|
|
{AMOVSL, ynone, Px, opBytes{0xa5}},
|
|
{AMOVSQ, ynone, Pw, opBytes{0xa5}},
|
|
{AMOVSS, yxmov, Pf3, opBytes{0x10, 0x11}},
|
|
{AMOVSW, ynone, Pe, opBytes{0xa5}},
|
|
{AMOVUPD, yxmov, Pe, opBytes{0x10, 0x11}},
|
|
{AMOVUPS, yxmov, Pm, opBytes{0x10, 0x11}},
|
|
{AMOVW, ymovw, Pe, opBytes{0x89, 0x8b, 0xb8, 0xc7, 00, 0}},
|
|
{AMOVWLSX, yml_rl, Pm, opBytes{0xbf}},
|
|
{AMOVWLZX, yml_rl, Pm, opBytes{0xb7}},
|
|
{AMOVWQSX, yml_rl, Pw, opBytes{0x0f, 0xbf}},
|
|
{AMOVWQZX, yml_rl, Pw, opBytes{0x0f, 0xb7}},
|
|
{AMPSADBW, yxshuf, Pq, opBytes{0x3a, 0x42, 0}},
|
|
{AMULB, ydivb, Pb, opBytes{0xf6, 04}},
|
|
{AMULL, ydivl, Px, opBytes{0xf7, 04}},
|
|
{AMULPD, yxm, Pe, opBytes{0x59}},
|
|
{AMULPS, yxm, Ym, opBytes{0x59}},
|
|
{AMULQ, ydivl, Pw, opBytes{0xf7, 04}},
|
|
{AMULSD, yxm, Pf2, opBytes{0x59}},
|
|
{AMULSS, yxm, Pf3, opBytes{0x59}},
|
|
{AMULW, ydivl, Pe, opBytes{0xf7, 04}},
|
|
{ANEGB, yscond, Pb, opBytes{0xf6, 03}},
|
|
{ANEGL, yscond, Px, opBytes{0xf7, 03}},
|
|
{ANEGQ, yscond, Pw, opBytes{0xf7, 03}},
|
|
{ANEGW, yscond, Pe, opBytes{0xf7, 03}},
|
|
{obj.ANOP, ynop, Px, opBytes{0, 0}},
|
|
{ANOTB, yscond, Pb, opBytes{0xf6, 02}},
|
|
{ANOTL, yscond, Px, opBytes{0xf7, 02}}, // TODO(rsc): yscond is wrong here.
|
|
{ANOTQ, yscond, Pw, opBytes{0xf7, 02}},
|
|
{ANOTW, yscond, Pe, opBytes{0xf7, 02}},
|
|
{AORB, yxorb, Pb, opBytes{0x0c, 0x80, 01, 0x08, 0x0a}},
|
|
{AORL, yaddl, Px, opBytes{0x83, 01, 0x0d, 0x81, 01, 0x09, 0x0b}},
|
|
{AORPD, yxm, Pq, opBytes{0x56}},
|
|
{AORPS, yxm, Pm, opBytes{0x56}},
|
|
{AORQ, yaddl, Pw, opBytes{0x83, 01, 0x0d, 0x81, 01, 0x09, 0x0b}},
|
|
{AORW, yaddl, Pe, opBytes{0x83, 01, 0x0d, 0x81, 01, 0x09, 0x0b}},
|
|
{AOUTB, yin, Pb, opBytes{0xe6, 0xee}},
|
|
{AOUTL, yin, Px, opBytes{0xe7, 0xef}},
|
|
{AOUTW, yin, Pe, opBytes{0xe7, 0xef}},
|
|
{AOUTSB, ynone, Pb, opBytes{0x6e}},
|
|
{AOUTSL, ynone, Px, opBytes{0x6f}},
|
|
{AOUTSW, ynone, Pe, opBytes{0x6f}},
|
|
{APABSB, yxm_q4, Pq4, opBytes{0x1c}},
|
|
{APABSD, yxm_q4, Pq4, opBytes{0x1e}},
|
|
{APABSW, yxm_q4, Pq4, opBytes{0x1d}},
|
|
{APACKSSLW, ymm, Py1, opBytes{0x6b, Pe, 0x6b}},
|
|
{APACKSSWB, ymm, Py1, opBytes{0x63, Pe, 0x63}},
|
|
{APACKUSDW, yxm_q4, Pq4, opBytes{0x2b}},
|
|
{APACKUSWB, ymm, Py1, opBytes{0x67, Pe, 0x67}},
|
|
{APADDB, ymm, Py1, opBytes{0xfc, Pe, 0xfc}},
|
|
{APADDL, ymm, Py1, opBytes{0xfe, Pe, 0xfe}},
|
|
{APADDQ, yxm, Pe, opBytes{0xd4}},
|
|
{APADDSB, ymm, Py1, opBytes{0xec, Pe, 0xec}},
|
|
{APADDSW, ymm, Py1, opBytes{0xed, Pe, 0xed}},
|
|
{APADDUSB, ymm, Py1, opBytes{0xdc, Pe, 0xdc}},
|
|
{APADDUSW, ymm, Py1, opBytes{0xdd, Pe, 0xdd}},
|
|
{APADDW, ymm, Py1, opBytes{0xfd, Pe, 0xfd}},
|
|
{APALIGNR, ypalignr, Pq, opBytes{0x3a, 0x0f}},
|
|
{APAND, ymm, Py1, opBytes{0xdb, Pe, 0xdb}},
|
|
{APANDN, ymm, Py1, opBytes{0xdf, Pe, 0xdf}},
|
|
{APAUSE, ynone, Px, opBytes{0xf3, 0x90}},
|
|
{APAVGB, ymm, Py1, opBytes{0xe0, Pe, 0xe0}},
|
|
{APAVGW, ymm, Py1, opBytes{0xe3, Pe, 0xe3}},
|
|
{APBLENDW, yxshuf, Pq, opBytes{0x3a, 0x0e, 0}},
|
|
{APCMPEQB, ymm, Py1, opBytes{0x74, Pe, 0x74}},
|
|
{APCMPEQL, ymm, Py1, opBytes{0x76, Pe, 0x76}},
|
|
{APCMPEQQ, yxm_q4, Pq4, opBytes{0x29}},
|
|
{APCMPEQW, ymm, Py1, opBytes{0x75, Pe, 0x75}},
|
|
{APCMPGTB, ymm, Py1, opBytes{0x64, Pe, 0x64}},
|
|
{APCMPGTL, ymm, Py1, opBytes{0x66, Pe, 0x66}},
|
|
{APCMPGTQ, yxm_q4, Pq4, opBytes{0x37}},
|
|
{APCMPGTW, ymm, Py1, opBytes{0x65, Pe, 0x65}},
|
|
{APCMPISTRI, yxshuf, Pq, opBytes{0x3a, 0x63, 0}},
|
|
{APCMPISTRM, yxshuf, Pq, opBytes{0x3a, 0x62, 0}},
|
|
{APEXTRW, yextrw, Pq, opBytes{0xc5, 0, 0x3a, 0x15, 0}},
|
|
{APEXTRB, yextr, Pq, opBytes{0x3a, 0x14, 00}},
|
|
{APEXTRD, yextr, Pq, opBytes{0x3a, 0x16, 00}},
|
|
{APEXTRQ, yextr, Pq3, opBytes{0x3a, 0x16, 00}},
|
|
{APHADDD, ymmxmm0f38, Px, opBytes{0x0F, 0x38, 0x02, 0, 0x66, 0x0F, 0x38, 0x02, 0}},
|
|
{APHADDSW, yxm_q4, Pq4, opBytes{0x03}},
|
|
{APHADDW, yxm_q4, Pq4, opBytes{0x01}},
|
|
{APHMINPOSUW, yxm_q4, Pq4, opBytes{0x41}},
|
|
{APHSUBD, yxm_q4, Pq4, opBytes{0x06}},
|
|
{APHSUBSW, yxm_q4, Pq4, opBytes{0x07}},
|
|
{APHSUBW, yxm_q4, Pq4, opBytes{0x05}},
|
|
{APINSRW, yinsrw, Pq, opBytes{0xc4, 00}},
|
|
{APINSRB, yinsr, Pq, opBytes{0x3a, 0x20, 00}},
|
|
{APINSRD, yinsr, Pq, opBytes{0x3a, 0x22, 00}},
|
|
{APINSRQ, yinsr, Pq3, opBytes{0x3a, 0x22, 00}},
|
|
{APMADDUBSW, yxm_q4, Pq4, opBytes{0x04}},
|
|
{APMADDWL, ymm, Py1, opBytes{0xf5, Pe, 0xf5}},
|
|
{APMAXSB, yxm_q4, Pq4, opBytes{0x3c}},
|
|
{APMAXSD, yxm_q4, Pq4, opBytes{0x3d}},
|
|
{APMAXSW, yxm, Pe, opBytes{0xee}},
|
|
{APMAXUB, yxm, Pe, opBytes{0xde}},
|
|
{APMAXUD, yxm_q4, Pq4, opBytes{0x3f}},
|
|
{APMAXUW, yxm_q4, Pq4, opBytes{0x3e}},
|
|
{APMINSB, yxm_q4, Pq4, opBytes{0x38}},
|
|
{APMINSD, yxm_q4, Pq4, opBytes{0x39}},
|
|
{APMINSW, yxm, Pe, opBytes{0xea}},
|
|
{APMINUB, yxm, Pe, opBytes{0xda}},
|
|
{APMINUD, yxm_q4, Pq4, opBytes{0x3b}},
|
|
{APMINUW, yxm_q4, Pq4, opBytes{0x3a}},
|
|
{APMOVMSKB, ymskb, Px, opBytes{Pe, 0xd7, 0xd7}},
|
|
{APMOVSXBD, yxm_q4, Pq4, opBytes{0x21}},
|
|
{APMOVSXBQ, yxm_q4, Pq4, opBytes{0x22}},
|
|
{APMOVSXBW, yxm_q4, Pq4, opBytes{0x20}},
|
|
{APMOVSXDQ, yxm_q4, Pq4, opBytes{0x25}},
|
|
{APMOVSXWD, yxm_q4, Pq4, opBytes{0x23}},
|
|
{APMOVSXWQ, yxm_q4, Pq4, opBytes{0x24}},
|
|
{APMOVZXBD, yxm_q4, Pq4, opBytes{0x31}},
|
|
{APMOVZXBQ, yxm_q4, Pq4, opBytes{0x32}},
|
|
{APMOVZXBW, yxm_q4, Pq4, opBytes{0x30}},
|
|
{APMOVZXDQ, yxm_q4, Pq4, opBytes{0x35}},
|
|
{APMOVZXWD, yxm_q4, Pq4, opBytes{0x33}},
|
|
{APMOVZXWQ, yxm_q4, Pq4, opBytes{0x34}},
|
|
{APMULDQ, yxm_q4, Pq4, opBytes{0x28}},
|
|
{APMULHRSW, yxm_q4, Pq4, opBytes{0x0b}},
|
|
{APMULHUW, ymm, Py1, opBytes{0xe4, Pe, 0xe4}},
|
|
{APMULHW, ymm, Py1, opBytes{0xe5, Pe, 0xe5}},
|
|
{APMULLD, yxm_q4, Pq4, opBytes{0x40}},
|
|
{APMULLW, ymm, Py1, opBytes{0xd5, Pe, 0xd5}},
|
|
{APMULULQ, ymm, Py1, opBytes{0xf4, Pe, 0xf4}},
|
|
{APOPAL, ynone, P32, opBytes{0x61}},
|
|
{APOPAW, ynone, Pe, opBytes{0x61}},
|
|
{APOPCNTW, yml_rl, Pef3, opBytes{0xb8}},
|
|
{APOPCNTL, yml_rl, Pf3, opBytes{0xb8}},
|
|
{APOPCNTQ, yml_rl, Pfw, opBytes{0xb8}},
|
|
{APOPFL, ynone, P32, opBytes{0x9d}},
|
|
{APOPFQ, ynone, Py, opBytes{0x9d}},
|
|
{APOPFW, ynone, Pe, opBytes{0x9d}},
|
|
{APOPL, ypopl, P32, opBytes{0x58, 0x8f, 00}},
|
|
{APOPQ, ypopl, Py, opBytes{0x58, 0x8f, 00}},
|
|
{APOPW, ypopl, Pe, opBytes{0x58, 0x8f, 00}},
|
|
{APOR, ymm, Py1, opBytes{0xeb, Pe, 0xeb}},
|
|
{APSADBW, yxm, Pq, opBytes{0xf6}},
|
|
{APSHUFHW, yxshuf, Pf3, opBytes{0x70, 00}},
|
|
{APSHUFL, yxshuf, Pq, opBytes{0x70, 00}},
|
|
{APSHUFLW, yxshuf, Pf2, opBytes{0x70, 00}},
|
|
{APSHUFW, ymshuf, Pm, opBytes{0x70, 00}},
|
|
{APSHUFB, ymshufb, Pq, opBytes{0x38, 0x00}},
|
|
{APSIGNB, yxm_q4, Pq4, opBytes{0x08}},
|
|
{APSIGND, yxm_q4, Pq4, opBytes{0x0a}},
|
|
{APSIGNW, yxm_q4, Pq4, opBytes{0x09}},
|
|
{APSLLO, ypsdq, Pq, opBytes{0x73, 07}},
|
|
{APSLLL, yps, Py3, opBytes{0xf2, 0x72, 06, Pe, 0xf2, Pe, 0x72, 06}},
|
|
{APSLLQ, yps, Py3, opBytes{0xf3, 0x73, 06, Pe, 0xf3, Pe, 0x73, 06}},
|
|
{APSLLW, yps, Py3, opBytes{0xf1, 0x71, 06, Pe, 0xf1, Pe, 0x71, 06}},
|
|
{APSRAL, yps, Py3, opBytes{0xe2, 0x72, 04, Pe, 0xe2, Pe, 0x72, 04}},
|
|
{APSRAW, yps, Py3, opBytes{0xe1, 0x71, 04, Pe, 0xe1, Pe, 0x71, 04}},
|
|
{APSRLO, ypsdq, Pq, opBytes{0x73, 03}},
|
|
{APSRLL, yps, Py3, opBytes{0xd2, 0x72, 02, Pe, 0xd2, Pe, 0x72, 02}},
|
|
{APSRLQ, yps, Py3, opBytes{0xd3, 0x73, 02, Pe, 0xd3, Pe, 0x73, 02}},
|
|
{APSRLW, yps, Py3, opBytes{0xd1, 0x71, 02, Pe, 0xd1, Pe, 0x71, 02}},
|
|
{APSUBB, yxm, Pe, opBytes{0xf8}},
|
|
{APSUBL, yxm, Pe, opBytes{0xfa}},
|
|
{APSUBQ, yxm, Pe, opBytes{0xfb}},
|
|
{APSUBSB, yxm, Pe, opBytes{0xe8}},
|
|
{APSUBSW, yxm, Pe, opBytes{0xe9}},
|
|
{APSUBUSB, yxm, Pe, opBytes{0xd8}},
|
|
{APSUBUSW, yxm, Pe, opBytes{0xd9}},
|
|
{APSUBW, yxm, Pe, opBytes{0xf9}},
|
|
{APTEST, yxm_q4, Pq4, opBytes{0x17}},
|
|
{APUNPCKHBW, ymm, Py1, opBytes{0x68, Pe, 0x68}},
|
|
{APUNPCKHLQ, ymm, Py1, opBytes{0x6a, Pe, 0x6a}},
|
|
{APUNPCKHQDQ, yxm, Pe, opBytes{0x6d}},
|
|
{APUNPCKHWL, ymm, Py1, opBytes{0x69, Pe, 0x69}},
|
|
{APUNPCKLBW, ymm, Py1, opBytes{0x60, Pe, 0x60}},
|
|
{APUNPCKLLQ, ymm, Py1, opBytes{0x62, Pe, 0x62}},
|
|
{APUNPCKLQDQ, yxm, Pe, opBytes{0x6c}},
|
|
{APUNPCKLWL, ymm, Py1, opBytes{0x61, Pe, 0x61}},
|
|
{APUSHAL, ynone, P32, opBytes{0x60}},
|
|
{APUSHAW, ynone, Pe, opBytes{0x60}},
|
|
{APUSHFL, ynone, P32, opBytes{0x9c}},
|
|
{APUSHFQ, ynone, Py, opBytes{0x9c}},
|
|
{APUSHFW, ynone, Pe, opBytes{0x9c}},
|
|
{APUSHL, ypushl, P32, opBytes{0x50, 0xff, 06, 0x6a, 0x68}},
|
|
{APUSHQ, ypushl, Py, opBytes{0x50, 0xff, 06, 0x6a, 0x68}},
|
|
{APUSHW, ypushl, Pe, opBytes{0x50, 0xff, 06, 0x6a, 0x68}},
|
|
{APXOR, ymm, Py1, opBytes{0xef, Pe, 0xef}},
|
|
{AQUAD, ybyte, Px, opBytes{8}},
|
|
{ARCLB, yshb, Pb, opBytes{0xd0, 02, 0xc0, 02, 0xd2, 02}},
|
|
{ARCLL, yshl, Px, opBytes{0xd1, 02, 0xc1, 02, 0xd3, 02, 0xd3, 02}},
|
|
{ARCLQ, yshl, Pw, opBytes{0xd1, 02, 0xc1, 02, 0xd3, 02, 0xd3, 02}},
|
|
{ARCLW, yshl, Pe, opBytes{0xd1, 02, 0xc1, 02, 0xd3, 02, 0xd3, 02}},
|
|
{ARCPPS, yxm, Pm, opBytes{0x53}},
|
|
{ARCPSS, yxm, Pf3, opBytes{0x53}},
|
|
{ARCRB, yshb, Pb, opBytes{0xd0, 03, 0xc0, 03, 0xd2, 03}},
|
|
{ARCRL, yshl, Px, opBytes{0xd1, 03, 0xc1, 03, 0xd3, 03, 0xd3, 03}},
|
|
{ARCRQ, yshl, Pw, opBytes{0xd1, 03, 0xc1, 03, 0xd3, 03, 0xd3, 03}},
|
|
{ARCRW, yshl, Pe, opBytes{0xd1, 03, 0xc1, 03, 0xd3, 03, 0xd3, 03}},
|
|
{AREP, ynone, Px, opBytes{0xf3}},
|
|
{AREPN, ynone, Px, opBytes{0xf2}},
|
|
{obj.ARET, ynone, Px, opBytes{0xc3}},
|
|
{ARETFW, yret, Pe, opBytes{0xcb, 0xca}},
|
|
{ARETFL, yret, Px, opBytes{0xcb, 0xca}},
|
|
{ARETFQ, yret, Pw, opBytes{0xcb, 0xca}},
|
|
{AROLB, yshb, Pb, opBytes{0xd0, 00, 0xc0, 00, 0xd2, 00}},
|
|
{AROLL, yshl, Px, opBytes{0xd1, 00, 0xc1, 00, 0xd3, 00, 0xd3, 00}},
|
|
{AROLQ, yshl, Pw, opBytes{0xd1, 00, 0xc1, 00, 0xd3, 00, 0xd3, 00}},
|
|
{AROLW, yshl, Pe, opBytes{0xd1, 00, 0xc1, 00, 0xd3, 00, 0xd3, 00}},
|
|
{ARORB, yshb, Pb, opBytes{0xd0, 01, 0xc0, 01, 0xd2, 01}},
|
|
{ARORL, yshl, Px, opBytes{0xd1, 01, 0xc1, 01, 0xd3, 01, 0xd3, 01}},
|
|
{ARORQ, yshl, Pw, opBytes{0xd1, 01, 0xc1, 01, 0xd3, 01, 0xd3, 01}},
|
|
{ARORW, yshl, Pe, opBytes{0xd1, 01, 0xc1, 01, 0xd3, 01, 0xd3, 01}},
|
|
{ARSQRTPS, yxm, Pm, opBytes{0x52}},
|
|
{ARSQRTSS, yxm, Pf3, opBytes{0x52}},
|
|
{ASAHF, ynone, Px, opBytes{0x9e, 00, 0x86, 0xe0, 0x50, 0x9d}}, // XCHGB AH,AL; PUSH AX; POPFL
|
|
{ASALB, yshb, Pb, opBytes{0xd0, 04, 0xc0, 04, 0xd2, 04}},
|
|
{ASALL, yshl, Px, opBytes{0xd1, 04, 0xc1, 04, 0xd3, 04, 0xd3, 04}},
|
|
{ASALQ, yshl, Pw, opBytes{0xd1, 04, 0xc1, 04, 0xd3, 04, 0xd3, 04}},
|
|
{ASALW, yshl, Pe, opBytes{0xd1, 04, 0xc1, 04, 0xd3, 04, 0xd3, 04}},
|
|
{ASARB, yshb, Pb, opBytes{0xd0, 07, 0xc0, 07, 0xd2, 07}},
|
|
{ASARL, yshl, Px, opBytes{0xd1, 07, 0xc1, 07, 0xd3, 07, 0xd3, 07}},
|
|
{ASARQ, yshl, Pw, opBytes{0xd1, 07, 0xc1, 07, 0xd3, 07, 0xd3, 07}},
|
|
{ASARW, yshl, Pe, opBytes{0xd1, 07, 0xc1, 07, 0xd3, 07, 0xd3, 07}},
|
|
{ASBBB, yxorb, Pb, opBytes{0x1c, 0x80, 03, 0x18, 0x1a}},
|
|
{ASBBL, yaddl, Px, opBytes{0x83, 03, 0x1d, 0x81, 03, 0x19, 0x1b}},
|
|
{ASBBQ, yaddl, Pw, opBytes{0x83, 03, 0x1d, 0x81, 03, 0x19, 0x1b}},
|
|
{ASBBW, yaddl, Pe, opBytes{0x83, 03, 0x1d, 0x81, 03, 0x19, 0x1b}},
|
|
{ASCASB, ynone, Pb, opBytes{0xae}},
|
|
{ASCASL, ynone, Px, opBytes{0xaf}},
|
|
{ASCASQ, ynone, Pw, opBytes{0xaf}},
|
|
{ASCASW, ynone, Pe, opBytes{0xaf}},
|
|
{ASETCC, yscond, Pb, opBytes{0x0f, 0x93, 00}},
|
|
{ASETCS, yscond, Pb, opBytes{0x0f, 0x92, 00}},
|
|
{ASETEQ, yscond, Pb, opBytes{0x0f, 0x94, 00}},
|
|
{ASETGE, yscond, Pb, opBytes{0x0f, 0x9d, 00}},
|
|
{ASETGT, yscond, Pb, opBytes{0x0f, 0x9f, 00}},
|
|
{ASETHI, yscond, Pb, opBytes{0x0f, 0x97, 00}},
|
|
{ASETLE, yscond, Pb, opBytes{0x0f, 0x9e, 00}},
|
|
{ASETLS, yscond, Pb, opBytes{0x0f, 0x96, 00}},
|
|
{ASETLT, yscond, Pb, opBytes{0x0f, 0x9c, 00}},
|
|
{ASETMI, yscond, Pb, opBytes{0x0f, 0x98, 00}},
|
|
{ASETNE, yscond, Pb, opBytes{0x0f, 0x95, 00}},
|
|
{ASETOC, yscond, Pb, opBytes{0x0f, 0x91, 00}},
|
|
{ASETOS, yscond, Pb, opBytes{0x0f, 0x90, 00}},
|
|
{ASETPC, yscond, Pb, opBytes{0x0f, 0x9b, 00}},
|
|
{ASETPL, yscond, Pb, opBytes{0x0f, 0x99, 00}},
|
|
{ASETPS, yscond, Pb, opBytes{0x0f, 0x9a, 00}},
|
|
{ASHLB, yshb, Pb, opBytes{0xd0, 04, 0xc0, 04, 0xd2, 04}},
|
|
{ASHLL, yshl, Px, opBytes{0xd1, 04, 0xc1, 04, 0xd3, 04, 0xd3, 04}},
|
|
{ASHLQ, yshl, Pw, opBytes{0xd1, 04, 0xc1, 04, 0xd3, 04, 0xd3, 04}},
|
|
{ASHLW, yshl, Pe, opBytes{0xd1, 04, 0xc1, 04, 0xd3, 04, 0xd3, 04}},
|
|
{ASHRB, yshb, Pb, opBytes{0xd0, 05, 0xc0, 05, 0xd2, 05}},
|
|
{ASHRL, yshl, Px, opBytes{0xd1, 05, 0xc1, 05, 0xd3, 05, 0xd3, 05}},
|
|
{ASHRQ, yshl, Pw, opBytes{0xd1, 05, 0xc1, 05, 0xd3, 05, 0xd3, 05}},
|
|
{ASHRW, yshl, Pe, opBytes{0xd1, 05, 0xc1, 05, 0xd3, 05, 0xd3, 05}},
|
|
{ASHUFPD, yxshuf, Pq, opBytes{0xc6, 00}},
|
|
{ASHUFPS, yxshuf, Pm, opBytes{0xc6, 00}},
|
|
{ASQRTPD, yxm, Pe, opBytes{0x51}},
|
|
{ASQRTPS, yxm, Pm, opBytes{0x51}},
|
|
{ASQRTSD, yxm, Pf2, opBytes{0x51}},
|
|
{ASQRTSS, yxm, Pf3, opBytes{0x51}},
|
|
{ASTC, ynone, Px, opBytes{0xf9}},
|
|
{ASTD, ynone, Px, opBytes{0xfd}},
|
|
{ASTI, ynone, Px, opBytes{0xfb}},
|
|
{ASTMXCSR, ysvrs_om, Pm, opBytes{0xae, 03, 0xae, 03}},
|
|
{ASTOSB, ynone, Pb, opBytes{0xaa}},
|
|
{ASTOSL, ynone, Px, opBytes{0xab}},
|
|
{ASTOSQ, ynone, Pw, opBytes{0xab}},
|
|
{ASTOSW, ynone, Pe, opBytes{0xab}},
|
|
{ASUBB, yxorb, Pb, opBytes{0x2c, 0x80, 05, 0x28, 0x2a}},
|
|
{ASUBL, yaddl, Px, opBytes{0x83, 05, 0x2d, 0x81, 05, 0x29, 0x2b}},
|
|
{ASUBPD, yxm, Pe, opBytes{0x5c}},
|
|
{ASUBPS, yxm, Pm, opBytes{0x5c}},
|
|
{ASUBQ, yaddl, Pw, opBytes{0x83, 05, 0x2d, 0x81, 05, 0x29, 0x2b}},
|
|
{ASUBSD, yxm, Pf2, opBytes{0x5c}},
|
|
{ASUBSS, yxm, Pf3, opBytes{0x5c}},
|
|
{ASUBW, yaddl, Pe, opBytes{0x83, 05, 0x2d, 0x81, 05, 0x29, 0x2b}},
|
|
{ASWAPGS, ynone, Pm, opBytes{0x01, 0xf8}},
|
|
{ASYSCALL, ynone, Px, opBytes{0x0f, 0x05}}, // fast syscall
|
|
{ATESTB, yxorb, Pb, opBytes{0xa8, 0xf6, 00, 0x84, 0x84}},
|
|
{ATESTL, ytestl, Px, opBytes{0xa9, 0xf7, 00, 0x85, 0x85}},
|
|
{ATESTQ, ytestl, Pw, opBytes{0xa9, 0xf7, 00, 0x85, 0x85}},
|
|
{ATESTW, ytestl, Pe, opBytes{0xa9, 0xf7, 00, 0x85, 0x85}},
|
|
{ATPAUSE, ywrfsbase, Pq, opBytes{0xae, 06}},
|
|
{obj.ATEXT, ytext, Px, opBytes{}},
|
|
{AUCOMISD, yxm, Pe, opBytes{0x2e}},
|
|
{AUCOMISS, yxm, Pm, opBytes{0x2e}},
|
|
{AUNPCKHPD, yxm, Pe, opBytes{0x15}},
|
|
{AUNPCKHPS, yxm, Pm, opBytes{0x15}},
|
|
{AUNPCKLPD, yxm, Pe, opBytes{0x14}},
|
|
{AUNPCKLPS, yxm, Pm, opBytes{0x14}},
|
|
{AUMONITOR, ywrfsbase, Pf3, opBytes{0xae, 06}},
|
|
{AVERR, ydivl, Pm, opBytes{0x00, 04}},
|
|
{AVERW, ydivl, Pm, opBytes{0x00, 05}},
|
|
{AWAIT, ynone, Px, opBytes{0x9b}},
|
|
{AWORD, ybyte, Px, opBytes{2}},
|
|
{AXCHGB, yml_mb, Pb, opBytes{0x86, 0x86}},
|
|
{AXCHGL, yxchg, Px, opBytes{0x90, 0x90, 0x87, 0x87}},
|
|
{AXCHGQ, yxchg, Pw, opBytes{0x90, 0x90, 0x87, 0x87}},
|
|
{AXCHGW, yxchg, Pe, opBytes{0x90, 0x90, 0x87, 0x87}},
|
|
{AXLAT, ynone, Px, opBytes{0xd7}},
|
|
{AXORB, yxorb, Pb, opBytes{0x34, 0x80, 06, 0x30, 0x32}},
|
|
{AXORL, yaddl, Px, opBytes{0x83, 06, 0x35, 0x81, 06, 0x31, 0x33}},
|
|
{AXORPD, yxm, Pe, opBytes{0x57}},
|
|
{AXORPS, yxm, Pm, opBytes{0x57}},
|
|
{AXORQ, yaddl, Pw, opBytes{0x83, 06, 0x35, 0x81, 06, 0x31, 0x33}},
|
|
{AXORW, yaddl, Pe, opBytes{0x83, 06, 0x35, 0x81, 06, 0x31, 0x33}},
|
|
{AFMOVB, yfmvx, Px, opBytes{0xdf, 04}},
|
|
{AFMOVBP, yfmvp, Px, opBytes{0xdf, 06}},
|
|
{AFMOVD, yfmvd, Px, opBytes{0xdd, 00, 0xdd, 02, 0xd9, 00, 0xdd, 02}},
|
|
{AFMOVDP, yfmvdp, Px, opBytes{0xdd, 03, 0xdd, 03}},
|
|
{AFMOVF, yfmvf, Px, opBytes{0xd9, 00, 0xd9, 02}},
|
|
{AFMOVFP, yfmvp, Px, opBytes{0xd9, 03}},
|
|
{AFMOVL, yfmvf, Px, opBytes{0xdb, 00, 0xdb, 02}},
|
|
{AFMOVLP, yfmvp, Px, opBytes{0xdb, 03}},
|
|
{AFMOVV, yfmvx, Px, opBytes{0xdf, 05}},
|
|
{AFMOVVP, yfmvp, Px, opBytes{0xdf, 07}},
|
|
{AFMOVW, yfmvf, Px, opBytes{0xdf, 00, 0xdf, 02}},
|
|
{AFMOVWP, yfmvp, Px, opBytes{0xdf, 03}},
|
|
{AFMOVX, yfmvx, Px, opBytes{0xdb, 05}},
|
|
{AFMOVXP, yfmvp, Px, opBytes{0xdb, 07}},
|
|
{AFCMOVCC, yfcmv, Px, opBytes{0xdb, 00}},
|
|
{AFCMOVCS, yfcmv, Px, opBytes{0xda, 00}},
|
|
{AFCMOVEQ, yfcmv, Px, opBytes{0xda, 01}},
|
|
{AFCMOVHI, yfcmv, Px, opBytes{0xdb, 02}},
|
|
{AFCMOVLS, yfcmv, Px, opBytes{0xda, 02}},
|
|
{AFCMOVB, yfcmv, Px, opBytes{0xda, 00}},
|
|
{AFCMOVBE, yfcmv, Px, opBytes{0xda, 02}},
|
|
{AFCMOVNB, yfcmv, Px, opBytes{0xdb, 00}},
|
|
{AFCMOVNBE, yfcmv, Px, opBytes{0xdb, 02}},
|
|
{AFCMOVE, yfcmv, Px, opBytes{0xda, 01}},
|
|
{AFCMOVNE, yfcmv, Px, opBytes{0xdb, 01}},
|
|
{AFCMOVNU, yfcmv, Px, opBytes{0xdb, 03}},
|
|
{AFCMOVU, yfcmv, Px, opBytes{0xda, 03}},
|
|
{AFCMOVUN, yfcmv, Px, opBytes{0xda, 03}},
|
|
{AFCOMD, yfadd, Px, opBytes{0xdc, 02, 0xd8, 02, 0xdc, 02}}, // botch
|
|
{AFCOMDP, yfadd, Px, opBytes{0xdc, 03, 0xd8, 03, 0xdc, 03}}, // botch
|
|
{AFCOMDPP, ycompp, Px, opBytes{0xde, 03}},
|
|
{AFCOMF, yfmvx, Px, opBytes{0xd8, 02}},
|
|
{AFCOMFP, yfmvx, Px, opBytes{0xd8, 03}},
|
|
{AFCOMI, yfcmv, Px, opBytes{0xdb, 06}},
|
|
{AFCOMIP, yfcmv, Px, opBytes{0xdf, 06}},
|
|
{AFCOML, yfmvx, Px, opBytes{0xda, 02}},
|
|
{AFCOMLP, yfmvx, Px, opBytes{0xda, 03}},
|
|
{AFCOMW, yfmvx, Px, opBytes{0xde, 02}},
|
|
{AFCOMWP, yfmvx, Px, opBytes{0xde, 03}},
|
|
{AFUCOM, ycompp, Px, opBytes{0xdd, 04}},
|
|
{AFUCOMI, ycompp, Px, opBytes{0xdb, 05}},
|
|
{AFUCOMIP, ycompp, Px, opBytes{0xdf, 05}},
|
|
{AFUCOMP, ycompp, Px, opBytes{0xdd, 05}},
|
|
{AFUCOMPP, ycompp, Px, opBytes{0xda, 13}},
|
|
{AFADDDP, ycompp, Px, opBytes{0xde, 00}},
|
|
{AFADDW, yfmvx, Px, opBytes{0xde, 00}},
|
|
{AFADDL, yfmvx, Px, opBytes{0xda, 00}},
|
|
{AFADDF, yfmvx, Px, opBytes{0xd8, 00}},
|
|
{AFADDD, yfadd, Px, opBytes{0xdc, 00, 0xd8, 00, 0xdc, 00}},
|
|
{AFMULDP, ycompp, Px, opBytes{0xde, 01}},
|
|
{AFMULW, yfmvx, Px, opBytes{0xde, 01}},
|
|
{AFMULL, yfmvx, Px, opBytes{0xda, 01}},
|
|
{AFMULF, yfmvx, Px, opBytes{0xd8, 01}},
|
|
{AFMULD, yfadd, Px, opBytes{0xdc, 01, 0xd8, 01, 0xdc, 01}},
|
|
{AFSUBDP, ycompp, Px, opBytes{0xde, 05}},
|
|
{AFSUBW, yfmvx, Px, opBytes{0xde, 04}},
|
|
{AFSUBL, yfmvx, Px, opBytes{0xda, 04}},
|
|
{AFSUBF, yfmvx, Px, opBytes{0xd8, 04}},
|
|
{AFSUBD, yfadd, Px, opBytes{0xdc, 04, 0xd8, 04, 0xdc, 05}},
|
|
{AFSUBRDP, ycompp, Px, opBytes{0xde, 04}},
|
|
{AFSUBRW, yfmvx, Px, opBytes{0xde, 05}},
|
|
{AFSUBRL, yfmvx, Px, opBytes{0xda, 05}},
|
|
{AFSUBRF, yfmvx, Px, opBytes{0xd8, 05}},
|
|
{AFSUBRD, yfadd, Px, opBytes{0xdc, 05, 0xd8, 05, 0xdc, 04}},
|
|
{AFDIVDP, ycompp, Px, opBytes{0xde, 07}},
|
|
{AFDIVW, yfmvx, Px, opBytes{0xde, 06}},
|
|
{AFDIVL, yfmvx, Px, opBytes{0xda, 06}},
|
|
{AFDIVF, yfmvx, Px, opBytes{0xd8, 06}},
|
|
{AFDIVD, yfadd, Px, opBytes{0xdc, 06, 0xd8, 06, 0xdc, 07}},
|
|
{AFDIVRDP, ycompp, Px, opBytes{0xde, 06}},
|
|
{AFDIVRW, yfmvx, Px, opBytes{0xde, 07}},
|
|
{AFDIVRL, yfmvx, Px, opBytes{0xda, 07}},
|
|
{AFDIVRF, yfmvx, Px, opBytes{0xd8, 07}},
|
|
{AFDIVRD, yfadd, Px, opBytes{0xdc, 07, 0xd8, 07, 0xdc, 06}},
|
|
{AFXCHD, yfxch, Px, opBytes{0xd9, 01, 0xd9, 01}},
|
|
{AFFREE, nil, 0, opBytes{}},
|
|
{AFLDCW, ysvrs_mo, Px, opBytes{0xd9, 05, 0xd9, 05}},
|
|
{AFLDENV, ysvrs_mo, Px, opBytes{0xd9, 04, 0xd9, 04}},
|
|
{AFRSTOR, ysvrs_mo, Px, opBytes{0xdd, 04, 0xdd, 04}},
|
|
{AFSAVE, ysvrs_om, Px, opBytes{0xdd, 06, 0xdd, 06}},
|
|
{AFSTCW, ysvrs_om, Px, opBytes{0xd9, 07, 0xd9, 07}},
|
|
{AFSTENV, ysvrs_om, Px, opBytes{0xd9, 06, 0xd9, 06}},
|
|
{AFSTSW, ystsw, Px, opBytes{0xdd, 07, 0xdf, 0xe0}},
|
|
{AF2XM1, ynone, Px, opBytes{0xd9, 0xf0}},
|
|
{AFABS, ynone, Px, opBytes{0xd9, 0xe1}},
|
|
{AFBLD, ysvrs_mo, Px, opBytes{0xdf, 04}},
|
|
{AFBSTP, yclflush, Px, opBytes{0xdf, 06}},
|
|
{AFCHS, ynone, Px, opBytes{0xd9, 0xe0}},
|
|
{AFCLEX, ynone, Px, opBytes{0xdb, 0xe2}},
|
|
{AFCOS, ynone, Px, opBytes{0xd9, 0xff}},
|
|
{AFDECSTP, ynone, Px, opBytes{0xd9, 0xf6}},
|
|
{AFINCSTP, ynone, Px, opBytes{0xd9, 0xf7}},
|
|
{AFINIT, ynone, Px, opBytes{0xdb, 0xe3}},
|
|
{AFLD1, ynone, Px, opBytes{0xd9, 0xe8}},
|
|
{AFLDL2E, ynone, Px, opBytes{0xd9, 0xea}},
|
|
{AFLDL2T, ynone, Px, opBytes{0xd9, 0xe9}},
|
|
{AFLDLG2, ynone, Px, opBytes{0xd9, 0xec}},
|
|
{AFLDLN2, ynone, Px, opBytes{0xd9, 0xed}},
|
|
{AFLDPI, ynone, Px, opBytes{0xd9, 0xeb}},
|
|
{AFLDZ, ynone, Px, opBytes{0xd9, 0xee}},
|
|
{AFNOP, ynone, Px, opBytes{0xd9, 0xd0}},
|
|
{AFPATAN, ynone, Px, opBytes{0xd9, 0xf3}},
|
|
{AFPREM, ynone, Px, opBytes{0xd9, 0xf8}},
|
|
{AFPREM1, ynone, Px, opBytes{0xd9, 0xf5}},
|
|
{AFPTAN, ynone, Px, opBytes{0xd9, 0xf2}},
|
|
{AFRNDINT, ynone, Px, opBytes{0xd9, 0xfc}},
|
|
{AFSCALE, ynone, Px, opBytes{0xd9, 0xfd}},
|
|
{AFSIN, ynone, Px, opBytes{0xd9, 0xfe}},
|
|
{AFSINCOS, ynone, Px, opBytes{0xd9, 0xfb}},
|
|
{AFSQRT, ynone, Px, opBytes{0xd9, 0xfa}},
|
|
{AFTST, ynone, Px, opBytes{0xd9, 0xe4}},
|
|
{AFXAM, ynone, Px, opBytes{0xd9, 0xe5}},
|
|
{AFXTRACT, ynone, Px, opBytes{0xd9, 0xf4}},
|
|
{AFYL2X, ynone, Px, opBytes{0xd9, 0xf1}},
|
|
{AFYL2XP1, ynone, Px, opBytes{0xd9, 0xf9}},
|
|
{ACMPXCHGB, yrb_mb, Pb, opBytes{0x0f, 0xb0}},
|
|
{ACMPXCHGL, yrl_ml, Px, opBytes{0x0f, 0xb1}},
|
|
{ACMPXCHGW, yrl_ml, Pe, opBytes{0x0f, 0xb1}},
|
|
{ACMPXCHGQ, yrl_ml, Pw, opBytes{0x0f, 0xb1}},
|
|
{ACMPXCHG8B, yscond, Pm, opBytes{0xc7, 01}},
|
|
{ACMPXCHG16B, yscond, Pw, opBytes{0x0f, 0xc7, 01}},
|
|
{AINVD, ynone, Pm, opBytes{0x08}},
|
|
{AINVLPG, ydivb, Pm, opBytes{0x01, 07}},
|
|
{AINVPCID, ycrc32l, Pe, opBytes{0x0f, 0x38, 0x82, 0}},
|
|
{ALFENCE, ynone, Pm, opBytes{0xae, 0xe8}},
|
|
{AMFENCE, ynone, Pm, opBytes{0xae, 0xf0}},
|
|
{AMOVNTIL, yrl_ml, Pm, opBytes{0xc3}},
|
|
{AMOVNTIQ, yrl_ml, Pw, opBytes{0x0f, 0xc3}},
|
|
{ARDPKRU, ynone, Pm, opBytes{0x01, 0xee, 0}},
|
|
{ARDMSR, ynone, Pm, opBytes{0x32}},
|
|
{ARDPMC, ynone, Pm, opBytes{0x33}},
|
|
{ARDTSC, ynone, Pm, opBytes{0x31}},
|
|
{ARSM, ynone, Pm, opBytes{0xaa}},
|
|
{ASFENCE, ynone, Pm, opBytes{0xae, 0xf8}},
|
|
{ASYSRET, ynone, Pm, opBytes{0x07}},
|
|
{AWBINVD, ynone, Pm, opBytes{0x09}},
|
|
{AWRMSR, ynone, Pm, opBytes{0x30}},
|
|
{AWRPKRU, ynone, Pm, opBytes{0x01, 0xef, 0}},
|
|
{AXADDB, yrb_mb, Pb, opBytes{0x0f, 0xc0}},
|
|
{AXADDL, yrl_ml, Px, opBytes{0x0f, 0xc1}},
|
|
{AXADDQ, yrl_ml, Pw, opBytes{0x0f, 0xc1}},
|
|
{AXADDW, yrl_ml, Pe, opBytes{0x0f, 0xc1}},
|
|
{ACRC32B, ycrc32b, Px, opBytes{0xf2, 0x0f, 0x38, 0xf0, 0}},
|
|
{ACRC32L, ycrc32l, Px, opBytes{0xf2, 0x0f, 0x38, 0xf1, 0}},
|
|
{ACRC32Q, ycrc32l, Pw, opBytes{0xf2, 0x0f, 0x38, 0xf1, 0}},
|
|
{ACRC32W, ycrc32l, Pe, opBytes{0xf2, 0x0f, 0x38, 0xf1, 0}},
|
|
{APREFETCHT0, yprefetch, Pm, opBytes{0x18, 01}},
|
|
{APREFETCHT1, yprefetch, Pm, opBytes{0x18, 02}},
|
|
{APREFETCHT2, yprefetch, Pm, opBytes{0x18, 03}},
|
|
{APREFETCHNTA, yprefetch, Pm, opBytes{0x18, 00}},
|
|
{AMOVQL, yrl_ml, Px, opBytes{0x89}},
|
|
{obj.AUNDEF, ynone, Px, opBytes{0x0f, 0x0b}},
|
|
{AAESENC, yaes, Pq, opBytes{0x38, 0xdc, 0}},
|
|
{AAESENCLAST, yaes, Pq, opBytes{0x38, 0xdd, 0}},
|
|
{AAESDEC, yaes, Pq, opBytes{0x38, 0xde, 0}},
|
|
{AAESDECLAST, yaes, Pq, opBytes{0x38, 0xdf, 0}},
|
|
{AAESIMC, yaes, Pq, opBytes{0x38, 0xdb, 0}},
|
|
{AAESKEYGENASSIST, yxshuf, Pq, opBytes{0x3a, 0xdf, 0}},
|
|
{AROUNDPD, yxshuf, Pq, opBytes{0x3a, 0x09, 0}},
|
|
{AROUNDPS, yxshuf, Pq, opBytes{0x3a, 0x08, 0}},
|
|
{AROUNDSD, yxshuf, Pq, opBytes{0x3a, 0x0b, 0}},
|
|
{AROUNDSS, yxshuf, Pq, opBytes{0x3a, 0x0a, 0}},
|
|
{APSHUFD, yxshuf, Pq, opBytes{0x70, 0}},
|
|
{APCLMULQDQ, yxshuf, Pq, opBytes{0x3a, 0x44, 0}},
|
|
{APCMPESTRI, yxshuf, Pq, opBytes{0x3a, 0x61, 0}},
|
|
{APCMPESTRM, yxshuf, Pq, opBytes{0x3a, 0x60, 0}},
|
|
{AMOVDDUP, yxm, Pf2, opBytes{0x12}},
|
|
{AMOVSHDUP, yxm, Pf3, opBytes{0x16}},
|
|
{AMOVSLDUP, yxm, Pf3, opBytes{0x12}},
|
|
{ARDTSCP, ynone, Pm, opBytes{0x01, 0xf9, 0}},
|
|
{ASTAC, ynone, Pm, opBytes{0x01, 0xcb, 0}},
|
|
{AUD1, ynone, Pm, opBytes{0xb9, 0}},
|
|
{AUD2, ynone, Pm, opBytes{0x0b, 0}},
|
|
{AUMWAIT, ywrfsbase, Pf2, opBytes{0xae, 06}},
|
|
{ASYSENTER, ynone, Px, opBytes{0x0f, 0x34, 0}},
|
|
{ASYSENTER64, ynone, Pw, opBytes{0x0f, 0x34, 0}},
|
|
{ASYSEXIT, ynone, Px, opBytes{0x0f, 0x35, 0}},
|
|
{ASYSEXIT64, ynone, Pw, opBytes{0x0f, 0x35, 0}},
|
|
{ALMSW, ydivl, Pm, opBytes{0x01, 06}},
|
|
{ALLDT, ydivl, Pm, opBytes{0x00, 02}},
|
|
{ALIDT, ysvrs_mo, Pm, opBytes{0x01, 03}},
|
|
{ALGDT, ysvrs_mo, Pm, opBytes{0x01, 02}},
|
|
{ATZCNTW, ycrc32l, Pe, opBytes{0xf3, 0x0f, 0xbc, 0}},
|
|
{ATZCNTL, ycrc32l, Px, opBytes{0xf3, 0x0f, 0xbc, 0}},
|
|
{ATZCNTQ, ycrc32l, Pw, opBytes{0xf3, 0x0f, 0xbc, 0}},
|
|
{AXRSTOR, ydivl, Px, opBytes{0x0f, 0xae, 05}},
|
|
{AXRSTOR64, ydivl, Pw, opBytes{0x0f, 0xae, 05}},
|
|
{AXRSTORS, ydivl, Px, opBytes{0x0f, 0xc7, 03}},
|
|
{AXRSTORS64, ydivl, Pw, opBytes{0x0f, 0xc7, 03}},
|
|
{AXSAVE, yclflush, Px, opBytes{0x0f, 0xae, 04}},
|
|
{AXSAVE64, yclflush, Pw, opBytes{0x0f, 0xae, 04}},
|
|
{AXSAVEOPT, yclflush, Px, opBytes{0x0f, 0xae, 06}},
|
|
{AXSAVEOPT64, yclflush, Pw, opBytes{0x0f, 0xae, 06}},
|
|
{AXSAVEC, yclflush, Px, opBytes{0x0f, 0xc7, 04}},
|
|
{AXSAVEC64, yclflush, Pw, opBytes{0x0f, 0xc7, 04}},
|
|
{AXSAVES, yclflush, Px, opBytes{0x0f, 0xc7, 05}},
|
|
{AXSAVES64, yclflush, Pw, opBytes{0x0f, 0xc7, 05}},
|
|
{ASGDT, yclflush, Pm, opBytes{0x01, 00}},
|
|
{ASIDT, yclflush, Pm, opBytes{0x01, 01}},
|
|
{ARDRANDW, yrdrand, Pe, opBytes{0x0f, 0xc7, 06}},
|
|
{ARDRANDL, yrdrand, Px, opBytes{0x0f, 0xc7, 06}},
|
|
{ARDRANDQ, yrdrand, Pw, opBytes{0x0f, 0xc7, 06}},
|
|
{ARDSEEDW, yrdrand, Pe, opBytes{0x0f, 0xc7, 07}},
|
|
{ARDSEEDL, yrdrand, Px, opBytes{0x0f, 0xc7, 07}},
|
|
{ARDSEEDQ, yrdrand, Pw, opBytes{0x0f, 0xc7, 07}},
|
|
{ASTRW, yincq, Pe, opBytes{0x0f, 0x00, 01}},
|
|
{ASTRL, yincq, Px, opBytes{0x0f, 0x00, 01}},
|
|
{ASTRQ, yincq, Pw, opBytes{0x0f, 0x00, 01}},
|
|
{AXSETBV, ynone, Pm, opBytes{0x01, 0xd1, 0}},
|
|
{AMOVBEWW, ymovbe, Pq, opBytes{0x38, 0xf0, 0, 0x38, 0xf1, 0}},
|
|
{AMOVBELL, ymovbe, Pm, opBytes{0x38, 0xf0, 0, 0x38, 0xf1, 0}},
|
|
{AMOVBEQQ, ymovbe, Pw, opBytes{0x0f, 0x38, 0xf0, 0, 0x0f, 0x38, 0xf1, 0}},
|
|
{ANOPW, ydivl, Pe, opBytes{0x0f, 0x1f, 00}},
|
|
{ANOPL, ydivl, Px, opBytes{0x0f, 0x1f, 00}},
|
|
{ASLDTW, yincq, Pe, opBytes{0x0f, 0x00, 00}},
|
|
{ASLDTL, yincq, Px, opBytes{0x0f, 0x00, 00}},
|
|
{ASLDTQ, yincq, Pw, opBytes{0x0f, 0x00, 00}},
|
|
{ASMSWW, yincq, Pe, opBytes{0x0f, 0x01, 04}},
|
|
{ASMSWL, yincq, Px, opBytes{0x0f, 0x01, 04}},
|
|
{ASMSWQ, yincq, Pw, opBytes{0x0f, 0x01, 04}},
|
|
{ABLENDVPS, yblendvpd, Pq4, opBytes{0x14}},
|
|
{ABLENDVPD, yblendvpd, Pq4, opBytes{0x15}},
|
|
{APBLENDVB, yblendvpd, Pq4, opBytes{0x10}},
|
|
{ASHA1MSG1, yaes, Px, opBytes{0x0f, 0x38, 0xc9, 0}},
|
|
{ASHA1MSG2, yaes, Px, opBytes{0x0f, 0x38, 0xca, 0}},
|
|
{ASHA1NEXTE, yaes, Px, opBytes{0x0f, 0x38, 0xc8, 0}},
|
|
{ASHA256MSG1, yaes, Px, opBytes{0x0f, 0x38, 0xcc, 0}},
|
|
{ASHA256MSG2, yaes, Px, opBytes{0x0f, 0x38, 0xcd, 0}},
|
|
{ASHA1RNDS4, ysha1rnds4, Pm, opBytes{0x3a, 0xcc, 0}},
|
|
{ASHA256RNDS2, ysha256rnds2, Px, opBytes{0x0f, 0x38, 0xcb, 0}},
|
|
{ARDFSBASEL, yrdrand, Pf3, opBytes{0xae, 00}},
|
|
{ARDFSBASEQ, yrdrand, Pfw, opBytes{0xae, 00}},
|
|
{ARDGSBASEL, yrdrand, Pf3, opBytes{0xae, 01}},
|
|
{ARDGSBASEQ, yrdrand, Pfw, opBytes{0xae, 01}},
|
|
{AWRFSBASEL, ywrfsbase, Pf3, opBytes{0xae, 02}},
|
|
{AWRFSBASEQ, ywrfsbase, Pfw, opBytes{0xae, 02}},
|
|
{AWRGSBASEL, ywrfsbase, Pf3, opBytes{0xae, 03}},
|
|
{AWRGSBASEQ, ywrfsbase, Pfw, opBytes{0xae, 03}},
|
|
{ALFSW, ym_rl, Pe, opBytes{0x0f, 0xb4}},
|
|
{ALFSL, ym_rl, Px, opBytes{0x0f, 0xb4}},
|
|
{ALFSQ, ym_rl, Pw, opBytes{0x0f, 0xb4}},
|
|
{ALGSW, ym_rl, Pe, opBytes{0x0f, 0xb5}},
|
|
{ALGSL, ym_rl, Px, opBytes{0x0f, 0xb5}},
|
|
{ALGSQ, ym_rl, Pw, opBytes{0x0f, 0xb5}},
|
|
{ALSSW, ym_rl, Pe, opBytes{0x0f, 0xb2}},
|
|
{ALSSL, ym_rl, Px, opBytes{0x0f, 0xb2}},
|
|
{ALSSQ, ym_rl, Pw, opBytes{0x0f, 0xb2}},
|
|
|
|
{ABLENDPD, yxshuf, Pq, opBytes{0x3a, 0x0d, 0}},
|
|
{ABLENDPS, yxshuf, Pq, opBytes{0x3a, 0x0c, 0}},
|
|
{AXACQUIRE, ynone, Px, opBytes{0xf2}},
|
|
{AXRELEASE, ynone, Px, opBytes{0xf3}},
|
|
{AXBEGIN, yxbegin, Px, opBytes{0xc7, 0xf8}},
|
|
{AXABORT, yxabort, Px, opBytes{0xc6, 0xf8}},
|
|
{AXEND, ynone, Px, opBytes{0x0f, 01, 0xd5}},
|
|
{AXTEST, ynone, Px, opBytes{0x0f, 01, 0xd6}},
|
|
{AXGETBV, ynone, Pm, opBytes{01, 0xd0}},
|
|
{obj.AFUNCDATA, yfuncdata, Px, opBytes{0, 0}},
|
|
{obj.APCDATA, ypcdata, Px, opBytes{0, 0}},
|
|
{obj.ADUFFCOPY, yduff, Px, opBytes{0xe8}},
|
|
{obj.ADUFFZERO, yduff, Px, opBytes{0xe8}},
|
|
|
|
{obj.AEND, nil, 0, opBytes{}},
|
|
{0, nil, 0, opBytes{}},
|
|
}
|
|
|
|
var opindex [(ALAST + 1) & obj.AMask]*Optab
|
|
|
|
// useAbs reports whether s describes a symbol that must avoid pc-relative addressing.
|
|
// This happens on systems like Solaris that call .so functions instead of system calls.
|
|
// It does not seem to be necessary for any other systems. This is probably working
|
|
// around a Solaris-specific bug that should be fixed differently, but we don't know
|
|
// what that bug is. And this does fix it.
|
|
func useAbs(ctxt *obj.Link, s *obj.LSym) bool {
|
|
if ctxt.Headtype == objabi.Hsolaris {
|
|
// All the Solaris dynamic imports from libc.so begin with "libc_".
|
|
return strings.HasPrefix(s.Name, "libc_")
|
|
}
|
|
return ctxt.Arch.Family == sys.I386 && !ctxt.Flag_shared
|
|
}
|
|
|
|
// single-instruction no-ops of various lengths.
|
|
// constructed by hand and disassembled with gdb to verify.
|
|
// see http://www.agner.org/optimize/optimizing_assembly.pdf for discussion.
|
|
var nop = [][16]uint8{
|
|
{0x90},
|
|
{0x66, 0x90},
|
|
{0x0F, 0x1F, 0x00},
|
|
{0x0F, 0x1F, 0x40, 0x00},
|
|
{0x0F, 0x1F, 0x44, 0x00, 0x00},
|
|
{0x66, 0x0F, 0x1F, 0x44, 0x00, 0x00},
|
|
{0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
|
|
{0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
{0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
}
|
|
|
|
// Native Client rejects the repeated 0x66 prefix.
|
|
// {0x66, 0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
func fillnop(p []byte, n int) {
|
|
var m int
|
|
|
|
for n > 0 {
|
|
m = n
|
|
if m > len(nop) {
|
|
m = len(nop)
|
|
}
|
|
copy(p[:m], nop[m-1][:m])
|
|
p = p[m:]
|
|
n -= m
|
|
}
|
|
}
|
|
|
|
func noppad(ctxt *obj.Link, s *obj.LSym, c int32, pad int32) int32 {
|
|
s.Grow(int64(c) + int64(pad))
|
|
fillnop(s.P[c:], int(pad))
|
|
return c + pad
|
|
}
|
|
|
|
func spadjop(ctxt *obj.Link, l, q obj.As) obj.As {
|
|
if ctxt.Arch.Family != sys.AMD64 || ctxt.Arch.PtrSize == 4 {
|
|
return l
|
|
}
|
|
return q
|
|
}
|
|
|
|
// If the environment variable GOAMD64=alignedjumps the assembler will ensure that
|
|
// no standalone or macro-fused jump will straddle or end on a 32 byte boundary
|
|
// by inserting NOPs before the jumps
|
|
func isJump(p *obj.Prog) bool {
|
|
return p.To.Target() != nil || p.As == obj.AJMP || p.As == obj.ACALL ||
|
|
p.As == obj.ARET || p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO
|
|
}
|
|
|
|
// lookForJCC returns the first real instruction starting from p, if that instruction is a conditional
|
|
// jump. Otherwise, nil is returned.
|
|
func lookForJCC(p *obj.Prog) *obj.Prog {
|
|
// Skip any PCDATA, FUNCDATA or NOP instructions
|
|
var q *obj.Prog
|
|
for q = p.Link; q != nil && (q.As == obj.APCDATA || q.As == obj.AFUNCDATA || q.As == obj.ANOP); q = q.Link {
|
|
}
|
|
|
|
if q == nil || q.To.Target() == nil || p.As == obj.AJMP || p.As == obj.ACALL {
|
|
return nil
|
|
}
|
|
|
|
switch q.As {
|
|
case AJOS, AJOC, AJCS, AJCC, AJEQ, AJNE, AJLS, AJHI,
|
|
AJMI, AJPL, AJPS, AJPC, AJLT, AJGE, AJLE, AJGT:
|
|
default:
|
|
return nil
|
|
}
|
|
|
|
return q
|
|
}
|
|
|
|
// fusedJump determines whether p can be fused with a subsequent conditional jump instruction.
|
|
// If it can, we return true followed by the total size of the fused jump. If it can't, we return false.
|
|
// Macro fusion rules are derived from the Intel Optimization Manual (April 2019) section 3.4.2.2.
|
|
func fusedJump(p *obj.Prog) (bool, uint8) {
|
|
var fusedSize uint8
|
|
|
|
// The first instruction in a macro fused pair may be preceeded by the LOCK prefix,
|
|
// or possibly an XACQUIRE/XRELEASE prefix followed by a LOCK prefix. If it is, we
|
|
// need to be careful to insert any padding before the locks rather than directly after them.
|
|
|
|
if p.As == AXRELEASE || p.As == AXACQUIRE {
|
|
fusedSize += p.Isize
|
|
for p = p.Link; p != nil && (p.As == obj.APCDATA || p.As == obj.AFUNCDATA); p = p.Link {
|
|
}
|
|
if p == nil {
|
|
return false, 0
|
|
}
|
|
}
|
|
if p.As == ALOCK {
|
|
fusedSize += p.Isize
|
|
for p = p.Link; p != nil && (p.As == obj.APCDATA || p.As == obj.AFUNCDATA); p = p.Link {
|
|
}
|
|
if p == nil {
|
|
return false, 0
|
|
}
|
|
}
|
|
cmp := p.As == ACMPB || p.As == ACMPL || p.As == ACMPQ || p.As == ACMPW
|
|
|
|
cmpAddSub := p.As == AADDB || p.As == AADDL || p.As == AADDW || p.As == AADDQ ||
|
|
p.As == ASUBB || p.As == ASUBL || p.As == ASUBW || p.As == ASUBQ || cmp
|
|
|
|
testAnd := p.As == ATESTB || p.As == ATESTL || p.As == ATESTQ || p.As == ATESTW ||
|
|
p.As == AANDB || p.As == AANDL || p.As == AANDQ || p.As == AANDW
|
|
|
|
incDec := p.As == AINCB || p.As == AINCL || p.As == AINCQ || p.As == AINCW ||
|
|
p.As == ADECB || p.As == ADECL || p.As == ADECQ || p.As == ADECW
|
|
|
|
if !cmpAddSub && !testAnd && !incDec {
|
|
return false, 0
|
|
}
|
|
|
|
if !incDec {
|
|
var argOne obj.AddrType
|
|
var argTwo obj.AddrType
|
|
if cmp {
|
|
argOne = p.From.Type
|
|
argTwo = p.To.Type
|
|
} else {
|
|
argOne = p.To.Type
|
|
argTwo = p.From.Type
|
|
}
|
|
if argOne == obj.TYPE_REG {
|
|
if argTwo != obj.TYPE_REG && argTwo != obj.TYPE_CONST && argTwo != obj.TYPE_MEM {
|
|
return false, 0
|
|
}
|
|
} else if argOne == obj.TYPE_MEM {
|
|
if argTwo != obj.TYPE_REG {
|
|
return false, 0
|
|
}
|
|
} else {
|
|
return false, 0
|
|
}
|
|
}
|
|
|
|
fusedSize += p.Isize
|
|
jmp := lookForJCC(p)
|
|
if jmp == nil {
|
|
return false, 0
|
|
}
|
|
|
|
fusedSize += jmp.Isize
|
|
|
|
if testAnd {
|
|
return true, fusedSize
|
|
}
|
|
|
|
if jmp.As == AJOC || jmp.As == AJOS || jmp.As == AJMI ||
|
|
jmp.As == AJPL || jmp.As == AJPS || jmp.As == AJPC {
|
|
return false, 0
|
|
}
|
|
|
|
if cmpAddSub {
|
|
return true, fusedSize
|
|
}
|
|
|
|
if jmp.As == AJCS || jmp.As == AJCC || jmp.As == AJHI || jmp.As == AJLS {
|
|
return false, 0
|
|
}
|
|
|
|
return true, fusedSize
|
|
}
|
|
|
|
type padJumpsCtx int32
|
|
|
|
func makePjcCtx(ctxt *obj.Link) padJumpsCtx {
|
|
// Disable jump padding on 32 bit builds by settting
|
|
// padJumps to 0.
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return padJumpsCtx(0)
|
|
}
|
|
|
|
// Disable jump padding for hand written assembly code.
|
|
if ctxt.IsAsm {
|
|
return padJumpsCtx(0)
|
|
}
|
|
|
|
if objabi.GOAMD64 != "alignedjumps" {
|
|
return padJumpsCtx(0)
|
|
|
|
}
|
|
|
|
return padJumpsCtx(32)
|
|
}
|
|
|
|
// padJump detects whether the instruction being assembled is a standalone or a macro-fused
|
|
// jump that needs to be padded. If it is, NOPs are inserted to ensure that the jump does
|
|
// not cross or end on a 32 byte boundary.
|
|
func (pjc padJumpsCtx) padJump(ctxt *obj.Link, s *obj.LSym, p *obj.Prog, c int32) int32 {
|
|
if pjc == 0 {
|
|
return c
|
|
}
|
|
|
|
var toPad int32
|
|
fj, fjSize := fusedJump(p)
|
|
mask := int32(pjc - 1)
|
|
if fj {
|
|
if (c&mask)+int32(fjSize) >= int32(pjc) {
|
|
toPad = int32(pjc) - (c & mask)
|
|
}
|
|
} else if isJump(p) {
|
|
if (c&mask)+int32(p.Isize) >= int32(pjc) {
|
|
toPad = int32(pjc) - (c & mask)
|
|
}
|
|
}
|
|
if toPad <= 0 {
|
|
return c
|
|
}
|
|
|
|
return noppad(ctxt, s, c, toPad)
|
|
}
|
|
|
|
// reAssemble is called if an instruction's size changes during assembly. If
|
|
// it does and the instruction is a standalone or a macro-fused jump we need to
|
|
// reassemble.
|
|
func (pjc padJumpsCtx) reAssemble(p *obj.Prog) bool {
|
|
if pjc == 0 {
|
|
return false
|
|
}
|
|
|
|
fj, _ := fusedJump(p)
|
|
return fj || isJump(p)
|
|
}
|
|
|
|
type nopPad struct {
|
|
p *obj.Prog // Instruction before the pad
|
|
n int32 // Size of the pad
|
|
}
|
|
|
|
func span6(ctxt *obj.Link, s *obj.LSym, newprog obj.ProgAlloc) {
|
|
pjc := makePjcCtx(ctxt)
|
|
|
|
if s.P != nil {
|
|
return
|
|
}
|
|
|
|
if ycover[0] == 0 {
|
|
ctxt.Diag("x86 tables not initialized, call x86.instinit first")
|
|
}
|
|
|
|
for p := s.Func.Text; p != nil; p = p.Link {
|
|
if p.To.Type == obj.TYPE_BRANCH && p.To.Target() == nil {
|
|
p.To.SetTarget(p)
|
|
}
|
|
if p.As == AADJSP {
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = REG_SP
|
|
// Generate 'ADDQ $x, SP' or 'SUBQ $x, SP', with x positive.
|
|
// One exception: It is smaller to encode $-0x80 than $0x80.
|
|
// For that case, flip the sign and the op:
|
|
// Instead of 'ADDQ $0x80, SP', generate 'SUBQ $-0x80, SP'.
|
|
switch v := p.From.Offset; {
|
|
case v == 0:
|
|
p.As = obj.ANOP
|
|
case v == 0x80 || (v < 0 && v != -0x80):
|
|
p.As = spadjop(ctxt, AADDL, AADDQ)
|
|
p.From.Offset *= -1
|
|
default:
|
|
p.As = spadjop(ctxt, ASUBL, ASUBQ)
|
|
}
|
|
}
|
|
if ctxt.Retpoline && (p.As == obj.ACALL || p.As == obj.AJMP) && (p.To.Type == obj.TYPE_REG || p.To.Type == obj.TYPE_MEM) {
|
|
if p.To.Type != obj.TYPE_REG {
|
|
ctxt.Diag("non-retpoline-compatible: %v", p)
|
|
continue
|
|
}
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = ctxt.Lookup("runtime.retpoline" + obj.Rconv(int(p.To.Reg)))
|
|
p.To.Reg = 0
|
|
p.To.Offset = 0
|
|
}
|
|
}
|
|
|
|
var count int64 // rough count of number of instructions
|
|
for p := s.Func.Text; p != nil; p = p.Link {
|
|
count++
|
|
p.Back = branchShort // use short branches first time through
|
|
if q := p.To.Target(); q != nil && (q.Back&branchShort != 0) {
|
|
p.Back |= branchBackwards
|
|
q.Back |= branchLoopHead
|
|
}
|
|
}
|
|
s.GrowCap(count * 5) // preallocate roughly 5 bytes per instruction
|
|
|
|
var ab AsmBuf
|
|
var n int
|
|
var c int32
|
|
errors := ctxt.Errors
|
|
var nops []nopPad // Padding for a particular assembly (reuse slice storage if multiple assemblies)
|
|
for {
|
|
// This loop continues while there are reasons to re-assemble
|
|
// whole block, like the presence of long forward jumps.
|
|
reAssemble := false
|
|
for i := range s.R {
|
|
s.R[i] = obj.Reloc{}
|
|
}
|
|
s.R = s.R[:0]
|
|
s.P = s.P[:0]
|
|
c = 0
|
|
var pPrev *obj.Prog
|
|
nops = nops[:0]
|
|
for p := s.Func.Text; p != nil; p = p.Link {
|
|
c0 := c
|
|
c = pjc.padJump(ctxt, s, p, c)
|
|
|
|
if maxLoopPad > 0 && p.Back&branchLoopHead != 0 && c&(loopAlign-1) != 0 {
|
|
// pad with NOPs
|
|
v := -c & (loopAlign - 1)
|
|
|
|
if v <= maxLoopPad {
|
|
s.Grow(int64(c) + int64(v))
|
|
fillnop(s.P[c:], int(v))
|
|
c += v
|
|
}
|
|
}
|
|
|
|
p.Pc = int64(c)
|
|
|
|
// process forward jumps to p
|
|
for q := p.Rel; q != nil; q = q.Forwd {
|
|
v := int32(p.Pc - (q.Pc + int64(q.Isize)))
|
|
if q.Back&branchShort != 0 {
|
|
if v > 127 {
|
|
reAssemble = true
|
|
q.Back ^= branchShort
|
|
}
|
|
|
|
if q.As == AJCXZL || q.As == AXBEGIN {
|
|
s.P[q.Pc+2] = byte(v)
|
|
} else {
|
|
s.P[q.Pc+1] = byte(v)
|
|
}
|
|
} else {
|
|
binary.LittleEndian.PutUint32(s.P[q.Pc+int64(q.Isize)-4:], uint32(v))
|
|
}
|
|
}
|
|
|
|
p.Rel = nil
|
|
|
|
p.Pc = int64(c)
|
|
ab.asmins(ctxt, s, p)
|
|
m := ab.Len()
|
|
if int(p.Isize) != m {
|
|
p.Isize = uint8(m)
|
|
if pjc.reAssemble(p) {
|
|
// We need to re-assemble here to check for jumps and fused jumps
|
|
// that span or end on 32 byte boundaries.
|
|
reAssemble = true
|
|
}
|
|
}
|
|
|
|
s.Grow(p.Pc + int64(m))
|
|
copy(s.P[p.Pc:], ab.Bytes())
|
|
// If there was padding, remember it.
|
|
if pPrev != nil && !ctxt.IsAsm && c > c0 {
|
|
nops = append(nops, nopPad{p: pPrev, n: c - c0})
|
|
}
|
|
c += int32(m)
|
|
pPrev = p
|
|
}
|
|
|
|
n++
|
|
if n > 20 {
|
|
ctxt.Diag("span must be looping")
|
|
log.Fatalf("loop")
|
|
}
|
|
if !reAssemble {
|
|
break
|
|
}
|
|
if ctxt.Errors > errors {
|
|
return
|
|
}
|
|
}
|
|
// splice padding nops into Progs
|
|
for _, n := range nops {
|
|
pp := n.p
|
|
np := &obj.Prog{Link: pp.Link, Ctxt: pp.Ctxt, As: obj.ANOP, Pos: pp.Pos.WithNotStmt(), Pc: pp.Pc + int64(pp.Isize), Isize: uint8(n.n)}
|
|
pp.Link = np
|
|
}
|
|
|
|
s.Size = int64(c)
|
|
|
|
if false { /* debug['a'] > 1 */
|
|
fmt.Printf("span1 %s %d (%d tries)\n %.6x", s.Name, s.Size, n, 0)
|
|
var i int
|
|
for i = 0; i < len(s.P); i++ {
|
|
fmt.Printf(" %.2x", s.P[i])
|
|
if i%16 == 15 {
|
|
fmt.Printf("\n %.6x", uint(i+1))
|
|
}
|
|
}
|
|
|
|
if i%16 != 0 {
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
for i := 0; i < len(s.R); i++ {
|
|
r := &s.R[i]
|
|
fmt.Printf(" rel %#.4x/%d %s%+d\n", uint32(r.Off), r.Siz, r.Sym.Name, r.Add)
|
|
}
|
|
}
|
|
|
|
// Mark nonpreemptible instruction sequences.
|
|
// The 2-instruction TLS access sequence
|
|
// MOVQ TLS, BX
|
|
// MOVQ 0(BX)(TLS*1), BX
|
|
// is not async preemptible, as if it is preempted and resumed on
|
|
// a different thread, the TLS address may become invalid.
|
|
if !CanUse1InsnTLS(ctxt) {
|
|
useTLS := func(p *obj.Prog) bool {
|
|
// Only need to mark the second instruction, which has
|
|
// REG_TLS as Index. (It is okay to interrupt and restart
|
|
// the first instruction.)
|
|
return p.From.Index == REG_TLS
|
|
}
|
|
obj.MarkUnsafePoints(ctxt, s.Func.Text, newprog, useTLS, nil)
|
|
}
|
|
}
|
|
|
|
func instinit(ctxt *obj.Link) {
|
|
if ycover[0] != 0 {
|
|
// Already initialized; stop now.
|
|
// This happens in the cmd/asm tests,
|
|
// each of which re-initializes the arch.
|
|
return
|
|
}
|
|
|
|
switch ctxt.Headtype {
|
|
case objabi.Hplan9:
|
|
plan9privates = ctxt.Lookup("_privates")
|
|
}
|
|
|
|
for i := range avxOptab {
|
|
c := avxOptab[i].as
|
|
if opindex[c&obj.AMask] != nil {
|
|
ctxt.Diag("phase error in avxOptab: %d (%v)", i, c)
|
|
}
|
|
opindex[c&obj.AMask] = &avxOptab[i]
|
|
}
|
|
for i := 1; optab[i].as != 0; i++ {
|
|
c := optab[i].as
|
|
if opindex[c&obj.AMask] != nil {
|
|
ctxt.Diag("phase error in optab: %d (%v)", i, c)
|
|
}
|
|
opindex[c&obj.AMask] = &optab[i]
|
|
}
|
|
|
|
for i := 0; i < Ymax; i++ {
|
|
ycover[i*Ymax+i] = 1
|
|
}
|
|
|
|
ycover[Yi0*Ymax+Yu2] = 1
|
|
ycover[Yi1*Ymax+Yu2] = 1
|
|
|
|
ycover[Yi0*Ymax+Yi8] = 1
|
|
ycover[Yi1*Ymax+Yi8] = 1
|
|
ycover[Yu2*Ymax+Yi8] = 1
|
|
ycover[Yu7*Ymax+Yi8] = 1
|
|
|
|
ycover[Yi0*Ymax+Yu7] = 1
|
|
ycover[Yi1*Ymax+Yu7] = 1
|
|
ycover[Yu2*Ymax+Yu7] = 1
|
|
|
|
ycover[Yi0*Ymax+Yu8] = 1
|
|
ycover[Yi1*Ymax+Yu8] = 1
|
|
ycover[Yu2*Ymax+Yu8] = 1
|
|
ycover[Yu7*Ymax+Yu8] = 1
|
|
|
|
ycover[Yi0*Ymax+Ys32] = 1
|
|
ycover[Yi1*Ymax+Ys32] = 1
|
|
ycover[Yu2*Ymax+Ys32] = 1
|
|
ycover[Yu7*Ymax+Ys32] = 1
|
|
ycover[Yu8*Ymax+Ys32] = 1
|
|
ycover[Yi8*Ymax+Ys32] = 1
|
|
|
|
ycover[Yi0*Ymax+Yi32] = 1
|
|
ycover[Yi1*Ymax+Yi32] = 1
|
|
ycover[Yu2*Ymax+Yi32] = 1
|
|
ycover[Yu7*Ymax+Yi32] = 1
|
|
ycover[Yu8*Ymax+Yi32] = 1
|
|
ycover[Yi8*Ymax+Yi32] = 1
|
|
ycover[Ys32*Ymax+Yi32] = 1
|
|
|
|
ycover[Yi0*Ymax+Yi64] = 1
|
|
ycover[Yi1*Ymax+Yi64] = 1
|
|
ycover[Yu7*Ymax+Yi64] = 1
|
|
ycover[Yu2*Ymax+Yi64] = 1
|
|
ycover[Yu8*Ymax+Yi64] = 1
|
|
ycover[Yi8*Ymax+Yi64] = 1
|
|
ycover[Ys32*Ymax+Yi64] = 1
|
|
ycover[Yi32*Ymax+Yi64] = 1
|
|
|
|
ycover[Yal*Ymax+Yrb] = 1
|
|
ycover[Ycl*Ymax+Yrb] = 1
|
|
ycover[Yax*Ymax+Yrb] = 1
|
|
ycover[Ycx*Ymax+Yrb] = 1
|
|
ycover[Yrx*Ymax+Yrb] = 1
|
|
ycover[Yrl*Ymax+Yrb] = 1 // but not Yrl32
|
|
|
|
ycover[Ycl*Ymax+Ycx] = 1
|
|
|
|
ycover[Yax*Ymax+Yrx] = 1
|
|
ycover[Ycx*Ymax+Yrx] = 1
|
|
|
|
ycover[Yax*Ymax+Yrl] = 1
|
|
ycover[Ycx*Ymax+Yrl] = 1
|
|
ycover[Yrx*Ymax+Yrl] = 1
|
|
ycover[Yrl32*Ymax+Yrl] = 1
|
|
|
|
ycover[Yf0*Ymax+Yrf] = 1
|
|
|
|
ycover[Yal*Ymax+Ymb] = 1
|
|
ycover[Ycl*Ymax+Ymb] = 1
|
|
ycover[Yax*Ymax+Ymb] = 1
|
|
ycover[Ycx*Ymax+Ymb] = 1
|
|
ycover[Yrx*Ymax+Ymb] = 1
|
|
ycover[Yrb*Ymax+Ymb] = 1
|
|
ycover[Yrl*Ymax+Ymb] = 1 // but not Yrl32
|
|
ycover[Ym*Ymax+Ymb] = 1
|
|
|
|
ycover[Yax*Ymax+Yml] = 1
|
|
ycover[Ycx*Ymax+Yml] = 1
|
|
ycover[Yrx*Ymax+Yml] = 1
|
|
ycover[Yrl*Ymax+Yml] = 1
|
|
ycover[Yrl32*Ymax+Yml] = 1
|
|
ycover[Ym*Ymax+Yml] = 1
|
|
|
|
ycover[Yax*Ymax+Ymm] = 1
|
|
ycover[Ycx*Ymax+Ymm] = 1
|
|
ycover[Yrx*Ymax+Ymm] = 1
|
|
ycover[Yrl*Ymax+Ymm] = 1
|
|
ycover[Yrl32*Ymax+Ymm] = 1
|
|
ycover[Ym*Ymax+Ymm] = 1
|
|
ycover[Ymr*Ymax+Ymm] = 1
|
|
|
|
ycover[Yxr0*Ymax+Yxr] = 1
|
|
|
|
ycover[Ym*Ymax+Yxm] = 1
|
|
ycover[Yxr0*Ymax+Yxm] = 1
|
|
ycover[Yxr*Ymax+Yxm] = 1
|
|
|
|
ycover[Ym*Ymax+Yym] = 1
|
|
ycover[Yyr*Ymax+Yym] = 1
|
|
|
|
ycover[Yxr0*Ymax+YxrEvex] = 1
|
|
ycover[Yxr*Ymax+YxrEvex] = 1
|
|
|
|
ycover[Ym*Ymax+YxmEvex] = 1
|
|
ycover[Yxr0*Ymax+YxmEvex] = 1
|
|
ycover[Yxr*Ymax+YxmEvex] = 1
|
|
ycover[YxrEvex*Ymax+YxmEvex] = 1
|
|
|
|
ycover[Yyr*Ymax+YyrEvex] = 1
|
|
|
|
ycover[Ym*Ymax+YymEvex] = 1
|
|
ycover[Yyr*Ymax+YymEvex] = 1
|
|
ycover[YyrEvex*Ymax+YymEvex] = 1
|
|
|
|
ycover[Ym*Ymax+Yzm] = 1
|
|
ycover[Yzr*Ymax+Yzm] = 1
|
|
|
|
ycover[Yk0*Ymax+Yk] = 1
|
|
ycover[Yknot0*Ymax+Yk] = 1
|
|
|
|
ycover[Yk0*Ymax+Ykm] = 1
|
|
ycover[Yknot0*Ymax+Ykm] = 1
|
|
ycover[Yk*Ymax+Ykm] = 1
|
|
ycover[Ym*Ymax+Ykm] = 1
|
|
|
|
ycover[Yxvm*Ymax+YxvmEvex] = 1
|
|
|
|
ycover[Yyvm*Ymax+YyvmEvex] = 1
|
|
|
|
for i := 0; i < MAXREG; i++ {
|
|
reg[i] = -1
|
|
if i >= REG_AL && i <= REG_R15B {
|
|
reg[i] = (i - REG_AL) & 7
|
|
if i >= REG_SPB && i <= REG_DIB {
|
|
regrex[i] = 0x40
|
|
}
|
|
if i >= REG_R8B && i <= REG_R15B {
|
|
regrex[i] = Rxr | Rxx | Rxb
|
|
}
|
|
}
|
|
|
|
if i >= REG_AH && i <= REG_BH {
|
|
reg[i] = 4 + ((i - REG_AH) & 7)
|
|
}
|
|
if i >= REG_AX && i <= REG_R15 {
|
|
reg[i] = (i - REG_AX) & 7
|
|
if i >= REG_R8 {
|
|
regrex[i] = Rxr | Rxx | Rxb
|
|
}
|
|
}
|
|
|
|
if i >= REG_F0 && i <= REG_F0+7 {
|
|
reg[i] = (i - REG_F0) & 7
|
|
}
|
|
if i >= REG_M0 && i <= REG_M0+7 {
|
|
reg[i] = (i - REG_M0) & 7
|
|
}
|
|
if i >= REG_K0 && i <= REG_K0+7 {
|
|
reg[i] = (i - REG_K0) & 7
|
|
}
|
|
if i >= REG_X0 && i <= REG_X0+15 {
|
|
reg[i] = (i - REG_X0) & 7
|
|
if i >= REG_X0+8 {
|
|
regrex[i] = Rxr | Rxx | Rxb
|
|
}
|
|
}
|
|
if i >= REG_X16 && i <= REG_X16+15 {
|
|
reg[i] = (i - REG_X16) & 7
|
|
if i >= REG_X16+8 {
|
|
regrex[i] = Rxr | Rxx | Rxb | RxrEvex
|
|
} else {
|
|
regrex[i] = RxrEvex
|
|
}
|
|
}
|
|
if i >= REG_Y0 && i <= REG_Y0+15 {
|
|
reg[i] = (i - REG_Y0) & 7
|
|
if i >= REG_Y0+8 {
|
|
regrex[i] = Rxr | Rxx | Rxb
|
|
}
|
|
}
|
|
if i >= REG_Y16 && i <= REG_Y16+15 {
|
|
reg[i] = (i - REG_Y16) & 7
|
|
if i >= REG_Y16+8 {
|
|
regrex[i] = Rxr | Rxx | Rxb | RxrEvex
|
|
} else {
|
|
regrex[i] = RxrEvex
|
|
}
|
|
}
|
|
if i >= REG_Z0 && i <= REG_Z0+15 {
|
|
reg[i] = (i - REG_Z0) & 7
|
|
if i > REG_Z0+7 {
|
|
regrex[i] = Rxr | Rxx | Rxb
|
|
}
|
|
}
|
|
if i >= REG_Z16 && i <= REG_Z16+15 {
|
|
reg[i] = (i - REG_Z16) & 7
|
|
if i >= REG_Z16+8 {
|
|
regrex[i] = Rxr | Rxx | Rxb | RxrEvex
|
|
} else {
|
|
regrex[i] = RxrEvex
|
|
}
|
|
}
|
|
|
|
if i >= REG_CR+8 && i <= REG_CR+15 {
|
|
regrex[i] = Rxr
|
|
}
|
|
}
|
|
}
|
|
|
|
var isAndroid = objabi.GOOS == "android"
|
|
|
|
func prefixof(ctxt *obj.Link, a *obj.Addr) int {
|
|
if a.Reg < REG_CS && a.Index < REG_CS { // fast path
|
|
return 0
|
|
}
|
|
if a.Type == obj.TYPE_MEM && a.Name == obj.NAME_NONE {
|
|
switch a.Reg {
|
|
case REG_CS:
|
|
return 0x2e
|
|
|
|
case REG_DS:
|
|
return 0x3e
|
|
|
|
case REG_ES:
|
|
return 0x26
|
|
|
|
case REG_FS:
|
|
return 0x64
|
|
|
|
case REG_GS:
|
|
return 0x65
|
|
|
|
case REG_TLS:
|
|
// NOTE: Systems listed here should be only systems that
|
|
// support direct TLS references like 8(TLS) implemented as
|
|
// direct references from FS or GS. Systems that require
|
|
// the initial-exec model, where you load the TLS base into
|
|
// a register and then index from that register, do not reach
|
|
// this code and should not be listed.
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
switch ctxt.Headtype {
|
|
default:
|
|
if isAndroid {
|
|
return 0x65 // GS
|
|
}
|
|
log.Fatalf("unknown TLS base register for %v", ctxt.Headtype)
|
|
|
|
case objabi.Hdarwin,
|
|
objabi.Hdragonfly,
|
|
objabi.Hfreebsd,
|
|
objabi.Hnetbsd,
|
|
objabi.Hopenbsd:
|
|
return 0x65 // GS
|
|
}
|
|
}
|
|
|
|
switch ctxt.Headtype {
|
|
default:
|
|
log.Fatalf("unknown TLS base register for %v", ctxt.Headtype)
|
|
|
|
case objabi.Hlinux:
|
|
if isAndroid {
|
|
return 0x64 // FS
|
|
}
|
|
|
|
if ctxt.Flag_shared {
|
|
log.Fatalf("unknown TLS base register for linux with -shared")
|
|
} else {
|
|
return 0x64 // FS
|
|
}
|
|
|
|
case objabi.Hdragonfly,
|
|
objabi.Hfreebsd,
|
|
objabi.Hnetbsd,
|
|
objabi.Hopenbsd,
|
|
objabi.Hsolaris:
|
|
return 0x64 // FS
|
|
|
|
case objabi.Hdarwin:
|
|
return 0x65 // GS
|
|
}
|
|
}
|
|
}
|
|
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
if a.Index == REG_TLS && ctxt.Flag_shared {
|
|
// When building for inclusion into a shared library, an instruction of the form
|
|
// MOVL off(CX)(TLS*1), AX
|
|
// becomes
|
|
// mov %gs:off(%ecx), %eax
|
|
// which assumes that the correct TLS offset has been loaded into %ecx (today
|
|
// there is only one TLS variable -- g -- so this is OK). When not building for
|
|
// a shared library the instruction it becomes
|
|
// mov 0x0(%ecx), %eax
|
|
// and a R_TLS_LE relocation, and so does not require a prefix.
|
|
return 0x65 // GS
|
|
}
|
|
return 0
|
|
}
|
|
|
|
switch a.Index {
|
|
case REG_CS:
|
|
return 0x2e
|
|
|
|
case REG_DS:
|
|
return 0x3e
|
|
|
|
case REG_ES:
|
|
return 0x26
|
|
|
|
case REG_TLS:
|
|
if ctxt.Flag_shared && ctxt.Headtype != objabi.Hwindows {
|
|
// When building for inclusion into a shared library, an instruction of the form
|
|
// MOV off(CX)(TLS*1), AX
|
|
// becomes
|
|
// mov %fs:off(%rcx), %rax
|
|
// which assumes that the correct TLS offset has been loaded into %rcx (today
|
|
// there is only one TLS variable -- g -- so this is OK). When not building for
|
|
// a shared library the instruction does not require a prefix.
|
|
return 0x64
|
|
}
|
|
|
|
case REG_FS:
|
|
return 0x64
|
|
|
|
case REG_GS:
|
|
return 0x65
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
// oclassRegList returns multisource operand class for addr.
|
|
func oclassRegList(ctxt *obj.Link, addr *obj.Addr) int {
|
|
// TODO(quasilyte): when oclass register case is refactored into
|
|
// lookup table, use it here to get register kind more easily.
|
|
// Helper functions like regIsXmm should go away too (they will become redundant).
|
|
|
|
regIsXmm := func(r int) bool { return r >= REG_X0 && r <= REG_X31 }
|
|
regIsYmm := func(r int) bool { return r >= REG_Y0 && r <= REG_Y31 }
|
|
regIsZmm := func(r int) bool { return r >= REG_Z0 && r <= REG_Z31 }
|
|
|
|
reg0, reg1 := decodeRegisterRange(addr.Offset)
|
|
low := regIndex(int16(reg0))
|
|
high := regIndex(int16(reg1))
|
|
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
if low >= 8 || high >= 8 {
|
|
return Yxxx
|
|
}
|
|
}
|
|
|
|
switch high - low {
|
|
case 3:
|
|
switch {
|
|
case regIsXmm(reg0) && regIsXmm(reg1):
|
|
return YxrEvexMulti4
|
|
case regIsYmm(reg0) && regIsYmm(reg1):
|
|
return YyrEvexMulti4
|
|
case regIsZmm(reg0) && regIsZmm(reg1):
|
|
return YzrMulti4
|
|
default:
|
|
return Yxxx
|
|
}
|
|
default:
|
|
return Yxxx
|
|
}
|
|
}
|
|
|
|
// oclassVMem returns V-mem (vector memory with VSIB) operand class.
|
|
// For addr that is not V-mem returns (Yxxx, false).
|
|
func oclassVMem(ctxt *obj.Link, addr *obj.Addr) (int, bool) {
|
|
switch addr.Index {
|
|
case REG_X0 + 0,
|
|
REG_X0 + 1,
|
|
REG_X0 + 2,
|
|
REG_X0 + 3,
|
|
REG_X0 + 4,
|
|
REG_X0 + 5,
|
|
REG_X0 + 6,
|
|
REG_X0 + 7:
|
|
return Yxvm, true
|
|
case REG_X8 + 0,
|
|
REG_X8 + 1,
|
|
REG_X8 + 2,
|
|
REG_X8 + 3,
|
|
REG_X8 + 4,
|
|
REG_X8 + 5,
|
|
REG_X8 + 6,
|
|
REG_X8 + 7:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return Yxxx, true
|
|
}
|
|
return Yxvm, true
|
|
case REG_X16 + 0,
|
|
REG_X16 + 1,
|
|
REG_X16 + 2,
|
|
REG_X16 + 3,
|
|
REG_X16 + 4,
|
|
REG_X16 + 5,
|
|
REG_X16 + 6,
|
|
REG_X16 + 7,
|
|
REG_X16 + 8,
|
|
REG_X16 + 9,
|
|
REG_X16 + 10,
|
|
REG_X16 + 11,
|
|
REG_X16 + 12,
|
|
REG_X16 + 13,
|
|
REG_X16 + 14,
|
|
REG_X16 + 15:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return Yxxx, true
|
|
}
|
|
return YxvmEvex, true
|
|
|
|
case REG_Y0 + 0,
|
|
REG_Y0 + 1,
|
|
REG_Y0 + 2,
|
|
REG_Y0 + 3,
|
|
REG_Y0 + 4,
|
|
REG_Y0 + 5,
|
|
REG_Y0 + 6,
|
|
REG_Y0 + 7:
|
|
return Yyvm, true
|
|
case REG_Y8 + 0,
|
|
REG_Y8 + 1,
|
|
REG_Y8 + 2,
|
|
REG_Y8 + 3,
|
|
REG_Y8 + 4,
|
|
REG_Y8 + 5,
|
|
REG_Y8 + 6,
|
|
REG_Y8 + 7:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return Yxxx, true
|
|
}
|
|
return Yyvm, true
|
|
case REG_Y16 + 0,
|
|
REG_Y16 + 1,
|
|
REG_Y16 + 2,
|
|
REG_Y16 + 3,
|
|
REG_Y16 + 4,
|
|
REG_Y16 + 5,
|
|
REG_Y16 + 6,
|
|
REG_Y16 + 7,
|
|
REG_Y16 + 8,
|
|
REG_Y16 + 9,
|
|
REG_Y16 + 10,
|
|
REG_Y16 + 11,
|
|
REG_Y16 + 12,
|
|
REG_Y16 + 13,
|
|
REG_Y16 + 14,
|
|
REG_Y16 + 15:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return Yxxx, true
|
|
}
|
|
return YyvmEvex, true
|
|
|
|
case REG_Z0 + 0,
|
|
REG_Z0 + 1,
|
|
REG_Z0 + 2,
|
|
REG_Z0 + 3,
|
|
REG_Z0 + 4,
|
|
REG_Z0 + 5,
|
|
REG_Z0 + 6,
|
|
REG_Z0 + 7:
|
|
return Yzvm, true
|
|
case REG_Z8 + 0,
|
|
REG_Z8 + 1,
|
|
REG_Z8 + 2,
|
|
REG_Z8 + 3,
|
|
REG_Z8 + 4,
|
|
REG_Z8 + 5,
|
|
REG_Z8 + 6,
|
|
REG_Z8 + 7,
|
|
REG_Z8 + 8,
|
|
REG_Z8 + 9,
|
|
REG_Z8 + 10,
|
|
REG_Z8 + 11,
|
|
REG_Z8 + 12,
|
|
REG_Z8 + 13,
|
|
REG_Z8 + 14,
|
|
REG_Z8 + 15,
|
|
REG_Z8 + 16,
|
|
REG_Z8 + 17,
|
|
REG_Z8 + 18,
|
|
REG_Z8 + 19,
|
|
REG_Z8 + 20,
|
|
REG_Z8 + 21,
|
|
REG_Z8 + 22,
|
|
REG_Z8 + 23:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return Yxxx, true
|
|
}
|
|
return Yzvm, true
|
|
}
|
|
|
|
return Yxxx, false
|
|
}
|
|
|
|
func oclass(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) int {
|
|
switch a.Type {
|
|
case obj.TYPE_REGLIST:
|
|
return oclassRegList(ctxt, a)
|
|
|
|
case obj.TYPE_NONE:
|
|
return Ynone
|
|
|
|
case obj.TYPE_BRANCH:
|
|
return Ybr
|
|
|
|
case obj.TYPE_INDIR:
|
|
if a.Name != obj.NAME_NONE && a.Reg == REG_NONE && a.Index == REG_NONE && a.Scale == 0 {
|
|
return Yindir
|
|
}
|
|
return Yxxx
|
|
|
|
case obj.TYPE_MEM:
|
|
// Pseudo registers have negative index, but SP is
|
|
// not pseudo on x86, hence REG_SP check is not redundant.
|
|
if a.Index == REG_SP || a.Index < 0 {
|
|
// Can't use FP/SB/PC/SP as the index register.
|
|
return Yxxx
|
|
}
|
|
|
|
if vmem, ok := oclassVMem(ctxt, a); ok {
|
|
return vmem
|
|
}
|
|
|
|
if ctxt.Arch.Family == sys.AMD64 {
|
|
switch a.Name {
|
|
case obj.NAME_EXTERN, obj.NAME_STATIC, obj.NAME_GOTREF:
|
|
// Global variables can't use index registers and their
|
|
// base register is %rip (%rip is encoded as REG_NONE).
|
|
if a.Reg != REG_NONE || a.Index != REG_NONE || a.Scale != 0 {
|
|
return Yxxx
|
|
}
|
|
case obj.NAME_AUTO, obj.NAME_PARAM:
|
|
// These names must have a base of SP. The old compiler
|
|
// uses 0 for the base register. SSA uses REG_SP.
|
|
if a.Reg != REG_SP && a.Reg != 0 {
|
|
return Yxxx
|
|
}
|
|
case obj.NAME_NONE:
|
|
// everything is ok
|
|
default:
|
|
// unknown name
|
|
return Yxxx
|
|
}
|
|
}
|
|
return Ym
|
|
|
|
case obj.TYPE_ADDR:
|
|
switch a.Name {
|
|
case obj.NAME_GOTREF:
|
|
ctxt.Diag("unexpected TYPE_ADDR with NAME_GOTREF")
|
|
return Yxxx
|
|
|
|
case obj.NAME_EXTERN,
|
|
obj.NAME_STATIC:
|
|
if a.Sym != nil && useAbs(ctxt, a.Sym) {
|
|
return Yi32
|
|
}
|
|
return Yiauto // use pc-relative addressing
|
|
|
|
case obj.NAME_AUTO,
|
|
obj.NAME_PARAM:
|
|
return Yiauto
|
|
}
|
|
|
|
// TODO(rsc): DUFFZERO/DUFFCOPY encoding forgot to set a->index
|
|
// and got Yi32 in an earlier version of this code.
|
|
// Keep doing that until we fix yduff etc.
|
|
if a.Sym != nil && strings.HasPrefix(a.Sym.Name, "runtime.duff") {
|
|
return Yi32
|
|
}
|
|
|
|
if a.Sym != nil || a.Name != obj.NAME_NONE {
|
|
ctxt.Diag("unexpected addr: %v", obj.Dconv(p, a))
|
|
}
|
|
fallthrough
|
|
|
|
case obj.TYPE_CONST:
|
|
if a.Sym != nil {
|
|
ctxt.Diag("TYPE_CONST with symbol: %v", obj.Dconv(p, a))
|
|
}
|
|
|
|
v := a.Offset
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
v = int64(int32(v))
|
|
}
|
|
switch {
|
|
case v == 0:
|
|
return Yi0
|
|
case v == 1:
|
|
return Yi1
|
|
case v >= 0 && v <= 3:
|
|
return Yu2
|
|
case v >= 0 && v <= 127:
|
|
return Yu7
|
|
case v >= 0 && v <= 255:
|
|
return Yu8
|
|
case v >= -128 && v <= 127:
|
|
return Yi8
|
|
}
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return Yi32
|
|
}
|
|
l := int32(v)
|
|
if int64(l) == v {
|
|
return Ys32 // can sign extend
|
|
}
|
|
if v>>32 == 0 {
|
|
return Yi32 // unsigned
|
|
}
|
|
return Yi64
|
|
|
|
case obj.TYPE_TEXTSIZE:
|
|
return Ytextsize
|
|
}
|
|
|
|
if a.Type != obj.TYPE_REG {
|
|
ctxt.Diag("unexpected addr1: type=%d %v", a.Type, obj.Dconv(p, a))
|
|
return Yxxx
|
|
}
|
|
|
|
switch a.Reg {
|
|
case REG_AL:
|
|
return Yal
|
|
|
|
case REG_AX:
|
|
return Yax
|
|
|
|
/*
|
|
case REG_SPB:
|
|
*/
|
|
case REG_BPB,
|
|
REG_SIB,
|
|
REG_DIB,
|
|
REG_R8B,
|
|
REG_R9B,
|
|
REG_R10B,
|
|
REG_R11B,
|
|
REG_R12B,
|
|
REG_R13B,
|
|
REG_R14B,
|
|
REG_R15B:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return Yxxx
|
|
}
|
|
fallthrough
|
|
|
|
case REG_DL,
|
|
REG_BL,
|
|
REG_AH,
|
|
REG_CH,
|
|
REG_DH,
|
|
REG_BH:
|
|
return Yrb
|
|
|
|
case REG_CL:
|
|
return Ycl
|
|
|
|
case REG_CX:
|
|
return Ycx
|
|
|
|
case REG_DX, REG_BX:
|
|
return Yrx
|
|
|
|
case REG_R8, // not really Yrl
|
|
REG_R9,
|
|
REG_R10,
|
|
REG_R11,
|
|
REG_R12,
|
|
REG_R13,
|
|
REG_R14,
|
|
REG_R15:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return Yxxx
|
|
}
|
|
fallthrough
|
|
|
|
case REG_SP, REG_BP, REG_SI, REG_DI:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return Yrl32
|
|
}
|
|
return Yrl
|
|
|
|
case REG_F0 + 0:
|
|
return Yf0
|
|
|
|
case REG_F0 + 1,
|
|
REG_F0 + 2,
|
|
REG_F0 + 3,
|
|
REG_F0 + 4,
|
|
REG_F0 + 5,
|
|
REG_F0 + 6,
|
|
REG_F0 + 7:
|
|
return Yrf
|
|
|
|
case REG_M0 + 0,
|
|
REG_M0 + 1,
|
|
REG_M0 + 2,
|
|
REG_M0 + 3,
|
|
REG_M0 + 4,
|
|
REG_M0 + 5,
|
|
REG_M0 + 6,
|
|
REG_M0 + 7:
|
|
return Ymr
|
|
|
|
case REG_X0:
|
|
return Yxr0
|
|
|
|
case REG_X0 + 1,
|
|
REG_X0 + 2,
|
|
REG_X0 + 3,
|
|
REG_X0 + 4,
|
|
REG_X0 + 5,
|
|
REG_X0 + 6,
|
|
REG_X0 + 7,
|
|
REG_X0 + 8,
|
|
REG_X0 + 9,
|
|
REG_X0 + 10,
|
|
REG_X0 + 11,
|
|
REG_X0 + 12,
|
|
REG_X0 + 13,
|
|
REG_X0 + 14,
|
|
REG_X0 + 15:
|
|
return Yxr
|
|
|
|
case REG_X0 + 16,
|
|
REG_X0 + 17,
|
|
REG_X0 + 18,
|
|
REG_X0 + 19,
|
|
REG_X0 + 20,
|
|
REG_X0 + 21,
|
|
REG_X0 + 22,
|
|
REG_X0 + 23,
|
|
REG_X0 + 24,
|
|
REG_X0 + 25,
|
|
REG_X0 + 26,
|
|
REG_X0 + 27,
|
|
REG_X0 + 28,
|
|
REG_X0 + 29,
|
|
REG_X0 + 30,
|
|
REG_X0 + 31:
|
|
return YxrEvex
|
|
|
|
case REG_Y0 + 0,
|
|
REG_Y0 + 1,
|
|
REG_Y0 + 2,
|
|
REG_Y0 + 3,
|
|
REG_Y0 + 4,
|
|
REG_Y0 + 5,
|
|
REG_Y0 + 6,
|
|
REG_Y0 + 7,
|
|
REG_Y0 + 8,
|
|
REG_Y0 + 9,
|
|
REG_Y0 + 10,
|
|
REG_Y0 + 11,
|
|
REG_Y0 + 12,
|
|
REG_Y0 + 13,
|
|
REG_Y0 + 14,
|
|
REG_Y0 + 15:
|
|
return Yyr
|
|
|
|
case REG_Y0 + 16,
|
|
REG_Y0 + 17,
|
|
REG_Y0 + 18,
|
|
REG_Y0 + 19,
|
|
REG_Y0 + 20,
|
|
REG_Y0 + 21,
|
|
REG_Y0 + 22,
|
|
REG_Y0 + 23,
|
|
REG_Y0 + 24,
|
|
REG_Y0 + 25,
|
|
REG_Y0 + 26,
|
|
REG_Y0 + 27,
|
|
REG_Y0 + 28,
|
|
REG_Y0 + 29,
|
|
REG_Y0 + 30,
|
|
REG_Y0 + 31:
|
|
return YyrEvex
|
|
|
|
case REG_Z0 + 0,
|
|
REG_Z0 + 1,
|
|
REG_Z0 + 2,
|
|
REG_Z0 + 3,
|
|
REG_Z0 + 4,
|
|
REG_Z0 + 5,
|
|
REG_Z0 + 6,
|
|
REG_Z0 + 7:
|
|
return Yzr
|
|
|
|
case REG_Z0 + 8,
|
|
REG_Z0 + 9,
|
|
REG_Z0 + 10,
|
|
REG_Z0 + 11,
|
|
REG_Z0 + 12,
|
|
REG_Z0 + 13,
|
|
REG_Z0 + 14,
|
|
REG_Z0 + 15,
|
|
REG_Z0 + 16,
|
|
REG_Z0 + 17,
|
|
REG_Z0 + 18,
|
|
REG_Z0 + 19,
|
|
REG_Z0 + 20,
|
|
REG_Z0 + 21,
|
|
REG_Z0 + 22,
|
|
REG_Z0 + 23,
|
|
REG_Z0 + 24,
|
|
REG_Z0 + 25,
|
|
REG_Z0 + 26,
|
|
REG_Z0 + 27,
|
|
REG_Z0 + 28,
|
|
REG_Z0 + 29,
|
|
REG_Z0 + 30,
|
|
REG_Z0 + 31:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
return Yxxx
|
|
}
|
|
return Yzr
|
|
|
|
case REG_K0:
|
|
return Yk0
|
|
|
|
case REG_K0 + 1,
|
|
REG_K0 + 2,
|
|
REG_K0 + 3,
|
|
REG_K0 + 4,
|
|
REG_K0 + 5,
|
|
REG_K0 + 6,
|
|
REG_K0 + 7:
|
|
return Yknot0
|
|
|
|
case REG_CS:
|
|
return Ycs
|
|
case REG_SS:
|
|
return Yss
|
|
case REG_DS:
|
|
return Yds
|
|
case REG_ES:
|
|
return Yes
|
|
case REG_FS:
|
|
return Yfs
|
|
case REG_GS:
|
|
return Ygs
|
|
case REG_TLS:
|
|
return Ytls
|
|
|
|
case REG_GDTR:
|
|
return Ygdtr
|
|
case REG_IDTR:
|
|
return Yidtr
|
|
case REG_LDTR:
|
|
return Yldtr
|
|
case REG_MSW:
|
|
return Ymsw
|
|
case REG_TASK:
|
|
return Ytask
|
|
|
|
case REG_CR + 0:
|
|
return Ycr0
|
|
case REG_CR + 1:
|
|
return Ycr1
|
|
case REG_CR + 2:
|
|
return Ycr2
|
|
case REG_CR + 3:
|
|
return Ycr3
|
|
case REG_CR + 4:
|
|
return Ycr4
|
|
case REG_CR + 5:
|
|
return Ycr5
|
|
case REG_CR + 6:
|
|
return Ycr6
|
|
case REG_CR + 7:
|
|
return Ycr7
|
|
case REG_CR + 8:
|
|
return Ycr8
|
|
|
|
case REG_DR + 0:
|
|
return Ydr0
|
|
case REG_DR + 1:
|
|
return Ydr1
|
|
case REG_DR + 2:
|
|
return Ydr2
|
|
case REG_DR + 3:
|
|
return Ydr3
|
|
case REG_DR + 4:
|
|
return Ydr4
|
|
case REG_DR + 5:
|
|
return Ydr5
|
|
case REG_DR + 6:
|
|
return Ydr6
|
|
case REG_DR + 7:
|
|
return Ydr7
|
|
|
|
case REG_TR + 0:
|
|
return Ytr0
|
|
case REG_TR + 1:
|
|
return Ytr1
|
|
case REG_TR + 2:
|
|
return Ytr2
|
|
case REG_TR + 3:
|
|
return Ytr3
|
|
case REG_TR + 4:
|
|
return Ytr4
|
|
case REG_TR + 5:
|
|
return Ytr5
|
|
case REG_TR + 6:
|
|
return Ytr6
|
|
case REG_TR + 7:
|
|
return Ytr7
|
|
}
|
|
|
|
return Yxxx
|
|
}
|
|
|
|
// AsmBuf is a simple buffer to assemble variable-length x86 instructions into
|
|
// and hold assembly state.
|
|
type AsmBuf struct {
|
|
buf [100]byte
|
|
off int
|
|
rexflag int
|
|
vexflag bool // Per inst: true for VEX-encoded
|
|
evexflag bool // Per inst: true for EVEX-encoded
|
|
rep bool
|
|
repn bool
|
|
lock bool
|
|
|
|
evex evexBits // Initialized when evexflag is true
|
|
}
|
|
|
|
// Put1 appends one byte to the end of the buffer.
|
|
func (ab *AsmBuf) Put1(x byte) {
|
|
ab.buf[ab.off] = x
|
|
ab.off++
|
|
}
|
|
|
|
// Put2 appends two bytes to the end of the buffer.
|
|
func (ab *AsmBuf) Put2(x, y byte) {
|
|
ab.buf[ab.off+0] = x
|
|
ab.buf[ab.off+1] = y
|
|
ab.off += 2
|
|
}
|
|
|
|
// Put3 appends three bytes to the end of the buffer.
|
|
func (ab *AsmBuf) Put3(x, y, z byte) {
|
|
ab.buf[ab.off+0] = x
|
|
ab.buf[ab.off+1] = y
|
|
ab.buf[ab.off+2] = z
|
|
ab.off += 3
|
|
}
|
|
|
|
// Put4 appends four bytes to the end of the buffer.
|
|
func (ab *AsmBuf) Put4(x, y, z, w byte) {
|
|
ab.buf[ab.off+0] = x
|
|
ab.buf[ab.off+1] = y
|
|
ab.buf[ab.off+2] = z
|
|
ab.buf[ab.off+3] = w
|
|
ab.off += 4
|
|
}
|
|
|
|
// PutInt16 writes v into the buffer using little-endian encoding.
|
|
func (ab *AsmBuf) PutInt16(v int16) {
|
|
ab.buf[ab.off+0] = byte(v)
|
|
ab.buf[ab.off+1] = byte(v >> 8)
|
|
ab.off += 2
|
|
}
|
|
|
|
// PutInt32 writes v into the buffer using little-endian encoding.
|
|
func (ab *AsmBuf) PutInt32(v int32) {
|
|
ab.buf[ab.off+0] = byte(v)
|
|
ab.buf[ab.off+1] = byte(v >> 8)
|
|
ab.buf[ab.off+2] = byte(v >> 16)
|
|
ab.buf[ab.off+3] = byte(v >> 24)
|
|
ab.off += 4
|
|
}
|
|
|
|
// PutInt64 writes v into the buffer using little-endian encoding.
|
|
func (ab *AsmBuf) PutInt64(v int64) {
|
|
ab.buf[ab.off+0] = byte(v)
|
|
ab.buf[ab.off+1] = byte(v >> 8)
|
|
ab.buf[ab.off+2] = byte(v >> 16)
|
|
ab.buf[ab.off+3] = byte(v >> 24)
|
|
ab.buf[ab.off+4] = byte(v >> 32)
|
|
ab.buf[ab.off+5] = byte(v >> 40)
|
|
ab.buf[ab.off+6] = byte(v >> 48)
|
|
ab.buf[ab.off+7] = byte(v >> 56)
|
|
ab.off += 8
|
|
}
|
|
|
|
// Put copies b into the buffer.
|
|
func (ab *AsmBuf) Put(b []byte) {
|
|
copy(ab.buf[ab.off:], b)
|
|
ab.off += len(b)
|
|
}
|
|
|
|
// PutOpBytesLit writes zero terminated sequence of bytes from op,
|
|
// starting at specified offset (e.g. z counter value).
|
|
// Trailing 0 is not written.
|
|
//
|
|
// Intended to be used for literal Z cases.
|
|
// Literal Z cases usually have "Zlit" in their name (Zlit, Zlitr_m, Zlitm_r).
|
|
func (ab *AsmBuf) PutOpBytesLit(offset int, op *opBytes) {
|
|
for int(op[offset]) != 0 {
|
|
ab.Put1(byte(op[offset]))
|
|
offset++
|
|
}
|
|
}
|
|
|
|
// Insert inserts b at offset i.
|
|
func (ab *AsmBuf) Insert(i int, b byte) {
|
|
ab.off++
|
|
copy(ab.buf[i+1:ab.off], ab.buf[i:ab.off-1])
|
|
ab.buf[i] = b
|
|
}
|
|
|
|
// Last returns the byte at the end of the buffer.
|
|
func (ab *AsmBuf) Last() byte { return ab.buf[ab.off-1] }
|
|
|
|
// Len returns the length of the buffer.
|
|
func (ab *AsmBuf) Len() int { return ab.off }
|
|
|
|
// Bytes returns the contents of the buffer.
|
|
func (ab *AsmBuf) Bytes() []byte { return ab.buf[:ab.off] }
|
|
|
|
// Reset empties the buffer.
|
|
func (ab *AsmBuf) Reset() { ab.off = 0 }
|
|
|
|
// At returns the byte at offset i.
|
|
func (ab *AsmBuf) At(i int) byte { return ab.buf[i] }
|
|
|
|
// asmidx emits SIB byte.
|
|
func (ab *AsmBuf) asmidx(ctxt *obj.Link, scale int, index int, base int) {
|
|
var i int
|
|
|
|
// X/Y index register is used in VSIB.
|
|
switch index {
|
|
default:
|
|
goto bad
|
|
|
|
case REG_NONE:
|
|
i = 4 << 3
|
|
goto bas
|
|
|
|
case REG_R8,
|
|
REG_R9,
|
|
REG_R10,
|
|
REG_R11,
|
|
REG_R12,
|
|
REG_R13,
|
|
REG_R14,
|
|
REG_R15,
|
|
REG_X8,
|
|
REG_X9,
|
|
REG_X10,
|
|
REG_X11,
|
|
REG_X12,
|
|
REG_X13,
|
|
REG_X14,
|
|
REG_X15,
|
|
REG_X16,
|
|
REG_X17,
|
|
REG_X18,
|
|
REG_X19,
|
|
REG_X20,
|
|
REG_X21,
|
|
REG_X22,
|
|
REG_X23,
|
|
REG_X24,
|
|
REG_X25,
|
|
REG_X26,
|
|
REG_X27,
|
|
REG_X28,
|
|
REG_X29,
|
|
REG_X30,
|
|
REG_X31,
|
|
REG_Y8,
|
|
REG_Y9,
|
|
REG_Y10,
|
|
REG_Y11,
|
|
REG_Y12,
|
|
REG_Y13,
|
|
REG_Y14,
|
|
REG_Y15,
|
|
REG_Y16,
|
|
REG_Y17,
|
|
REG_Y18,
|
|
REG_Y19,
|
|
REG_Y20,
|
|
REG_Y21,
|
|
REG_Y22,
|
|
REG_Y23,
|
|
REG_Y24,
|
|
REG_Y25,
|
|
REG_Y26,
|
|
REG_Y27,
|
|
REG_Y28,
|
|
REG_Y29,
|
|
REG_Y30,
|
|
REG_Y31,
|
|
REG_Z8,
|
|
REG_Z9,
|
|
REG_Z10,
|
|
REG_Z11,
|
|
REG_Z12,
|
|
REG_Z13,
|
|
REG_Z14,
|
|
REG_Z15,
|
|
REG_Z16,
|
|
REG_Z17,
|
|
REG_Z18,
|
|
REG_Z19,
|
|
REG_Z20,
|
|
REG_Z21,
|
|
REG_Z22,
|
|
REG_Z23,
|
|
REG_Z24,
|
|
REG_Z25,
|
|
REG_Z26,
|
|
REG_Z27,
|
|
REG_Z28,
|
|
REG_Z29,
|
|
REG_Z30,
|
|
REG_Z31:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
goto bad
|
|
}
|
|
fallthrough
|
|
|
|
case REG_AX,
|
|
REG_CX,
|
|
REG_DX,
|
|
REG_BX,
|
|
REG_BP,
|
|
REG_SI,
|
|
REG_DI,
|
|
REG_X0,
|
|
REG_X1,
|
|
REG_X2,
|
|
REG_X3,
|
|
REG_X4,
|
|
REG_X5,
|
|
REG_X6,
|
|
REG_X7,
|
|
REG_Y0,
|
|
REG_Y1,
|
|
REG_Y2,
|
|
REG_Y3,
|
|
REG_Y4,
|
|
REG_Y5,
|
|
REG_Y6,
|
|
REG_Y7,
|
|
REG_Z0,
|
|
REG_Z1,
|
|
REG_Z2,
|
|
REG_Z3,
|
|
REG_Z4,
|
|
REG_Z5,
|
|
REG_Z6,
|
|
REG_Z7:
|
|
i = reg[index] << 3
|
|
}
|
|
|
|
switch scale {
|
|
default:
|
|
goto bad
|
|
|
|
case 1:
|
|
break
|
|
|
|
case 2:
|
|
i |= 1 << 6
|
|
|
|
case 4:
|
|
i |= 2 << 6
|
|
|
|
case 8:
|
|
i |= 3 << 6
|
|
}
|
|
|
|
bas:
|
|
switch base {
|
|
default:
|
|
goto bad
|
|
|
|
case REG_NONE: // must be mod=00
|
|
i |= 5
|
|
|
|
case REG_R8,
|
|
REG_R9,
|
|
REG_R10,
|
|
REG_R11,
|
|
REG_R12,
|
|
REG_R13,
|
|
REG_R14,
|
|
REG_R15:
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
goto bad
|
|
}
|
|
fallthrough
|
|
|
|
case REG_AX,
|
|
REG_CX,
|
|
REG_DX,
|
|
REG_BX,
|
|
REG_SP,
|
|
REG_BP,
|
|
REG_SI,
|
|
REG_DI:
|
|
i |= reg[base]
|
|
}
|
|
|
|
ab.Put1(byte(i))
|
|
return
|
|
|
|
bad:
|
|
ctxt.Diag("asmidx: bad address %d/%d/%d", scale, index, base)
|
|
ab.Put1(0)
|
|
}
|
|
|
|
func (ab *AsmBuf) relput4(ctxt *obj.Link, cursym *obj.LSym, p *obj.Prog, a *obj.Addr) {
|
|
var rel obj.Reloc
|
|
|
|
v := vaddr(ctxt, p, a, &rel)
|
|
if rel.Siz != 0 {
|
|
if rel.Siz != 4 {
|
|
ctxt.Diag("bad reloc")
|
|
}
|
|
r := obj.Addrel(cursym)
|
|
*r = rel
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
}
|
|
|
|
ab.PutInt32(int32(v))
|
|
}
|
|
|
|
func vaddr(ctxt *obj.Link, p *obj.Prog, a *obj.Addr, r *obj.Reloc) int64 {
|
|
if r != nil {
|
|
*r = obj.Reloc{}
|
|
}
|
|
|
|
switch a.Name {
|
|
case obj.NAME_STATIC,
|
|
obj.NAME_GOTREF,
|
|
obj.NAME_EXTERN:
|
|
s := a.Sym
|
|
if r == nil {
|
|
ctxt.Diag("need reloc for %v", obj.Dconv(p, a))
|
|
log.Fatalf("reloc")
|
|
}
|
|
|
|
if a.Name == obj.NAME_GOTREF {
|
|
r.Siz = 4
|
|
r.Type = objabi.R_GOTPCREL
|
|
} else if useAbs(ctxt, s) {
|
|
r.Siz = 4
|
|
r.Type = objabi.R_ADDR
|
|
} else {
|
|
r.Siz = 4
|
|
r.Type = objabi.R_PCREL
|
|
}
|
|
|
|
r.Off = -1 // caller must fill in
|
|
r.Sym = s
|
|
r.Add = a.Offset
|
|
|
|
return 0
|
|
}
|
|
|
|
if (a.Type == obj.TYPE_MEM || a.Type == obj.TYPE_ADDR) && a.Reg == REG_TLS {
|
|
if r == nil {
|
|
ctxt.Diag("need reloc for %v", obj.Dconv(p, a))
|
|
log.Fatalf("reloc")
|
|
}
|
|
|
|
if !ctxt.Flag_shared || isAndroid || ctxt.Headtype == objabi.Hdarwin {
|
|
r.Type = objabi.R_TLS_LE
|
|
r.Siz = 4
|
|
r.Off = -1 // caller must fill in
|
|
r.Add = a.Offset
|
|
}
|
|
return 0
|
|
}
|
|
|
|
return a.Offset
|
|
}
|
|
|
|
func (ab *AsmBuf) asmandsz(ctxt *obj.Link, cursym *obj.LSym, p *obj.Prog, a *obj.Addr, r int, rex int, m64 int) {
|
|
var base int
|
|
var rel obj.Reloc
|
|
|
|
rex &= 0x40 | Rxr
|
|
if a.Offset != int64(int32(a.Offset)) {
|
|
// The rules are slightly different for 386 and AMD64,
|
|
// mostly for historical reasons. We may unify them later,
|
|
// but it must be discussed beforehand.
|
|
//
|
|
// For 64bit mode only LEAL is allowed to overflow.
|
|
// It's how https://golang.org/cl/59630 made it.
|
|
// crypto/sha1/sha1block_amd64.s depends on this feature.
|
|
//
|
|
// For 32bit mode rules are more permissive.
|
|
// If offset fits uint32, it's permitted.
|
|
// This is allowed for assembly that wants to use 32-bit hex
|
|
// constants, e.g. LEAL 0x99999999(AX), AX.
|
|
overflowOK := (ctxt.Arch.Family == sys.AMD64 && p.As == ALEAL) ||
|
|
(ctxt.Arch.Family != sys.AMD64 &&
|
|
int64(uint32(a.Offset)) == a.Offset &&
|
|
ab.rexflag&Rxw == 0)
|
|
if !overflowOK {
|
|
ctxt.Diag("offset too large in %s", p)
|
|
}
|
|
}
|
|
v := int32(a.Offset)
|
|
rel.Siz = 0
|
|
|
|
switch a.Type {
|
|
case obj.TYPE_ADDR:
|
|
if a.Name == obj.NAME_NONE {
|
|
ctxt.Diag("unexpected TYPE_ADDR with NAME_NONE")
|
|
}
|
|
if a.Index == REG_TLS {
|
|
ctxt.Diag("unexpected TYPE_ADDR with index==REG_TLS")
|
|
}
|
|
goto bad
|
|
|
|
case obj.TYPE_REG:
|
|
const regFirst = REG_AL
|
|
const regLast = REG_Z31
|
|
if a.Reg < regFirst || regLast < a.Reg {
|
|
goto bad
|
|
}
|
|
if v != 0 {
|
|
goto bad
|
|
}
|
|
ab.Put1(byte(3<<6 | reg[a.Reg]<<0 | r<<3))
|
|
ab.rexflag |= regrex[a.Reg]&(0x40|Rxb) | rex
|
|
return
|
|
}
|
|
|
|
if a.Type != obj.TYPE_MEM {
|
|
goto bad
|
|
}
|
|
|
|
if a.Index != REG_NONE && a.Index != REG_TLS {
|
|
base := int(a.Reg)
|
|
switch a.Name {
|
|
case obj.NAME_EXTERN,
|
|
obj.NAME_GOTREF,
|
|
obj.NAME_STATIC:
|
|
if !useAbs(ctxt, a.Sym) && ctxt.Arch.Family == sys.AMD64 {
|
|
goto bad
|
|
}
|
|
if ctxt.Arch.Family == sys.I386 && ctxt.Flag_shared {
|
|
// The base register has already been set. It holds the PC
|
|
// of this instruction returned by a PC-reading thunk.
|
|
// See obj6.go:rewriteToPcrel.
|
|
} else {
|
|
base = REG_NONE
|
|
}
|
|
v = int32(vaddr(ctxt, p, a, &rel))
|
|
|
|
case obj.NAME_AUTO,
|
|
obj.NAME_PARAM:
|
|
base = REG_SP
|
|
}
|
|
|
|
ab.rexflag |= regrex[int(a.Index)]&Rxx | regrex[base]&Rxb | rex
|
|
if base == REG_NONE {
|
|
ab.Put1(byte(0<<6 | 4<<0 | r<<3))
|
|
ab.asmidx(ctxt, int(a.Scale), int(a.Index), base)
|
|
goto putrelv
|
|
}
|
|
|
|
if v == 0 && rel.Siz == 0 && base != REG_BP && base != REG_R13 {
|
|
ab.Put1(byte(0<<6 | 4<<0 | r<<3))
|
|
ab.asmidx(ctxt, int(a.Scale), int(a.Index), base)
|
|
return
|
|
}
|
|
|
|
if disp8, ok := toDisp8(v, p, ab); ok && rel.Siz == 0 {
|
|
ab.Put1(byte(1<<6 | 4<<0 | r<<3))
|
|
ab.asmidx(ctxt, int(a.Scale), int(a.Index), base)
|
|
ab.Put1(disp8)
|
|
return
|
|
}
|
|
|
|
ab.Put1(byte(2<<6 | 4<<0 | r<<3))
|
|
ab.asmidx(ctxt, int(a.Scale), int(a.Index), base)
|
|
goto putrelv
|
|
}
|
|
|
|
base = int(a.Reg)
|
|
switch a.Name {
|
|
case obj.NAME_STATIC,
|
|
obj.NAME_GOTREF,
|
|
obj.NAME_EXTERN:
|
|
if a.Sym == nil {
|
|
ctxt.Diag("bad addr: %v", p)
|
|
}
|
|
if ctxt.Arch.Family == sys.I386 && ctxt.Flag_shared {
|
|
// The base register has already been set. It holds the PC
|
|
// of this instruction returned by a PC-reading thunk.
|
|
// See obj6.go:rewriteToPcrel.
|
|
} else {
|
|
base = REG_NONE
|
|
}
|
|
v = int32(vaddr(ctxt, p, a, &rel))
|
|
|
|
case obj.NAME_AUTO,
|
|
obj.NAME_PARAM:
|
|
base = REG_SP
|
|
}
|
|
|
|
if base == REG_TLS {
|
|
v = int32(vaddr(ctxt, p, a, &rel))
|
|
}
|
|
|
|
ab.rexflag |= regrex[base]&Rxb | rex
|
|
if base == REG_NONE || (REG_CS <= base && base <= REG_GS) || base == REG_TLS {
|
|
if (a.Sym == nil || !useAbs(ctxt, a.Sym)) && base == REG_NONE && (a.Name == obj.NAME_STATIC || a.Name == obj.NAME_EXTERN || a.Name == obj.NAME_GOTREF) || ctxt.Arch.Family != sys.AMD64 {
|
|
if a.Name == obj.NAME_GOTREF && (a.Offset != 0 || a.Index != 0 || a.Scale != 0) {
|
|
ctxt.Diag("%v has offset against gotref", p)
|
|
}
|
|
ab.Put1(byte(0<<6 | 5<<0 | r<<3))
|
|
goto putrelv
|
|
}
|
|
|
|
// temporary
|
|
ab.Put2(
|
|
byte(0<<6|4<<0|r<<3), // sib present
|
|
0<<6|4<<3|5<<0, // DS:d32
|
|
)
|
|
goto putrelv
|
|
}
|
|
|
|
if base == REG_SP || base == REG_R12 {
|
|
if v == 0 {
|
|
ab.Put1(byte(0<<6 | reg[base]<<0 | r<<3))
|
|
ab.asmidx(ctxt, int(a.Scale), REG_NONE, base)
|
|
return
|
|
}
|
|
|
|
if disp8, ok := toDisp8(v, p, ab); ok {
|
|
ab.Put1(byte(1<<6 | reg[base]<<0 | r<<3))
|
|
ab.asmidx(ctxt, int(a.Scale), REG_NONE, base)
|
|
ab.Put1(disp8)
|
|
return
|
|
}
|
|
|
|
ab.Put1(byte(2<<6 | reg[base]<<0 | r<<3))
|
|
ab.asmidx(ctxt, int(a.Scale), REG_NONE, base)
|
|
goto putrelv
|
|
}
|
|
|
|
if REG_AX <= base && base <= REG_R15 {
|
|
if a.Index == REG_TLS && !ctxt.Flag_shared && !isAndroid {
|
|
rel = obj.Reloc{}
|
|
rel.Type = objabi.R_TLS_LE
|
|
rel.Siz = 4
|
|
rel.Sym = nil
|
|
rel.Add = int64(v)
|
|
v = 0
|
|
}
|
|
|
|
if v == 0 && rel.Siz == 0 && base != REG_BP && base != REG_R13 {
|
|
ab.Put1(byte(0<<6 | reg[base]<<0 | r<<3))
|
|
return
|
|
}
|
|
|
|
if disp8, ok := toDisp8(v, p, ab); ok && rel.Siz == 0 {
|
|
ab.Put2(byte(1<<6|reg[base]<<0|r<<3), disp8)
|
|
return
|
|
}
|
|
|
|
ab.Put1(byte(2<<6 | reg[base]<<0 | r<<3))
|
|
goto putrelv
|
|
}
|
|
|
|
goto bad
|
|
|
|
putrelv:
|
|
if rel.Siz != 0 {
|
|
if rel.Siz != 4 {
|
|
ctxt.Diag("bad rel")
|
|
goto bad
|
|
}
|
|
|
|
r := obj.Addrel(cursym)
|
|
*r = rel
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
}
|
|
|
|
ab.PutInt32(v)
|
|
return
|
|
|
|
bad:
|
|
ctxt.Diag("asmand: bad address %v", obj.Dconv(p, a))
|
|
}
|
|
|
|
func (ab *AsmBuf) asmand(ctxt *obj.Link, cursym *obj.LSym, p *obj.Prog, a *obj.Addr, ra *obj.Addr) {
|
|
ab.asmandsz(ctxt, cursym, p, a, reg[ra.Reg], regrex[ra.Reg], 0)
|
|
}
|
|
|
|
func (ab *AsmBuf) asmando(ctxt *obj.Link, cursym *obj.LSym, p *obj.Prog, a *obj.Addr, o int) {
|
|
ab.asmandsz(ctxt, cursym, p, a, o, 0, 0)
|
|
}
|
|
|
|
func bytereg(a *obj.Addr, t *uint8) {
|
|
if a.Type == obj.TYPE_REG && a.Index == REG_NONE && (REG_AX <= a.Reg && a.Reg <= REG_R15) {
|
|
a.Reg += REG_AL - REG_AX
|
|
*t = 0
|
|
}
|
|
}
|
|
|
|
func unbytereg(a *obj.Addr, t *uint8) {
|
|
if a.Type == obj.TYPE_REG && a.Index == REG_NONE && (REG_AL <= a.Reg && a.Reg <= REG_R15B) {
|
|
a.Reg += REG_AX - REG_AL
|
|
*t = 0
|
|
}
|
|
}
|
|
|
|
const (
|
|
movLit uint8 = iota // Like Zlit
|
|
movRegMem
|
|
movMemReg
|
|
movRegMem2op
|
|
movMemReg2op
|
|
movFullPtr // Load full pointer, trash heap (unsupported)
|
|
movDoubleShift
|
|
movTLSReg
|
|
)
|
|
|
|
var ymovtab = []movtab{
|
|
// push
|
|
{APUSHL, Ycs, Ynone, Ynone, movLit, [4]uint8{0x0e, 0}},
|
|
{APUSHL, Yss, Ynone, Ynone, movLit, [4]uint8{0x16, 0}},
|
|
{APUSHL, Yds, Ynone, Ynone, movLit, [4]uint8{0x1e, 0}},
|
|
{APUSHL, Yes, Ynone, Ynone, movLit, [4]uint8{0x06, 0}},
|
|
{APUSHL, Yfs, Ynone, Ynone, movLit, [4]uint8{0x0f, 0xa0, 0}},
|
|
{APUSHL, Ygs, Ynone, Ynone, movLit, [4]uint8{0x0f, 0xa8, 0}},
|
|
{APUSHQ, Yfs, Ynone, Ynone, movLit, [4]uint8{0x0f, 0xa0, 0}},
|
|
{APUSHQ, Ygs, Ynone, Ynone, movLit, [4]uint8{0x0f, 0xa8, 0}},
|
|
{APUSHW, Ycs, Ynone, Ynone, movLit, [4]uint8{Pe, 0x0e, 0}},
|
|
{APUSHW, Yss, Ynone, Ynone, movLit, [4]uint8{Pe, 0x16, 0}},
|
|
{APUSHW, Yds, Ynone, Ynone, movLit, [4]uint8{Pe, 0x1e, 0}},
|
|
{APUSHW, Yes, Ynone, Ynone, movLit, [4]uint8{Pe, 0x06, 0}},
|
|
{APUSHW, Yfs, Ynone, Ynone, movLit, [4]uint8{Pe, 0x0f, 0xa0, 0}},
|
|
{APUSHW, Ygs, Ynone, Ynone, movLit, [4]uint8{Pe, 0x0f, 0xa8, 0}},
|
|
|
|
// pop
|
|
{APOPL, Ynone, Ynone, Yds, movLit, [4]uint8{0x1f, 0}},
|
|
{APOPL, Ynone, Ynone, Yes, movLit, [4]uint8{0x07, 0}},
|
|
{APOPL, Ynone, Ynone, Yss, movLit, [4]uint8{0x17, 0}},
|
|
{APOPL, Ynone, Ynone, Yfs, movLit, [4]uint8{0x0f, 0xa1, 0}},
|
|
{APOPL, Ynone, Ynone, Ygs, movLit, [4]uint8{0x0f, 0xa9, 0}},
|
|
{APOPQ, Ynone, Ynone, Yfs, movLit, [4]uint8{0x0f, 0xa1, 0}},
|
|
{APOPQ, Ynone, Ynone, Ygs, movLit, [4]uint8{0x0f, 0xa9, 0}},
|
|
{APOPW, Ynone, Ynone, Yds, movLit, [4]uint8{Pe, 0x1f, 0}},
|
|
{APOPW, Ynone, Ynone, Yes, movLit, [4]uint8{Pe, 0x07, 0}},
|
|
{APOPW, Ynone, Ynone, Yss, movLit, [4]uint8{Pe, 0x17, 0}},
|
|
{APOPW, Ynone, Ynone, Yfs, movLit, [4]uint8{Pe, 0x0f, 0xa1, 0}},
|
|
{APOPW, Ynone, Ynone, Ygs, movLit, [4]uint8{Pe, 0x0f, 0xa9, 0}},
|
|
|
|
// mov seg
|
|
{AMOVW, Yes, Ynone, Yml, movRegMem, [4]uint8{0x8c, 0, 0, 0}},
|
|
{AMOVW, Ycs, Ynone, Yml, movRegMem, [4]uint8{0x8c, 1, 0, 0}},
|
|
{AMOVW, Yss, Ynone, Yml, movRegMem, [4]uint8{0x8c, 2, 0, 0}},
|
|
{AMOVW, Yds, Ynone, Yml, movRegMem, [4]uint8{0x8c, 3, 0, 0}},
|
|
{AMOVW, Yfs, Ynone, Yml, movRegMem, [4]uint8{0x8c, 4, 0, 0}},
|
|
{AMOVW, Ygs, Ynone, Yml, movRegMem, [4]uint8{0x8c, 5, 0, 0}},
|
|
{AMOVW, Yml, Ynone, Yes, movMemReg, [4]uint8{0x8e, 0, 0, 0}},
|
|
{AMOVW, Yml, Ynone, Ycs, movMemReg, [4]uint8{0x8e, 1, 0, 0}},
|
|
{AMOVW, Yml, Ynone, Yss, movMemReg, [4]uint8{0x8e, 2, 0, 0}},
|
|
{AMOVW, Yml, Ynone, Yds, movMemReg, [4]uint8{0x8e, 3, 0, 0}},
|
|
{AMOVW, Yml, Ynone, Yfs, movMemReg, [4]uint8{0x8e, 4, 0, 0}},
|
|
{AMOVW, Yml, Ynone, Ygs, movMemReg, [4]uint8{0x8e, 5, 0, 0}},
|
|
|
|
// mov cr
|
|
{AMOVL, Ycr0, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x20, 0, 0}},
|
|
{AMOVL, Ycr2, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x20, 2, 0}},
|
|
{AMOVL, Ycr3, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x20, 3, 0}},
|
|
{AMOVL, Ycr4, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x20, 4, 0}},
|
|
{AMOVL, Ycr8, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x20, 8, 0}},
|
|
{AMOVQ, Ycr0, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x20, 0, 0}},
|
|
{AMOVQ, Ycr2, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x20, 2, 0}},
|
|
{AMOVQ, Ycr3, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x20, 3, 0}},
|
|
{AMOVQ, Ycr4, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x20, 4, 0}},
|
|
{AMOVQ, Ycr8, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x20, 8, 0}},
|
|
{AMOVL, Yrl, Ynone, Ycr0, movMemReg2op, [4]uint8{0x0f, 0x22, 0, 0}},
|
|
{AMOVL, Yrl, Ynone, Ycr2, movMemReg2op, [4]uint8{0x0f, 0x22, 2, 0}},
|
|
{AMOVL, Yrl, Ynone, Ycr3, movMemReg2op, [4]uint8{0x0f, 0x22, 3, 0}},
|
|
{AMOVL, Yrl, Ynone, Ycr4, movMemReg2op, [4]uint8{0x0f, 0x22, 4, 0}},
|
|
{AMOVL, Yrl, Ynone, Ycr8, movMemReg2op, [4]uint8{0x0f, 0x22, 8, 0}},
|
|
{AMOVQ, Yrl, Ynone, Ycr0, movMemReg2op, [4]uint8{0x0f, 0x22, 0, 0}},
|
|
{AMOVQ, Yrl, Ynone, Ycr2, movMemReg2op, [4]uint8{0x0f, 0x22, 2, 0}},
|
|
{AMOVQ, Yrl, Ynone, Ycr3, movMemReg2op, [4]uint8{0x0f, 0x22, 3, 0}},
|
|
{AMOVQ, Yrl, Ynone, Ycr4, movMemReg2op, [4]uint8{0x0f, 0x22, 4, 0}},
|
|
{AMOVQ, Yrl, Ynone, Ycr8, movMemReg2op, [4]uint8{0x0f, 0x22, 8, 0}},
|
|
|
|
// mov dr
|
|
{AMOVL, Ydr0, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x21, 0, 0}},
|
|
{AMOVL, Ydr6, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x21, 6, 0}},
|
|
{AMOVL, Ydr7, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x21, 7, 0}},
|
|
{AMOVQ, Ydr0, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x21, 0, 0}},
|
|
{AMOVQ, Ydr2, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x21, 2, 0}},
|
|
{AMOVQ, Ydr3, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x21, 3, 0}},
|
|
{AMOVQ, Ydr6, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x21, 6, 0}},
|
|
{AMOVQ, Ydr7, Ynone, Yrl, movRegMem2op, [4]uint8{0x0f, 0x21, 7, 0}},
|
|
{AMOVL, Yrl, Ynone, Ydr0, movMemReg2op, [4]uint8{0x0f, 0x23, 0, 0}},
|
|
{AMOVL, Yrl, Ynone, Ydr6, movMemReg2op, [4]uint8{0x0f, 0x23, 6, 0}},
|
|
{AMOVL, Yrl, Ynone, Ydr7, movMemReg2op, [4]uint8{0x0f, 0x23, 7, 0}},
|
|
{AMOVQ, Yrl, Ynone, Ydr0, movMemReg2op, [4]uint8{0x0f, 0x23, 0, 0}},
|
|
{AMOVQ, Yrl, Ynone, Ydr2, movMemReg2op, [4]uint8{0x0f, 0x23, 2, 0}},
|
|
{AMOVQ, Yrl, Ynone, Ydr3, movMemReg2op, [4]uint8{0x0f, 0x23, 3, 0}},
|
|
{AMOVQ, Yrl, Ynone, Ydr6, movMemReg2op, [4]uint8{0x0f, 0x23, 6, 0}},
|
|
{AMOVQ, Yrl, Ynone, Ydr7, movMemReg2op, [4]uint8{0x0f, 0x23, 7, 0}},
|
|
|
|
// mov tr
|
|
{AMOVL, Ytr6, Ynone, Yml, movRegMem2op, [4]uint8{0x0f, 0x24, 6, 0}},
|
|
{AMOVL, Ytr7, Ynone, Yml, movRegMem2op, [4]uint8{0x0f, 0x24, 7, 0}},
|
|
{AMOVL, Yml, Ynone, Ytr6, movMemReg2op, [4]uint8{0x0f, 0x26, 6, 0xff}},
|
|
{AMOVL, Yml, Ynone, Ytr7, movMemReg2op, [4]uint8{0x0f, 0x26, 7, 0xff}},
|
|
|
|
// lgdt, sgdt, lidt, sidt
|
|
{AMOVL, Ym, Ynone, Ygdtr, movMemReg2op, [4]uint8{0x0f, 0x01, 2, 0}},
|
|
{AMOVL, Ygdtr, Ynone, Ym, movRegMem2op, [4]uint8{0x0f, 0x01, 0, 0}},
|
|
{AMOVL, Ym, Ynone, Yidtr, movMemReg2op, [4]uint8{0x0f, 0x01, 3, 0}},
|
|
{AMOVL, Yidtr, Ynone, Ym, movRegMem2op, [4]uint8{0x0f, 0x01, 1, 0}},
|
|
{AMOVQ, Ym, Ynone, Ygdtr, movMemReg2op, [4]uint8{0x0f, 0x01, 2, 0}},
|
|
{AMOVQ, Ygdtr, Ynone, Ym, movRegMem2op, [4]uint8{0x0f, 0x01, 0, 0}},
|
|
{AMOVQ, Ym, Ynone, Yidtr, movMemReg2op, [4]uint8{0x0f, 0x01, 3, 0}},
|
|
{AMOVQ, Yidtr, Ynone, Ym, movRegMem2op, [4]uint8{0x0f, 0x01, 1, 0}},
|
|
|
|
// lldt, sldt
|
|
{AMOVW, Yml, Ynone, Yldtr, movMemReg2op, [4]uint8{0x0f, 0x00, 2, 0}},
|
|
{AMOVW, Yldtr, Ynone, Yml, movRegMem2op, [4]uint8{0x0f, 0x00, 0, 0}},
|
|
|
|
// lmsw, smsw
|
|
{AMOVW, Yml, Ynone, Ymsw, movMemReg2op, [4]uint8{0x0f, 0x01, 6, 0}},
|
|
{AMOVW, Ymsw, Ynone, Yml, movRegMem2op, [4]uint8{0x0f, 0x01, 4, 0}},
|
|
|
|
// ltr, str
|
|
{AMOVW, Yml, Ynone, Ytask, movMemReg2op, [4]uint8{0x0f, 0x00, 3, 0}},
|
|
{AMOVW, Ytask, Ynone, Yml, movRegMem2op, [4]uint8{0x0f, 0x00, 1, 0}},
|
|
|
|
/* load full pointer - unsupported
|
|
{AMOVL, Yml, Ycol, movFullPtr, [4]uint8{0, 0, 0, 0}},
|
|
{AMOVW, Yml, Ycol, movFullPtr, [4]uint8{Pe, 0, 0, 0}},
|
|
*/
|
|
|
|
// double shift
|
|
{ASHLL, Yi8, Yrl, Yml, movDoubleShift, [4]uint8{0xa4, 0xa5, 0, 0}},
|
|
{ASHLL, Ycl, Yrl, Yml, movDoubleShift, [4]uint8{0xa4, 0xa5, 0, 0}},
|
|
{ASHLL, Ycx, Yrl, Yml, movDoubleShift, [4]uint8{0xa4, 0xa5, 0, 0}},
|
|
{ASHRL, Yi8, Yrl, Yml, movDoubleShift, [4]uint8{0xac, 0xad, 0, 0}},
|
|
{ASHRL, Ycl, Yrl, Yml, movDoubleShift, [4]uint8{0xac, 0xad, 0, 0}},
|
|
{ASHRL, Ycx, Yrl, Yml, movDoubleShift, [4]uint8{0xac, 0xad, 0, 0}},
|
|
{ASHLQ, Yi8, Yrl, Yml, movDoubleShift, [4]uint8{Pw, 0xa4, 0xa5, 0}},
|
|
{ASHLQ, Ycl, Yrl, Yml, movDoubleShift, [4]uint8{Pw, 0xa4, 0xa5, 0}},
|
|
{ASHLQ, Ycx, Yrl, Yml, movDoubleShift, [4]uint8{Pw, 0xa4, 0xa5, 0}},
|
|
{ASHRQ, Yi8, Yrl, Yml, movDoubleShift, [4]uint8{Pw, 0xac, 0xad, 0}},
|
|
{ASHRQ, Ycl, Yrl, Yml, movDoubleShift, [4]uint8{Pw, 0xac, 0xad, 0}},
|
|
{ASHRQ, Ycx, Yrl, Yml, movDoubleShift, [4]uint8{Pw, 0xac, 0xad, 0}},
|
|
{ASHLW, Yi8, Yrl, Yml, movDoubleShift, [4]uint8{Pe, 0xa4, 0xa5, 0}},
|
|
{ASHLW, Ycl, Yrl, Yml, movDoubleShift, [4]uint8{Pe, 0xa4, 0xa5, 0}},
|
|
{ASHLW, Ycx, Yrl, Yml, movDoubleShift, [4]uint8{Pe, 0xa4, 0xa5, 0}},
|
|
{ASHRW, Yi8, Yrl, Yml, movDoubleShift, [4]uint8{Pe, 0xac, 0xad, 0}},
|
|
{ASHRW, Ycl, Yrl, Yml, movDoubleShift, [4]uint8{Pe, 0xac, 0xad, 0}},
|
|
{ASHRW, Ycx, Yrl, Yml, movDoubleShift, [4]uint8{Pe, 0xac, 0xad, 0}},
|
|
|
|
// load TLS base
|
|
{AMOVL, Ytls, Ynone, Yrl, movTLSReg, [4]uint8{0, 0, 0, 0}},
|
|
{AMOVQ, Ytls, Ynone, Yrl, movTLSReg, [4]uint8{0, 0, 0, 0}},
|
|
{0, 0, 0, 0, 0, [4]uint8{}},
|
|
}
|
|
|
|
func isax(a *obj.Addr) bool {
|
|
switch a.Reg {
|
|
case REG_AX, REG_AL, REG_AH:
|
|
return true
|
|
}
|
|
|
|
if a.Index == REG_AX {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func subreg(p *obj.Prog, from int, to int) {
|
|
if false { /* debug['Q'] */
|
|
fmt.Printf("\n%v\ts/%v/%v/\n", p, rconv(from), rconv(to))
|
|
}
|
|
|
|
if int(p.From.Reg) == from {
|
|
p.From.Reg = int16(to)
|
|
p.Ft = 0
|
|
}
|
|
|
|
if int(p.To.Reg) == from {
|
|
p.To.Reg = int16(to)
|
|
p.Tt = 0
|
|
}
|
|
|
|
if int(p.From.Index) == from {
|
|
p.From.Index = int16(to)
|
|
p.Ft = 0
|
|
}
|
|
|
|
if int(p.To.Index) == from {
|
|
p.To.Index = int16(to)
|
|
p.Tt = 0
|
|
}
|
|
|
|
if false { /* debug['Q'] */
|
|
fmt.Printf("%v\n", p)
|
|
}
|
|
}
|
|
|
|
func (ab *AsmBuf) mediaop(ctxt *obj.Link, o *Optab, op int, osize int, z int) int {
|
|
switch op {
|
|
case Pm, Pe, Pf2, Pf3:
|
|
if osize != 1 {
|
|
if op != Pm {
|
|
ab.Put1(byte(op))
|
|
}
|
|
ab.Put1(Pm)
|
|
z++
|
|
op = int(o.op[z])
|
|
break
|
|
}
|
|
fallthrough
|
|
|
|
default:
|
|
if ab.Len() == 0 || ab.Last() != Pm {
|
|
ab.Put1(Pm)
|
|
}
|
|
}
|
|
|
|
ab.Put1(byte(op))
|
|
return z
|
|
}
|
|
|
|
var bpduff1 = []byte{
|
|
0x48, 0x89, 0x6c, 0x24, 0xf0, // MOVQ BP, -16(SP)
|
|
0x48, 0x8d, 0x6c, 0x24, 0xf0, // LEAQ -16(SP), BP
|
|
}
|
|
|
|
var bpduff2 = []byte{
|
|
0x48, 0x8b, 0x6d, 0x00, // MOVQ 0(BP), BP
|
|
}
|
|
|
|
// asmevex emits EVEX pregis and opcode byte.
|
|
// In addition to asmvex r/m, vvvv and reg fields also requires optional
|
|
// K-masking register.
|
|
//
|
|
// Expects asmbuf.evex to be properly initialized.
|
|
func (ab *AsmBuf) asmevex(ctxt *obj.Link, p *obj.Prog, rm, v, r, k *obj.Addr) {
|
|
ab.evexflag = true
|
|
evex := ab.evex
|
|
|
|
rexR := byte(1)
|
|
evexR := byte(1)
|
|
rexX := byte(1)
|
|
rexB := byte(1)
|
|
if r != nil {
|
|
if regrex[r.Reg]&Rxr != 0 {
|
|
rexR = 0 // "ModR/M.reg" selector 4th bit.
|
|
}
|
|
if regrex[r.Reg]&RxrEvex != 0 {
|
|
evexR = 0 // "ModR/M.reg" selector 5th bit.
|
|
}
|
|
}
|
|
if rm != nil {
|
|
if rm.Index == REG_NONE && regrex[rm.Reg]&RxrEvex != 0 {
|
|
rexX = 0
|
|
} else if regrex[rm.Index]&Rxx != 0 {
|
|
rexX = 0
|
|
}
|
|
if regrex[rm.Reg]&Rxb != 0 {
|
|
rexB = 0
|
|
}
|
|
}
|
|
// P0 = [R][X][B][R'][00][mm]
|
|
p0 := (rexR << 7) |
|
|
(rexX << 6) |
|
|
(rexB << 5) |
|
|
(evexR << 4) |
|
|
(0 << 2) |
|
|
(evex.M() << 0)
|
|
|
|
vexV := byte(0)
|
|
if v != nil {
|
|
// 4bit-wide reg index.
|
|
vexV = byte(reg[v.Reg]|(regrex[v.Reg]&Rxr)<<1) & 0xF
|
|
}
|
|
vexV ^= 0x0F
|
|
// P1 = [W][vvvv][1][pp]
|
|
p1 := (evex.W() << 7) |
|
|
(vexV << 3) |
|
|
(1 << 2) |
|
|
(evex.P() << 0)
|
|
|
|
suffix := evexSuffixMap[p.Scond]
|
|
evexZ := byte(0)
|
|
evexLL := evex.L()
|
|
evexB := byte(0)
|
|
evexV := byte(1)
|
|
evexA := byte(0)
|
|
if suffix.zeroing {
|
|
if !evex.ZeroingEnabled() {
|
|
ctxt.Diag("unsupported zeroing: %v", p)
|
|
}
|
|
evexZ = 1
|
|
}
|
|
switch {
|
|
case suffix.rounding != rcUnset:
|
|
if rm != nil && rm.Type == obj.TYPE_MEM {
|
|
ctxt.Diag("illegal rounding with memory argument: %v", p)
|
|
} else if !evex.RoundingEnabled() {
|
|
ctxt.Diag("unsupported rounding: %v", p)
|
|
}
|
|
evexB = 1
|
|
evexLL = suffix.rounding
|
|
case suffix.broadcast:
|
|
if rm == nil || rm.Type != obj.TYPE_MEM {
|
|
ctxt.Diag("illegal broadcast without memory argument: %v", p)
|
|
} else if !evex.BroadcastEnabled() {
|
|
ctxt.Diag("unsupported broadcast: %v", p)
|
|
}
|
|
evexB = 1
|
|
case suffix.sae:
|
|
if rm != nil && rm.Type == obj.TYPE_MEM {
|
|
ctxt.Diag("illegal SAE with memory argument: %v", p)
|
|
} else if !evex.SaeEnabled() {
|
|
ctxt.Diag("unsupported SAE: %v", p)
|
|
}
|
|
evexB = 1
|
|
}
|
|
if rm != nil && regrex[rm.Index]&RxrEvex != 0 {
|
|
evexV = 0
|
|
} else if v != nil && regrex[v.Reg]&RxrEvex != 0 {
|
|
evexV = 0 // VSR selector 5th bit.
|
|
}
|
|
if k != nil {
|
|
evexA = byte(reg[k.Reg])
|
|
}
|
|
// P2 = [z][L'L][b][V'][aaa]
|
|
p2 := (evexZ << 7) |
|
|
(evexLL << 5) |
|
|
(evexB << 4) |
|
|
(evexV << 3) |
|
|
(evexA << 0)
|
|
|
|
const evexEscapeByte = 0x62
|
|
ab.Put4(evexEscapeByte, p0, p1, p2)
|
|
ab.Put1(evex.opcode)
|
|
}
|
|
|
|
// Emit VEX prefix and opcode byte.
|
|
// The three addresses are the r/m, vvvv, and reg fields.
|
|
// The reg and rm arguments appear in the same order as the
|
|
// arguments to asmand, which typically follows the call to asmvex.
|
|
// The final two arguments are the VEX prefix (see encoding above)
|
|
// and the opcode byte.
|
|
// For details about vex prefix see:
|
|
// https://en.wikipedia.org/wiki/VEX_prefix#Technical_description
|
|
func (ab *AsmBuf) asmvex(ctxt *obj.Link, rm, v, r *obj.Addr, vex, opcode uint8) {
|
|
ab.vexflag = true
|
|
rexR := 0
|
|
if r != nil {
|
|
rexR = regrex[r.Reg] & Rxr
|
|
}
|
|
rexB := 0
|
|
rexX := 0
|
|
if rm != nil {
|
|
rexB = regrex[rm.Reg] & Rxb
|
|
rexX = regrex[rm.Index] & Rxx
|
|
}
|
|
vexM := (vex >> 3) & 0x7
|
|
vexWLP := vex & 0x87
|
|
vexV := byte(0)
|
|
if v != nil {
|
|
vexV = byte(reg[v.Reg]|(regrex[v.Reg]&Rxr)<<1) & 0xF
|
|
}
|
|
vexV ^= 0xF
|
|
if vexM == 1 && (rexX|rexB) == 0 && vex&vexW1 == 0 {
|
|
// Can use 2-byte encoding.
|
|
ab.Put2(0xc5, byte(rexR<<5)^0x80|vexV<<3|vexWLP)
|
|
} else {
|
|
// Must use 3-byte encoding.
|
|
ab.Put3(0xc4,
|
|
(byte(rexR|rexX|rexB)<<5)^0xE0|vexM,
|
|
vexV<<3|vexWLP,
|
|
)
|
|
}
|
|
ab.Put1(opcode)
|
|
}
|
|
|
|
// regIndex returns register index that fits in 5 bits.
|
|
//
|
|
// R : 3 bit | legacy instructions | N/A
|
|
// [R/V]EX.R : 1 bit | REX / VEX extension bit | Rxr
|
|
// EVEX.R : 1 bit | EVEX extension bit | RxrEvex
|
|
//
|
|
// Examples:
|
|
// REG_Z30 => 30
|
|
// REG_X15 => 15
|
|
// REG_R9 => 9
|
|
// REG_AX => 0
|
|
//
|
|
func regIndex(r int16) int {
|
|
lower3bits := reg[r]
|
|
high4bit := regrex[r] & Rxr << 1
|
|
high5bit := regrex[r] & RxrEvex << 0
|
|
return lower3bits | high4bit | high5bit
|
|
}
|
|
|
|
// avx2gatherValid reports whether p satisfies AVX2 gather constraints.
|
|
// Reports errors via ctxt.
|
|
func avx2gatherValid(ctxt *obj.Link, p *obj.Prog) bool {
|
|
// If any pair of the index, mask, or destination registers
|
|
// are the same, illegal instruction trap (#UD) is triggered.
|
|
index := regIndex(p.GetFrom3().Index)
|
|
mask := regIndex(p.From.Reg)
|
|
dest := regIndex(p.To.Reg)
|
|
if dest == mask || dest == index || mask == index {
|
|
ctxt.Diag("mask, index, and destination registers should be distinct: %v", p)
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// avx512gatherValid reports whether p satisfies AVX512 gather constraints.
|
|
// Reports errors via ctxt.
|
|
func avx512gatherValid(ctxt *obj.Link, p *obj.Prog) bool {
|
|
// Illegal instruction trap (#UD) is triggered if the destination vector
|
|
// register is the same as index vector in VSIB.
|
|
index := regIndex(p.From.Index)
|
|
dest := regIndex(p.To.Reg)
|
|
if dest == index {
|
|
ctxt.Diag("index and destination registers should be distinct: %v", p)
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
func (ab *AsmBuf) doasm(ctxt *obj.Link, cursym *obj.LSym, p *obj.Prog) {
|
|
o := opindex[p.As&obj.AMask]
|
|
|
|
if o == nil {
|
|
ctxt.Diag("asmins: missing op %v", p)
|
|
return
|
|
}
|
|
|
|
if pre := prefixof(ctxt, &p.From); pre != 0 {
|
|
ab.Put1(byte(pre))
|
|
}
|
|
if pre := prefixof(ctxt, &p.To); pre != 0 {
|
|
ab.Put1(byte(pre))
|
|
}
|
|
|
|
// Checks to warn about instruction/arguments combinations that
|
|
// will unconditionally trigger illegal instruction trap (#UD).
|
|
switch p.As {
|
|
case AVGATHERDPD,
|
|
AVGATHERQPD,
|
|
AVGATHERDPS,
|
|
AVGATHERQPS,
|
|
AVPGATHERDD,
|
|
AVPGATHERQD,
|
|
AVPGATHERDQ,
|
|
AVPGATHERQQ:
|
|
// AVX512 gather requires explicit K mask.
|
|
if p.GetFrom3().Reg >= REG_K0 && p.GetFrom3().Reg <= REG_K7 {
|
|
if !avx512gatherValid(ctxt, p) {
|
|
return
|
|
}
|
|
} else {
|
|
if !avx2gatherValid(ctxt, p) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
if p.Ft == 0 {
|
|
p.Ft = uint8(oclass(ctxt, p, &p.From))
|
|
}
|
|
if p.Tt == 0 {
|
|
p.Tt = uint8(oclass(ctxt, p, &p.To))
|
|
}
|
|
|
|
ft := int(p.Ft) * Ymax
|
|
var f3t int
|
|
tt := int(p.Tt) * Ymax
|
|
|
|
xo := obj.Bool2int(o.op[0] == 0x0f)
|
|
z := 0
|
|
var a *obj.Addr
|
|
var l int
|
|
var op int
|
|
var q *obj.Prog
|
|
var r *obj.Reloc
|
|
var rel obj.Reloc
|
|
var v int64
|
|
|
|
args := make([]int, 0, argListMax)
|
|
if ft != Ynone*Ymax {
|
|
args = append(args, ft)
|
|
}
|
|
for i := range p.RestArgs {
|
|
args = append(args, oclass(ctxt, p, &p.RestArgs[i])*Ymax)
|
|
}
|
|
if tt != Ynone*Ymax {
|
|
args = append(args, tt)
|
|
}
|
|
|
|
for _, yt := range o.ytab {
|
|
// ytab matching is purely args-based,
|
|
// but AVX512 suffixes like "Z" or "RU_SAE" will
|
|
// add EVEX-only filter that will reject non-EVEX matches.
|
|
//
|
|
// Consider "VADDPD.BCST 2032(DX), X0, X0".
|
|
// Without this rule, operands will lead to VEX-encoded form
|
|
// and produce "c5b15813" encoding.
|
|
if !yt.match(args) {
|
|
// "xo" is always zero for VEX/EVEX encoded insts.
|
|
z += int(yt.zoffset) + xo
|
|
} else {
|
|
if p.Scond != 0 && !evexZcase(yt.zcase) {
|
|
// Do not signal error and continue to search
|
|
// for matching EVEX-encoded form.
|
|
z += int(yt.zoffset)
|
|
continue
|
|
}
|
|
|
|
switch o.prefix {
|
|
case Px1: // first option valid only in 32-bit mode
|
|
if ctxt.Arch.Family == sys.AMD64 && z == 0 {
|
|
z += int(yt.zoffset) + xo
|
|
continue
|
|
}
|
|
case Pq: // 16 bit escape and opcode escape
|
|
ab.Put2(Pe, Pm)
|
|
|
|
case Pq3: // 16 bit escape and opcode escape + REX.W
|
|
ab.rexflag |= Pw
|
|
ab.Put2(Pe, Pm)
|
|
|
|
case Pq4: // 66 0F 38
|
|
ab.Put3(0x66, 0x0F, 0x38)
|
|
|
|
case Pq4w: // 66 0F 38 + REX.W
|
|
ab.rexflag |= Pw
|
|
ab.Put3(0x66, 0x0F, 0x38)
|
|
|
|
case Pq5: // F3 0F 38
|
|
ab.Put3(0xF3, 0x0F, 0x38)
|
|
|
|
case Pq5w: // F3 0F 38 + REX.W
|
|
ab.rexflag |= Pw
|
|
ab.Put3(0xF3, 0x0F, 0x38)
|
|
|
|
case Pf2, // xmm opcode escape
|
|
Pf3:
|
|
ab.Put2(o.prefix, Pm)
|
|
|
|
case Pef3:
|
|
ab.Put3(Pe, Pf3, Pm)
|
|
|
|
case Pfw: // xmm opcode escape + REX.W
|
|
ab.rexflag |= Pw
|
|
ab.Put2(Pf3, Pm)
|
|
|
|
case Pm: // opcode escape
|
|
ab.Put1(Pm)
|
|
|
|
case Pe: // 16 bit escape
|
|
ab.Put1(Pe)
|
|
|
|
case Pw: // 64-bit escape
|
|
if ctxt.Arch.Family != sys.AMD64 {
|
|
ctxt.Diag("asmins: illegal 64: %v", p)
|
|
}
|
|
ab.rexflag |= Pw
|
|
|
|
case Pw8: // 64-bit escape if z >= 8
|
|
if z >= 8 {
|
|
if ctxt.Arch.Family != sys.AMD64 {
|
|
ctxt.Diag("asmins: illegal 64: %v", p)
|
|
}
|
|
ab.rexflag |= Pw
|
|
}
|
|
|
|
case Pb: // botch
|
|
if ctxt.Arch.Family != sys.AMD64 && (isbadbyte(&p.From) || isbadbyte(&p.To)) {
|
|
goto bad
|
|
}
|
|
// NOTE(rsc): This is probably safe to do always,
|
|
// but when enabled it chooses different encodings
|
|
// than the old cmd/internal/obj/i386 code did,
|
|
// which breaks our "same bits out" checks.
|
|
// In particular, CMPB AX, $0 encodes as 80 f8 00
|
|
// in the original obj/i386, and it would encode
|
|
// (using a valid, shorter form) as 3c 00 if we enabled
|
|
// the call to bytereg here.
|
|
if ctxt.Arch.Family == sys.AMD64 {
|
|
bytereg(&p.From, &p.Ft)
|
|
bytereg(&p.To, &p.Tt)
|
|
}
|
|
|
|
case P32: // 32 bit but illegal if 64-bit mode
|
|
if ctxt.Arch.Family == sys.AMD64 {
|
|
ctxt.Diag("asmins: illegal in 64-bit mode: %v", p)
|
|
}
|
|
|
|
case Py: // 64-bit only, no prefix
|
|
if ctxt.Arch.Family != sys.AMD64 {
|
|
ctxt.Diag("asmins: illegal in %d-bit mode: %v", ctxt.Arch.RegSize*8, p)
|
|
}
|
|
|
|
case Py1: // 64-bit only if z < 1, no prefix
|
|
if z < 1 && ctxt.Arch.Family != sys.AMD64 {
|
|
ctxt.Diag("asmins: illegal in %d-bit mode: %v", ctxt.Arch.RegSize*8, p)
|
|
}
|
|
|
|
case Py3: // 64-bit only if z < 3, no prefix
|
|
if z < 3 && ctxt.Arch.Family != sys.AMD64 {
|
|
ctxt.Diag("asmins: illegal in %d-bit mode: %v", ctxt.Arch.RegSize*8, p)
|
|
}
|
|
}
|
|
|
|
if z >= len(o.op) {
|
|
log.Fatalf("asmins bad table %v", p)
|
|
}
|
|
op = int(o.op[z])
|
|
if op == 0x0f {
|
|
ab.Put1(byte(op))
|
|
z++
|
|
op = int(o.op[z])
|
|
}
|
|
|
|
switch yt.zcase {
|
|
default:
|
|
ctxt.Diag("asmins: unknown z %d %v", yt.zcase, p)
|
|
return
|
|
|
|
case Zpseudo:
|
|
break
|
|
|
|
case Zlit:
|
|
ab.PutOpBytesLit(z, &o.op)
|
|
|
|
case Zlitr_m:
|
|
ab.PutOpBytesLit(z, &o.op)
|
|
ab.asmand(ctxt, cursym, p, &p.To, &p.From)
|
|
|
|
case Zlitm_r:
|
|
ab.PutOpBytesLit(z, &o.op)
|
|
ab.asmand(ctxt, cursym, p, &p.From, &p.To)
|
|
|
|
case Zlit_m_r:
|
|
ab.PutOpBytesLit(z, &o.op)
|
|
ab.asmand(ctxt, cursym, p, p.GetFrom3(), &p.To)
|
|
|
|
case Zmb_r:
|
|
bytereg(&p.From, &p.Ft)
|
|
fallthrough
|
|
|
|
case Zm_r:
|
|
ab.Put1(byte(op))
|
|
ab.asmand(ctxt, cursym, p, &p.From, &p.To)
|
|
|
|
case Z_m_r:
|
|
ab.Put1(byte(op))
|
|
ab.asmand(ctxt, cursym, p, p.GetFrom3(), &p.To)
|
|
|
|
case Zm2_r:
|
|
ab.Put2(byte(op), o.op[z+1])
|
|
ab.asmand(ctxt, cursym, p, &p.From, &p.To)
|
|
|
|
case Zm_r_xm:
|
|
ab.mediaop(ctxt, o, op, int(yt.zoffset), z)
|
|
ab.asmand(ctxt, cursym, p, &p.From, &p.To)
|
|
|
|
case Zm_r_xm_nr:
|
|
ab.rexflag = 0
|
|
ab.mediaop(ctxt, o, op, int(yt.zoffset), z)
|
|
ab.asmand(ctxt, cursym, p, &p.From, &p.To)
|
|
|
|
case Zm_r_i_xm:
|
|
ab.mediaop(ctxt, o, op, int(yt.zoffset), z)
|
|
ab.asmand(ctxt, cursym, p, &p.From, p.GetFrom3())
|
|
ab.Put1(byte(p.To.Offset))
|
|
|
|
case Zibm_r, Zibr_m:
|
|
ab.PutOpBytesLit(z, &o.op)
|
|
if yt.zcase == Zibr_m {
|
|
ab.asmand(ctxt, cursym, p, &p.To, p.GetFrom3())
|
|
} else {
|
|
ab.asmand(ctxt, cursym, p, p.GetFrom3(), &p.To)
|
|
}
|
|
switch {
|
|
default:
|
|
ab.Put1(byte(p.From.Offset))
|
|
case yt.args[0] == Yi32 && o.prefix == Pe:
|
|
ab.PutInt16(int16(p.From.Offset))
|
|
case yt.args[0] == Yi32:
|
|
ab.PutInt32(int32(p.From.Offset))
|
|
}
|
|
|
|
case Zaut_r:
|
|
ab.Put1(0x8d) // leal
|
|
if p.From.Type != obj.TYPE_ADDR {
|
|
ctxt.Diag("asmins: Zaut sb type ADDR")
|
|
}
|
|
p.From.Type = obj.TYPE_MEM
|
|
ab.asmand(ctxt, cursym, p, &p.From, &p.To)
|
|
p.From.Type = obj.TYPE_ADDR
|
|
|
|
case Zm_o:
|
|
ab.Put1(byte(op))
|
|
ab.asmando(ctxt, cursym, p, &p.From, int(o.op[z+1]))
|
|
|
|
case Zr_m:
|
|
ab.Put1(byte(op))
|
|
ab.asmand(ctxt, cursym, p, &p.To, &p.From)
|
|
|
|
case Zvex:
|
|
ab.asmvex(ctxt, &p.From, p.GetFrom3(), &p.To, o.op[z], o.op[z+1])
|
|
|
|
case Zvex_rm_v_r:
|
|
ab.asmvex(ctxt, &p.From, p.GetFrom3(), &p.To, o.op[z], o.op[z+1])
|
|
ab.asmand(ctxt, cursym, p, &p.From, &p.To)
|
|
|
|
case Zvex_rm_v_ro:
|
|
ab.asmvex(ctxt, &p.From, p.GetFrom3(), &p.To, o.op[z], o.op[z+1])
|
|
ab.asmando(ctxt, cursym, p, &p.From, int(o.op[z+2]))
|
|
|
|
case Zvex_i_rm_vo:
|
|
ab.asmvex(ctxt, p.GetFrom3(), &p.To, nil, o.op[z], o.op[z+1])
|
|
ab.asmando(ctxt, cursym, p, p.GetFrom3(), int(o.op[z+2]))
|
|
ab.Put1(byte(p.From.Offset))
|
|
|
|
case Zvex_i_r_v:
|
|
ab.asmvex(ctxt, p.GetFrom3(), &p.To, nil, o.op[z], o.op[z+1])
|
|
regnum := byte(0x7)
|
|
if p.GetFrom3().Reg >= REG_X0 && p.GetFrom3().Reg <= REG_X15 {
|
|
regnum &= byte(p.GetFrom3().Reg - REG_X0)
|
|
} else {
|
|
regnum &= byte(p.GetFrom3().Reg - REG_Y0)
|
|
}
|
|
ab.Put1(o.op[z+2] | regnum)
|
|
ab.Put1(byte(p.From.Offset))
|
|
|
|
case Zvex_i_rm_v_r:
|
|
imm, from, from3, to := unpackOps4(p)
|
|
ab.asmvex(ctxt, from, from3, to, o.op[z], o.op[z+1])
|
|
ab.asmand(ctxt, cursym, p, from, to)
|
|
ab.Put1(byte(imm.Offset))
|
|
|
|
case Zvex_i_rm_r:
|
|
ab.asmvex(ctxt, p.GetFrom3(), nil, &p.To, o.op[z], o.op[z+1])
|
|
ab.asmand(ctxt, cursym, p, p.GetFrom3(), &p.To)
|
|
ab.Put1(byte(p.From.Offset))
|
|
|
|
case Zvex_v_rm_r:
|
|
ab.asmvex(ctxt, p.GetFrom3(), &p.From, &p.To, o.op[z], o.op[z+1])
|
|
ab.asmand(ctxt, cursym, p, p.GetFrom3(), &p.To)
|
|
|
|
case Zvex_r_v_rm:
|
|
ab.asmvex(ctxt, &p.To, p.GetFrom3(), &p.From, o.op[z], o.op[z+1])
|
|
ab.asmand(ctxt, cursym, p, &p.To, &p.From)
|
|
|
|
case Zvex_rm_r_vo:
|
|
ab.asmvex(ctxt, &p.From, &p.To, p.GetFrom3(), o.op[z], o.op[z+1])
|
|
ab.asmando(ctxt, cursym, p, &p.From, int(o.op[z+2]))
|
|
|
|
case Zvex_i_r_rm:
|
|
ab.asmvex(ctxt, &p.To, nil, p.GetFrom3(), o.op[z], o.op[z+1])
|
|
ab.asmand(ctxt, cursym, p, &p.To, p.GetFrom3())
|
|
ab.Put1(byte(p.From.Offset))
|
|
|
|
case Zvex_hr_rm_v_r:
|
|
hr, from, from3, to := unpackOps4(p)
|
|
ab.asmvex(ctxt, from, from3, to, o.op[z], o.op[z+1])
|
|
ab.asmand(ctxt, cursym, p, from, to)
|
|
ab.Put1(byte(regIndex(hr.Reg) << 4))
|
|
|
|
case Zevex_k_rmo:
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, &p.To, nil, nil, &p.From)
|
|
ab.asmando(ctxt, cursym, p, &p.To, int(o.op[z+3]))
|
|
|
|
case Zevex_i_rm_vo:
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, p.GetFrom3(), &p.To, nil, nil)
|
|
ab.asmando(ctxt, cursym, p, p.GetFrom3(), int(o.op[z+3]))
|
|
ab.Put1(byte(p.From.Offset))
|
|
|
|
case Zevex_i_rm_k_vo:
|
|
imm, from, kmask, to := unpackOps4(p)
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, from, to, nil, kmask)
|
|
ab.asmando(ctxt, cursym, p, from, int(o.op[z+3]))
|
|
ab.Put1(byte(imm.Offset))
|
|
|
|
case Zevex_i_r_rm:
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, &p.To, nil, p.GetFrom3(), nil)
|
|
ab.asmand(ctxt, cursym, p, &p.To, p.GetFrom3())
|
|
ab.Put1(byte(p.From.Offset))
|
|
|
|
case Zevex_i_r_k_rm:
|
|
imm, from, kmask, to := unpackOps4(p)
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, to, nil, from, kmask)
|
|
ab.asmand(ctxt, cursym, p, to, from)
|
|
ab.Put1(byte(imm.Offset))
|
|
|
|
case Zevex_i_rm_r:
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, p.GetFrom3(), nil, &p.To, nil)
|
|
ab.asmand(ctxt, cursym, p, p.GetFrom3(), &p.To)
|
|
ab.Put1(byte(p.From.Offset))
|
|
|
|
case Zevex_i_rm_k_r:
|
|
imm, from, kmask, to := unpackOps4(p)
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, from, nil, to, kmask)
|
|
ab.asmand(ctxt, cursym, p, from, to)
|
|
ab.Put1(byte(imm.Offset))
|
|
|
|
case Zevex_i_rm_v_r:
|
|
imm, from, from3, to := unpackOps4(p)
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, from, from3, to, nil)
|
|
ab.asmand(ctxt, cursym, p, from, to)
|
|
ab.Put1(byte(imm.Offset))
|
|
|
|
case Zevex_i_rm_v_k_r:
|
|
imm, from, from3, kmask, to := unpackOps5(p)
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, from, from3, to, kmask)
|
|
ab.asmand(ctxt, cursym, p, from, to)
|
|
ab.Put1(byte(imm.Offset))
|
|
|
|
case Zevex_r_v_rm:
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, &p.To, p.GetFrom3(), &p.From, nil)
|
|
ab.asmand(ctxt, cursym, p, &p.To, &p.From)
|
|
|
|
case Zevex_rm_v_r:
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, &p.From, p.GetFrom3(), &p.To, nil)
|
|
ab.asmand(ctxt, cursym, p, &p.From, &p.To)
|
|
|
|
case Zevex_rm_k_r:
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, &p.From, nil, &p.To, p.GetFrom3())
|
|
ab.asmand(ctxt, cursym, p, &p.From, &p.To)
|
|
|
|
case Zevex_r_k_rm:
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, &p.To, nil, &p.From, p.GetFrom3())
|
|
ab.asmand(ctxt, cursym, p, &p.To, &p.From)
|
|
|
|
case Zevex_rm_v_k_r:
|
|
from, from3, kmask, to := unpackOps4(p)
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, from, from3, to, kmask)
|
|
ab.asmand(ctxt, cursym, p, from, to)
|
|
|
|
case Zevex_r_v_k_rm:
|
|
from, from3, kmask, to := unpackOps4(p)
|
|
ab.evex = newEVEXBits(z, &o.op)
|
|
ab.asmevex(ctxt, p, to, from3, from, kmask)
|
|
ab.asmand(ctxt, cursym, p, to, from)
|
|
|
|
case Zr_m_xm:
|
|
ab.mediaop(ctxt, o, op, int(yt.zoffset), z)
|
|
ab.asmand(ctxt, cursym, p, &p.To, &p.From)
|
|
|
|
case Zr_m_xm_nr:
|
|
ab.rexflag = 0
|
|
ab.mediaop(ctxt, o, op, int(yt.zoffset), z)
|
|
ab.asmand(ctxt, cursym, p, &p.To, &p.From)
|
|
|
|
case Zo_m:
|
|
ab.Put1(byte(op))
|
|
ab.asmando(ctxt, cursym, p, &p.To, int(o.op[z+1]))
|
|
|
|
case Zcallindreg:
|
|
r = obj.Addrel(cursym)
|
|
r.Off = int32(p.Pc)
|
|
r.Type = objabi.R_CALLIND
|
|
r.Siz = 0
|
|
fallthrough
|
|
|
|
case Zo_m64:
|
|
ab.Put1(byte(op))
|
|
ab.asmandsz(ctxt, cursym, p, &p.To, int(o.op[z+1]), 0, 1)
|
|
|
|
case Zm_ibo:
|
|
ab.Put1(byte(op))
|
|
ab.asmando(ctxt, cursym, p, &p.From, int(o.op[z+1]))
|
|
ab.Put1(byte(vaddr(ctxt, p, &p.To, nil)))
|
|
|
|
case Zibo_m:
|
|
ab.Put1(byte(op))
|
|
ab.asmando(ctxt, cursym, p, &p.To, int(o.op[z+1]))
|
|
ab.Put1(byte(vaddr(ctxt, p, &p.From, nil)))
|
|
|
|
case Zibo_m_xm:
|
|
z = ab.mediaop(ctxt, o, op, int(yt.zoffset), z)
|
|
ab.asmando(ctxt, cursym, p, &p.To, int(o.op[z+1]))
|
|
ab.Put1(byte(vaddr(ctxt, p, &p.From, nil)))
|
|
|
|
case Z_ib, Zib_:
|
|
if yt.zcase == Zib_ {
|
|
a = &p.From
|
|
} else {
|
|
a = &p.To
|
|
}
|
|
ab.Put1(byte(op))
|
|
if p.As == AXABORT {
|
|
ab.Put1(o.op[z+1])
|
|
}
|
|
ab.Put1(byte(vaddr(ctxt, p, a, nil)))
|
|
|
|
case Zib_rp:
|
|
ab.rexflag |= regrex[p.To.Reg] & (Rxb | 0x40)
|
|
ab.Put2(byte(op+reg[p.To.Reg]), byte(vaddr(ctxt, p, &p.From, nil)))
|
|
|
|
case Zil_rp:
|
|
ab.rexflag |= regrex[p.To.Reg] & Rxb
|
|
ab.Put1(byte(op + reg[p.To.Reg]))
|
|
if o.prefix == Pe {
|
|
v = vaddr(ctxt, p, &p.From, nil)
|
|
ab.PutInt16(int16(v))
|
|
} else {
|
|
ab.relput4(ctxt, cursym, p, &p.From)
|
|
}
|
|
|
|
case Zo_iw:
|
|
ab.Put1(byte(op))
|
|
if p.From.Type != obj.TYPE_NONE {
|
|
v = vaddr(ctxt, p, &p.From, nil)
|
|
ab.PutInt16(int16(v))
|
|
}
|
|
|
|
case Ziq_rp:
|
|
v = vaddr(ctxt, p, &p.From, &rel)
|
|
l = int(v >> 32)
|
|
if l == 0 && rel.Siz != 8 {
|
|
ab.rexflag &^= (0x40 | Rxw)
|
|
|
|
ab.rexflag |= regrex[p.To.Reg] & Rxb
|
|
ab.Put1(byte(0xb8 + reg[p.To.Reg]))
|
|
if rel.Type != 0 {
|
|
r = obj.Addrel(cursym)
|
|
*r = rel
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
}
|
|
|
|
ab.PutInt32(int32(v))
|
|
} else if l == -1 && uint64(v)&(uint64(1)<<31) != 0 { // sign extend
|
|
ab.Put1(0xc7)
|
|
ab.asmando(ctxt, cursym, p, &p.To, 0)
|
|
|
|
ab.PutInt32(int32(v)) // need all 8
|
|
} else {
|
|
ab.rexflag |= regrex[p.To.Reg] & Rxb
|
|
ab.Put1(byte(op + reg[p.To.Reg]))
|
|
if rel.Type != 0 {
|
|
r = obj.Addrel(cursym)
|
|
*r = rel
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
}
|
|
|
|
ab.PutInt64(v)
|
|
}
|
|
|
|
case Zib_rr:
|
|
ab.Put1(byte(op))
|
|
ab.asmand(ctxt, cursym, p, &p.To, &p.To)
|
|
ab.Put1(byte(vaddr(ctxt, p, &p.From, nil)))
|
|
|
|
case Z_il, Zil_:
|
|
if yt.zcase == Zil_ {
|
|
a = &p.From
|
|
} else {
|
|
a = &p.To
|
|
}
|
|
ab.Put1(byte(op))
|
|
if o.prefix == Pe {
|
|
v = vaddr(ctxt, p, a, nil)
|
|
ab.PutInt16(int16(v))
|
|
} else {
|
|
ab.relput4(ctxt, cursym, p, a)
|
|
}
|
|
|
|
case Zm_ilo, Zilo_m:
|
|
ab.Put1(byte(op))
|
|
if yt.zcase == Zilo_m {
|
|
a = &p.From
|
|
ab.asmando(ctxt, cursym, p, &p.To, int(o.op[z+1]))
|
|
} else {
|
|
a = &p.To
|
|
ab.asmando(ctxt, cursym, p, &p.From, int(o.op[z+1]))
|
|
}
|
|
|
|
if o.prefix == Pe {
|
|
v = vaddr(ctxt, p, a, nil)
|
|
ab.PutInt16(int16(v))
|
|
} else {
|
|
ab.relput4(ctxt, cursym, p, a)
|
|
}
|
|
|
|
case Zil_rr:
|
|
ab.Put1(byte(op))
|
|
ab.asmand(ctxt, cursym, p, &p.To, &p.To)
|
|
if o.prefix == Pe {
|
|
v = vaddr(ctxt, p, &p.From, nil)
|
|
ab.PutInt16(int16(v))
|
|
} else {
|
|
ab.relput4(ctxt, cursym, p, &p.From)
|
|
}
|
|
|
|
case Z_rp:
|
|
ab.rexflag |= regrex[p.To.Reg] & (Rxb | 0x40)
|
|
ab.Put1(byte(op + reg[p.To.Reg]))
|
|
|
|
case Zrp_:
|
|
ab.rexflag |= regrex[p.From.Reg] & (Rxb | 0x40)
|
|
ab.Put1(byte(op + reg[p.From.Reg]))
|
|
|
|
case Zcallcon, Zjmpcon:
|
|
if yt.zcase == Zcallcon {
|
|
ab.Put1(byte(op))
|
|
} else {
|
|
ab.Put1(o.op[z+1])
|
|
}
|
|
r = obj.Addrel(cursym)
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
r.Type = objabi.R_PCREL
|
|
r.Siz = 4
|
|
r.Add = p.To.Offset
|
|
ab.PutInt32(0)
|
|
|
|
case Zcallind:
|
|
ab.Put2(byte(op), o.op[z+1])
|
|
r = obj.Addrel(cursym)
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
if ctxt.Arch.Family == sys.AMD64 {
|
|
r.Type = objabi.R_PCREL
|
|
} else {
|
|
r.Type = objabi.R_ADDR
|
|
}
|
|
r.Siz = 4
|
|
r.Add = p.To.Offset
|
|
r.Sym = p.To.Sym
|
|
ab.PutInt32(0)
|
|
|
|
case Zcall, Zcallduff:
|
|
if p.To.Sym == nil {
|
|
ctxt.Diag("call without target")
|
|
ctxt.DiagFlush()
|
|
log.Fatalf("bad code")
|
|
}
|
|
|
|
if yt.zcase == Zcallduff && ctxt.Flag_dynlink {
|
|
ctxt.Diag("directly calling duff when dynamically linking Go")
|
|
}
|
|
|
|
if yt.zcase == Zcallduff && ctxt.Arch.Family == sys.AMD64 {
|
|
// Maintain BP around call, since duffcopy/duffzero can't do it
|
|
// (the call jumps into the middle of the function).
|
|
// This makes it possible to see call sites for duffcopy/duffzero in
|
|
// BP-based profiling tools like Linux perf (which is the
|
|
// whole point of maintaining frame pointers in Go).
|
|
// MOVQ BP, -16(SP)
|
|
// LEAQ -16(SP), BP
|
|
ab.Put(bpduff1)
|
|
}
|
|
ab.Put1(byte(op))
|
|
r = obj.Addrel(cursym)
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
r.Sym = p.To.Sym
|
|
r.Add = p.To.Offset
|
|
r.Type = objabi.R_CALL
|
|
r.Siz = 4
|
|
ab.PutInt32(0)
|
|
|
|
if yt.zcase == Zcallduff && ctxt.Arch.Family == sys.AMD64 {
|
|
// Pop BP pushed above.
|
|
// MOVQ 0(BP), BP
|
|
ab.Put(bpduff2)
|
|
}
|
|
|
|
// TODO: jump across functions needs reloc
|
|
case Zbr, Zjmp, Zloop:
|
|
if p.As == AXBEGIN {
|
|
ab.Put1(byte(op))
|
|
}
|
|
if p.To.Sym != nil {
|
|
if yt.zcase != Zjmp {
|
|
ctxt.Diag("branch to ATEXT")
|
|
ctxt.DiagFlush()
|
|
log.Fatalf("bad code")
|
|
}
|
|
|
|
ab.Put1(o.op[z+1])
|
|
r = obj.Addrel(cursym)
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
r.Sym = p.To.Sym
|
|
// Note: R_CALL instead of R_PCREL. R_CALL is more permissive in that
|
|
// it can point to a trampoline instead of the destination itself.
|
|
r.Type = objabi.R_CALL
|
|
r.Siz = 4
|
|
ab.PutInt32(0)
|
|
break
|
|
}
|
|
|
|
// Assumes q is in this function.
|
|
// TODO: Check in input, preserve in brchain.
|
|
|
|
// Fill in backward jump now.
|
|
q = p.To.Target()
|
|
|
|
if q == nil {
|
|
ctxt.Diag("jmp/branch/loop without target")
|
|
ctxt.DiagFlush()
|
|
log.Fatalf("bad code")
|
|
}
|
|
|
|
if p.Back&branchBackwards != 0 {
|
|
v = q.Pc - (p.Pc + 2)
|
|
if v >= -128 && p.As != AXBEGIN {
|
|
if p.As == AJCXZL {
|
|
ab.Put1(0x67)
|
|
}
|
|
ab.Put2(byte(op), byte(v))
|
|
} else if yt.zcase == Zloop {
|
|
ctxt.Diag("loop too far: %v", p)
|
|
} else {
|
|
v -= 5 - 2
|
|
if p.As == AXBEGIN {
|
|
v--
|
|
}
|
|
if yt.zcase == Zbr {
|
|
ab.Put1(0x0f)
|
|
v--
|
|
}
|
|
|
|
ab.Put1(o.op[z+1])
|
|
ab.PutInt32(int32(v))
|
|
}
|
|
|
|
break
|
|
}
|
|
|
|
// Annotate target; will fill in later.
|
|
p.Forwd = q.Rel
|
|
|
|
q.Rel = p
|
|
if p.Back&branchShort != 0 && p.As != AXBEGIN {
|
|
if p.As == AJCXZL {
|
|
ab.Put1(0x67)
|
|
}
|
|
ab.Put2(byte(op), 0)
|
|
} else if yt.zcase == Zloop {
|
|
ctxt.Diag("loop too far: %v", p)
|
|
} else {
|
|
if yt.zcase == Zbr {
|
|
ab.Put1(0x0f)
|
|
}
|
|
ab.Put1(o.op[z+1])
|
|
ab.PutInt32(0)
|
|
}
|
|
|
|
case Zbyte:
|
|
v = vaddr(ctxt, p, &p.From, &rel)
|
|
if rel.Siz != 0 {
|
|
rel.Siz = uint8(op)
|
|
r = obj.Addrel(cursym)
|
|
*r = rel
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
}
|
|
|
|
ab.Put1(byte(v))
|
|
if op > 1 {
|
|
ab.Put1(byte(v >> 8))
|
|
if op > 2 {
|
|
ab.PutInt16(int16(v >> 16))
|
|
if op > 4 {
|
|
ab.PutInt32(int32(v >> 32))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
}
|
|
f3t = Ynone * Ymax
|
|
if p.GetFrom3() != nil {
|
|
f3t = oclass(ctxt, p, p.GetFrom3()) * Ymax
|
|
}
|
|
for mo := ymovtab; mo[0].as != 0; mo = mo[1:] {
|
|
var pp obj.Prog
|
|
var t []byte
|
|
if p.As == mo[0].as {
|
|
if ycover[ft+int(mo[0].ft)] != 0 && ycover[f3t+int(mo[0].f3t)] != 0 && ycover[tt+int(mo[0].tt)] != 0 {
|
|
t = mo[0].op[:]
|
|
switch mo[0].code {
|
|
default:
|
|
ctxt.Diag("asmins: unknown mov %d %v", mo[0].code, p)
|
|
|
|
case movLit:
|
|
for z = 0; t[z] != 0; z++ {
|
|
ab.Put1(t[z])
|
|
}
|
|
|
|
case movRegMem:
|
|
ab.Put1(t[0])
|
|
ab.asmando(ctxt, cursym, p, &p.To, int(t[1]))
|
|
|
|
case movMemReg:
|
|
ab.Put1(t[0])
|
|
ab.asmando(ctxt, cursym, p, &p.From, int(t[1]))
|
|
|
|
case movRegMem2op: // r,m - 2op
|
|
ab.Put2(t[0], t[1])
|
|
ab.asmando(ctxt, cursym, p, &p.To, int(t[2]))
|
|
ab.rexflag |= regrex[p.From.Reg] & (Rxr | 0x40)
|
|
|
|
case movMemReg2op:
|
|
ab.Put2(t[0], t[1])
|
|
ab.asmando(ctxt, cursym, p, &p.From, int(t[2]))
|
|
ab.rexflag |= regrex[p.To.Reg] & (Rxr | 0x40)
|
|
|
|
case movFullPtr:
|
|
if t[0] != 0 {
|
|
ab.Put1(t[0])
|
|
}
|
|
switch p.To.Index {
|
|
default:
|
|
goto bad
|
|
|
|
case REG_DS:
|
|
ab.Put1(0xc5)
|
|
|
|
case REG_SS:
|
|
ab.Put2(0x0f, 0xb2)
|
|
|
|
case REG_ES:
|
|
ab.Put1(0xc4)
|
|
|
|
case REG_FS:
|
|
ab.Put2(0x0f, 0xb4)
|
|
|
|
case REG_GS:
|
|
ab.Put2(0x0f, 0xb5)
|
|
}
|
|
|
|
ab.asmand(ctxt, cursym, p, &p.From, &p.To)
|
|
|
|
case movDoubleShift:
|
|
if t[0] == Pw {
|
|
if ctxt.Arch.Family != sys.AMD64 {
|
|
ctxt.Diag("asmins: illegal 64: %v", p)
|
|
}
|
|
ab.rexflag |= Pw
|
|
t = t[1:]
|
|
} else if t[0] == Pe {
|
|
ab.Put1(Pe)
|
|
t = t[1:]
|
|
}
|
|
|
|
switch p.From.Type {
|
|
default:
|
|
goto bad
|
|
|
|
case obj.TYPE_CONST:
|
|
ab.Put2(0x0f, t[0])
|
|
ab.asmandsz(ctxt, cursym, p, &p.To, reg[p.GetFrom3().Reg], regrex[p.GetFrom3().Reg], 0)
|
|
ab.Put1(byte(p.From.Offset))
|
|
|
|
case obj.TYPE_REG:
|
|
switch p.From.Reg {
|
|
default:
|
|
goto bad
|
|
|
|
case REG_CL, REG_CX:
|
|
ab.Put2(0x0f, t[1])
|
|
ab.asmandsz(ctxt, cursym, p, &p.To, reg[p.GetFrom3().Reg], regrex[p.GetFrom3().Reg], 0)
|
|
}
|
|
}
|
|
|
|
// NOTE: The systems listed here are the ones that use the "TLS initial exec" model,
|
|
// where you load the TLS base register into a register and then index off that
|
|
// register to access the actual TLS variables. Systems that allow direct TLS access
|
|
// are handled in prefixof above and should not be listed here.
|
|
case movTLSReg:
|
|
if ctxt.Arch.Family == sys.AMD64 && p.As != AMOVQ || ctxt.Arch.Family == sys.I386 && p.As != AMOVL {
|
|
ctxt.Diag("invalid load of TLS: %v", p)
|
|
}
|
|
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
// NOTE: The systems listed here are the ones that use the "TLS initial exec" model,
|
|
// where you load the TLS base register into a register and then index off that
|
|
// register to access the actual TLS variables. Systems that allow direct TLS access
|
|
// are handled in prefixof above and should not be listed here.
|
|
switch ctxt.Headtype {
|
|
default:
|
|
log.Fatalf("unknown TLS base location for %v", ctxt.Headtype)
|
|
|
|
case objabi.Hlinux, objabi.Hfreebsd:
|
|
if ctxt.Flag_shared {
|
|
// Note that this is not generating the same insns as the other cases.
|
|
// MOV TLS, dst
|
|
// becomes
|
|
// call __x86.get_pc_thunk.dst
|
|
// movl (gotpc + g@gotntpoff)(dst), dst
|
|
// which is encoded as
|
|
// call __x86.get_pc_thunk.dst
|
|
// movq 0(dst), dst
|
|
// and R_CALL & R_TLS_IE relocs. This all assumes the only tls variable we access
|
|
// is g, which we can't check here, but will when we assemble the second
|
|
// instruction.
|
|
dst := p.To.Reg
|
|
ab.Put1(0xe8)
|
|
r = obj.Addrel(cursym)
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
r.Type = objabi.R_CALL
|
|
r.Siz = 4
|
|
r.Sym = ctxt.Lookup("__x86.get_pc_thunk." + strings.ToLower(rconv(int(dst))))
|
|
ab.PutInt32(0)
|
|
|
|
ab.Put2(0x8B, byte(2<<6|reg[dst]|(reg[dst]<<3)))
|
|
r = obj.Addrel(cursym)
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
r.Type = objabi.R_TLS_IE
|
|
r.Siz = 4
|
|
r.Add = 2
|
|
ab.PutInt32(0)
|
|
} else {
|
|
// ELF TLS base is 0(GS).
|
|
pp.From = p.From
|
|
|
|
pp.From.Type = obj.TYPE_MEM
|
|
pp.From.Reg = REG_GS
|
|
pp.From.Offset = 0
|
|
pp.From.Index = REG_NONE
|
|
pp.From.Scale = 0
|
|
ab.Put2(0x65, // GS
|
|
0x8B)
|
|
ab.asmand(ctxt, cursym, p, &pp.From, &p.To)
|
|
}
|
|
case objabi.Hplan9:
|
|
pp.From = obj.Addr{}
|
|
pp.From.Type = obj.TYPE_MEM
|
|
pp.From.Name = obj.NAME_EXTERN
|
|
pp.From.Sym = plan9privates
|
|
pp.From.Offset = 0
|
|
pp.From.Index = REG_NONE
|
|
ab.Put1(0x8B)
|
|
ab.asmand(ctxt, cursym, p, &pp.From, &p.To)
|
|
|
|
case objabi.Hwindows:
|
|
// Windows TLS base is always 0x14(FS).
|
|
pp.From = p.From
|
|
|
|
pp.From.Type = obj.TYPE_MEM
|
|
pp.From.Reg = REG_FS
|
|
pp.From.Offset = 0x14
|
|
pp.From.Index = REG_NONE
|
|
pp.From.Scale = 0
|
|
ab.Put2(0x64, // FS
|
|
0x8B)
|
|
ab.asmand(ctxt, cursym, p, &pp.From, &p.To)
|
|
}
|
|
break
|
|
}
|
|
|
|
switch ctxt.Headtype {
|
|
default:
|
|
log.Fatalf("unknown TLS base location for %v", ctxt.Headtype)
|
|
|
|
case objabi.Hlinux, objabi.Hfreebsd:
|
|
if !ctxt.Flag_shared {
|
|
log.Fatalf("unknown TLS base location for linux/freebsd without -shared")
|
|
}
|
|
// Note that this is not generating the same insn as the other cases.
|
|
// MOV TLS, R_to
|
|
// becomes
|
|
// movq g@gottpoff(%rip), R_to
|
|
// which is encoded as
|
|
// movq 0(%rip), R_to
|
|
// and a R_TLS_IE reloc. This all assumes the only tls variable we access
|
|
// is g, which we can't check here, but will when we assemble the second
|
|
// instruction.
|
|
ab.rexflag = Pw | (regrex[p.To.Reg] & Rxr)
|
|
|
|
ab.Put2(0x8B, byte(0x05|(reg[p.To.Reg]<<3)))
|
|
r = obj.Addrel(cursym)
|
|
r.Off = int32(p.Pc + int64(ab.Len()))
|
|
r.Type = objabi.R_TLS_IE
|
|
r.Siz = 4
|
|
r.Add = -4
|
|
ab.PutInt32(0)
|
|
|
|
case objabi.Hplan9:
|
|
pp.From = obj.Addr{}
|
|
pp.From.Type = obj.TYPE_MEM
|
|
pp.From.Name = obj.NAME_EXTERN
|
|
pp.From.Sym = plan9privates
|
|
pp.From.Offset = 0
|
|
pp.From.Index = REG_NONE
|
|
ab.rexflag |= Pw
|
|
ab.Put1(0x8B)
|
|
ab.asmand(ctxt, cursym, p, &pp.From, &p.To)
|
|
|
|
case objabi.Hsolaris: // TODO(rsc): Delete Hsolaris from list. Should not use this code. See progedit in obj6.c.
|
|
// TLS base is 0(FS).
|
|
pp.From = p.From
|
|
|
|
pp.From.Type = obj.TYPE_MEM
|
|
pp.From.Name = obj.NAME_NONE
|
|
pp.From.Reg = REG_NONE
|
|
pp.From.Offset = 0
|
|
pp.From.Index = REG_NONE
|
|
pp.From.Scale = 0
|
|
ab.rexflag |= Pw
|
|
ab.Put2(0x64, // FS
|
|
0x8B)
|
|
ab.asmand(ctxt, cursym, p, &pp.From, &p.To)
|
|
|
|
case objabi.Hwindows:
|
|
// Windows TLS base is always 0x28(GS).
|
|
pp.From = p.From
|
|
|
|
pp.From.Type = obj.TYPE_MEM
|
|
pp.From.Name = obj.NAME_NONE
|
|
pp.From.Reg = REG_GS
|
|
pp.From.Offset = 0x28
|
|
pp.From.Index = REG_NONE
|
|
pp.From.Scale = 0
|
|
ab.rexflag |= Pw
|
|
ab.Put2(0x65, // GS
|
|
0x8B)
|
|
ab.asmand(ctxt, cursym, p, &pp.From, &p.To)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
}
|
|
}
|
|
goto bad
|
|
|
|
bad:
|
|
if ctxt.Arch.Family != sys.AMD64 {
|
|
// here, the assembly has failed.
|
|
// if it's a byte instruction that has
|
|
// unaddressable registers, try to
|
|
// exchange registers and reissue the
|
|
// instruction with the operands renamed.
|
|
pp := *p
|
|
|
|
unbytereg(&pp.From, &pp.Ft)
|
|
unbytereg(&pp.To, &pp.Tt)
|
|
|
|
z := int(p.From.Reg)
|
|
if p.From.Type == obj.TYPE_REG && z >= REG_BP && z <= REG_DI {
|
|
// TODO(rsc): Use this code for x86-64 too. It has bug fixes not present in the amd64 code base.
|
|
// For now, different to keep bit-for-bit compatibility.
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
breg := byteswapreg(ctxt, &p.To)
|
|
if breg != REG_AX {
|
|
ab.Put1(0x87) // xchg lhs,bx
|
|
ab.asmando(ctxt, cursym, p, &p.From, reg[breg])
|
|
subreg(&pp, z, breg)
|
|
ab.doasm(ctxt, cursym, &pp)
|
|
ab.Put1(0x87) // xchg lhs,bx
|
|
ab.asmando(ctxt, cursym, p, &p.From, reg[breg])
|
|
} else {
|
|
ab.Put1(byte(0x90 + reg[z])) // xchg lsh,ax
|
|
subreg(&pp, z, REG_AX)
|
|
ab.doasm(ctxt, cursym, &pp)
|
|
ab.Put1(byte(0x90 + reg[z])) // xchg lsh,ax
|
|
}
|
|
return
|
|
}
|
|
|
|
if isax(&p.To) || p.To.Type == obj.TYPE_NONE {
|
|
// We certainly don't want to exchange
|
|
// with AX if the op is MUL or DIV.
|
|
ab.Put1(0x87) // xchg lhs,bx
|
|
ab.asmando(ctxt, cursym, p, &p.From, reg[REG_BX])
|
|
subreg(&pp, z, REG_BX)
|
|
ab.doasm(ctxt, cursym, &pp)
|
|
ab.Put1(0x87) // xchg lhs,bx
|
|
ab.asmando(ctxt, cursym, p, &p.From, reg[REG_BX])
|
|
} else {
|
|
ab.Put1(byte(0x90 + reg[z])) // xchg lsh,ax
|
|
subreg(&pp, z, REG_AX)
|
|
ab.doasm(ctxt, cursym, &pp)
|
|
ab.Put1(byte(0x90 + reg[z])) // xchg lsh,ax
|
|
}
|
|
return
|
|
}
|
|
|
|
z = int(p.To.Reg)
|
|
if p.To.Type == obj.TYPE_REG && z >= REG_BP && z <= REG_DI {
|
|
// TODO(rsc): Use this code for x86-64 too. It has bug fixes not present in the amd64 code base.
|
|
// For now, different to keep bit-for-bit compatibility.
|
|
if ctxt.Arch.Family == sys.I386 {
|
|
breg := byteswapreg(ctxt, &p.From)
|
|
if breg != REG_AX {
|
|
ab.Put1(0x87) //xchg rhs,bx
|
|
ab.asmando(ctxt, cursym, p, &p.To, reg[breg])
|
|
subreg(&pp, z, breg)
|
|
ab.doasm(ctxt, cursym, &pp)
|
|
ab.Put1(0x87) // xchg rhs,bx
|
|
ab.asmando(ctxt, cursym, p, &p.To, reg[breg])
|
|
} else {
|
|
ab.Put1(byte(0x90 + reg[z])) // xchg rsh,ax
|
|
subreg(&pp, z, REG_AX)
|
|
ab.doasm(ctxt, cursym, &pp)
|
|
ab.Put1(byte(0x90 + reg[z])) // xchg rsh,ax
|
|
}
|
|
return
|
|
}
|
|
|
|
if isax(&p.From) {
|
|
ab.Put1(0x87) // xchg rhs,bx
|
|
ab.asmando(ctxt, cursym, p, &p.To, reg[REG_BX])
|
|
subreg(&pp, z, REG_BX)
|
|
ab.doasm(ctxt, cursym, &pp)
|
|
ab.Put1(0x87) // xchg rhs,bx
|
|
ab.asmando(ctxt, cursym, p, &p.To, reg[REG_BX])
|
|
} else {
|
|
ab.Put1(byte(0x90 + reg[z])) // xchg rsh,ax
|
|
subreg(&pp, z, REG_AX)
|
|
ab.doasm(ctxt, cursym, &pp)
|
|
ab.Put1(byte(0x90 + reg[z])) // xchg rsh,ax
|
|
}
|
|
return
|
|
}
|
|
}
|
|
|
|
ctxt.Diag("invalid instruction: %v", p)
|
|
}
|
|
|
|
// byteswapreg returns a byte-addressable register (AX, BX, CX, DX)
|
|
// which is not referenced in a.
|
|
// If a is empty, it returns BX to account for MULB-like instructions
|
|
// that might use DX and AX.
|
|
func byteswapreg(ctxt *obj.Link, a *obj.Addr) int {
|
|
cana, canb, canc, cand := true, true, true, true
|
|
if a.Type == obj.TYPE_NONE {
|
|
cana, cand = false, false
|
|
}
|
|
|
|
if a.Type == obj.TYPE_REG || ((a.Type == obj.TYPE_MEM || a.Type == obj.TYPE_ADDR) && a.Name == obj.NAME_NONE) {
|
|
switch a.Reg {
|
|
case REG_NONE:
|
|
cana, cand = false, false
|
|
case REG_AX, REG_AL, REG_AH:
|
|
cana = false
|
|
case REG_BX, REG_BL, REG_BH:
|
|
canb = false
|
|
case REG_CX, REG_CL, REG_CH:
|
|
canc = false
|
|
case REG_DX, REG_DL, REG_DH:
|
|
cand = false
|
|
}
|
|
}
|
|
|
|
if a.Type == obj.TYPE_MEM || a.Type == obj.TYPE_ADDR {
|
|
switch a.Index {
|
|
case REG_AX:
|
|
cana = false
|
|
case REG_BX:
|
|
canb = false
|
|
case REG_CX:
|
|
canc = false
|
|
case REG_DX:
|
|
cand = false
|
|
}
|
|
}
|
|
|
|
switch {
|
|
case cana:
|
|
return REG_AX
|
|
case canb:
|
|
return REG_BX
|
|
case canc:
|
|
return REG_CX
|
|
case cand:
|
|
return REG_DX
|
|
default:
|
|
ctxt.Diag("impossible byte register")
|
|
ctxt.DiagFlush()
|
|
log.Fatalf("bad code")
|
|
return 0
|
|
}
|
|
}
|
|
|
|
func isbadbyte(a *obj.Addr) bool {
|
|
return a.Type == obj.TYPE_REG && (REG_BP <= a.Reg && a.Reg <= REG_DI || REG_BPB <= a.Reg && a.Reg <= REG_DIB)
|
|
}
|
|
|
|
func (ab *AsmBuf) asmins(ctxt *obj.Link, cursym *obj.LSym, p *obj.Prog) {
|
|
ab.Reset()
|
|
|
|
ab.rexflag = 0
|
|
ab.vexflag = false
|
|
ab.evexflag = false
|
|
mark := ab.Len()
|
|
ab.doasm(ctxt, cursym, p)
|
|
if ab.rexflag != 0 && !ab.vexflag && !ab.evexflag {
|
|
// as befits the whole approach of the architecture,
|
|
// the rex prefix must appear before the first opcode byte
|
|
// (and thus after any 66/67/f2/f3/26/2e/3e prefix bytes, but
|
|
// before the 0f opcode escape!), or it might be ignored.
|
|
// note that the handbook often misleadingly shows 66/f2/f3 in `opcode'.
|
|
if ctxt.Arch.Family != sys.AMD64 {
|
|
ctxt.Diag("asmins: illegal in mode %d: %v (%d %d)", ctxt.Arch.RegSize*8, p, p.Ft, p.Tt)
|
|
}
|
|
n := ab.Len()
|
|
var np int
|
|
for np = mark; np < n; np++ {
|
|
c := ab.At(np)
|
|
if c != 0xf2 && c != 0xf3 && (c < 0x64 || c > 0x67) && c != 0x2e && c != 0x3e && c != 0x26 {
|
|
break
|
|
}
|
|
}
|
|
ab.Insert(np, byte(0x40|ab.rexflag))
|
|
}
|
|
|
|
n := ab.Len()
|
|
for i := len(cursym.R) - 1; i >= 0; i-- {
|
|
r := &cursym.R[i]
|
|
if int64(r.Off) < p.Pc {
|
|
break
|
|
}
|
|
if ab.rexflag != 0 && !ab.vexflag && !ab.evexflag {
|
|
r.Off++
|
|
}
|
|
if r.Type == objabi.R_PCREL {
|
|
if ctxt.Arch.Family == sys.AMD64 || p.As == obj.AJMP || p.As == obj.ACALL {
|
|
// PC-relative addressing is relative to the end of the instruction,
|
|
// but the relocations applied by the linker are relative to the end
|
|
// of the relocation. Because immediate instruction
|
|
// arguments can follow the PC-relative memory reference in the
|
|
// instruction encoding, the two may not coincide. In this case,
|
|
// adjust addend so that linker can keep relocating relative to the
|
|
// end of the relocation.
|
|
r.Add -= p.Pc + int64(n) - (int64(r.Off) + int64(r.Siz))
|
|
} else if ctxt.Arch.Family == sys.I386 {
|
|
// On 386 PC-relative addressing (for non-call/jmp instructions)
|
|
// assumes that the previous instruction loaded the PC of the end
|
|
// of that instruction into CX, so the adjustment is relative to
|
|
// that.
|
|
r.Add += int64(r.Off) - p.Pc + int64(r.Siz)
|
|
}
|
|
}
|
|
if r.Type == objabi.R_GOTPCREL && ctxt.Arch.Family == sys.I386 {
|
|
// On 386, R_GOTPCREL makes the same assumptions as R_PCREL.
|
|
r.Add += int64(r.Off) - p.Pc + int64(r.Siz)
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// unpackOps4 extracts 4 operands from p.
|
|
func unpackOps4(p *obj.Prog) (arg0, arg1, arg2, dst *obj.Addr) {
|
|
return &p.From, &p.RestArgs[0], &p.RestArgs[1], &p.To
|
|
}
|
|
|
|
// unpackOps5 extracts 5 operands from p.
|
|
func unpackOps5(p *obj.Prog) (arg0, arg1, arg2, arg3, dst *obj.Addr) {
|
|
return &p.From, &p.RestArgs[0], &p.RestArgs[1], &p.RestArgs[2], &p.To
|
|
}
|