// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "bytes" "fmt" "io" "math" "sort" "strconv" "strings" "github.com/golang/geo/r1" "github.com/golang/geo/r2" "github.com/golang/geo/r3" "github.com/golang/geo/s1" ) // CellID uniquely identifies a cell in the S2 cell decomposition. // The most significant 3 bits encode the face number (0-5). The // remaining 61 bits encode the position of the center of this cell // along the Hilbert curve on that face. The zero value and the value // (1<<64)-1 are invalid cell IDs. The first compares less than any // valid cell ID, the second as greater than any valid cell ID. // // Sequentially increasing cell IDs follow a continuous space-filling curve // over the entire sphere. They have the following properties: // // - The ID of a cell at level k consists of a 3-bit face number followed // by k bit pairs that recursively select one of the four children of // each cell. The next bit is always 1, and all other bits are 0. // Therefore, the level of a cell is determined by the position of its // lowest-numbered bit that is turned on (for a cell at level k, this // position is 2 * (maxLevel - k)). // // - The ID of a parent cell is at the midpoint of the range of IDs spanned // by its children (or by its descendants at any level). // // Leaf cells are often used to represent points on the unit sphere, and // this type provides methods for converting directly between these two // representations. For cells that represent 2D regions rather than // discrete point, it is better to use Cells. type CellID uint64 // SentinelCellID is an invalid cell ID guaranteed to be larger than any // valid cell ID. It is used primarily by ShapeIndex. The value is also used // by some S2 types when encoding data. // Note that the sentinel's RangeMin == RangeMax == itself. const SentinelCellID = CellID(^uint64(0)) // sortCellIDs sorts the slice of CellIDs in place. func sortCellIDs(ci []CellID) { sort.Sort(cellIDs(ci)) } // cellIDs implements the Sort interface for slices of CellIDs. type cellIDs []CellID func (c cellIDs) Len() int { return len(c) } func (c cellIDs) Swap(i, j int) { c[i], c[j] = c[j], c[i] } func (c cellIDs) Less(i, j int) bool { return c[i] < c[j] } // TODO(dsymonds): Some of these constants should probably be exported. const ( faceBits = 3 numFaces = 6 // This is the number of levels needed to specify a leaf cell. maxLevel = 30 // The extra position bit (61 rather than 60) lets us encode each cell as its // Hilbert curve position at the cell center (which is halfway along the // portion of the Hilbert curve that fills that cell). posBits = 2*maxLevel + 1 // The maximum index of a valid leaf cell plus one. The range of valid leaf // cell indices is [0..maxSize-1]. maxSize = 1 << maxLevel wrapOffset = uint64(numFaces) << posBits ) // CellIDFromFacePosLevel returns a cell given its face in the range // [0,5], the 61-bit Hilbert curve position pos within that face, and // the level in the range [0,maxLevel]. The position in the cell ID // will be truncated to correspond to the Hilbert curve position at // the center of the returned cell. func CellIDFromFacePosLevel(face int, pos uint64, level int) CellID { return CellID(uint64(face)<<posBits + pos | 1).Parent(level) } // CellIDFromFace returns the cell corresponding to a given S2 cube face. func CellIDFromFace(face int) CellID { return CellID((uint64(face) << posBits) + lsbForLevel(0)) } // CellIDFromLatLng returns the leaf cell containing ll. func CellIDFromLatLng(ll LatLng) CellID { return cellIDFromPoint(PointFromLatLng(ll)) } // CellIDFromToken returns a cell given a hex-encoded string of its uint64 ID. func CellIDFromToken(s string) CellID { if len(s) > 16 { return CellID(0) } n, err := strconv.ParseUint(s, 16, 64) if err != nil { return CellID(0) } // Equivalent to right-padding string with zeros to 16 characters. if len(s) < 16 { n = n << (4 * uint(16-len(s))) } return CellID(n) } // ToToken returns a hex-encoded string of the uint64 cell id, with leading // zeros included but trailing zeros stripped. func (ci CellID) ToToken() string { s := strings.TrimRight(fmt.Sprintf("%016x", uint64(ci)), "0") if len(s) == 0 { return "X" } return s } // IsValid reports whether ci represents a valid cell. func (ci CellID) IsValid() bool { return ci.Face() < numFaces && (ci.lsb()&0x1555555555555555 != 0) } // Face returns the cube face for this cell ID, in the range [0,5]. func (ci CellID) Face() int { return int(uint64(ci) >> posBits) } // Pos returns the position along the Hilbert curve of this cell ID, in the range [0,2^posBits-1]. func (ci CellID) Pos() uint64 { return uint64(ci) & (^uint64(0) >> faceBits) } // Level returns the subdivision level of this cell ID, in the range [0, maxLevel]. func (ci CellID) Level() int { return maxLevel - findLSBSetNonZero64(uint64(ci))>>1 } // IsLeaf returns whether this cell ID is at the deepest level; // that is, the level at which the cells are smallest. func (ci CellID) IsLeaf() bool { return uint64(ci)&1 != 0 } // ChildPosition returns the child position (0..3) of this cell's // ancestor at the given level, relative to its parent. The argument // should be in the range 1..kMaxLevel. For example, // ChildPosition(1) returns the position of this cell's level-1 // ancestor within its top-level face cell. func (ci CellID) ChildPosition(level int) int { return int(uint64(ci)>>uint64(2*(maxLevel-level)+1)) & 3 } // lsbForLevel returns the lowest-numbered bit that is on for cells at the given level. func lsbForLevel(level int) uint64 { return 1 << uint64(2*(maxLevel-level)) } // Parent returns the cell at the given level, which must be no greater than the current level. func (ci CellID) Parent(level int) CellID { lsb := lsbForLevel(level) return CellID((uint64(ci) & -lsb) | lsb) } // immediateParent is cheaper than Parent, but assumes !ci.isFace(). func (ci CellID) immediateParent() CellID { nlsb := CellID(ci.lsb() << 2) return (ci & -nlsb) | nlsb } // isFace returns whether this is a top-level (face) cell. func (ci CellID) isFace() bool { return uint64(ci)&(lsbForLevel(0)-1) == 0 } // lsb returns the least significant bit that is set. func (ci CellID) lsb() uint64 { return uint64(ci) & -uint64(ci) } // Children returns the four immediate children of this cell. // If ci is a leaf cell, it returns four identical cells that are not the children. func (ci CellID) Children() [4]CellID { var ch [4]CellID lsb := CellID(ci.lsb()) ch[0] = ci - lsb + lsb>>2 lsb >>= 1 ch[1] = ch[0] + lsb ch[2] = ch[1] + lsb ch[3] = ch[2] + lsb return ch } func sizeIJ(level int) int { return 1 << uint(maxLevel-level) } // EdgeNeighbors returns the four cells that are adjacent across the cell's four edges. // Edges 0, 1, 2, 3 are in the down, right, up, left directions in the face space. // All neighbors are guaranteed to be distinct. func (ci CellID) EdgeNeighbors() [4]CellID { level := ci.Level() size := sizeIJ(level) f, i, j, _ := ci.faceIJOrientation() return [4]CellID{ cellIDFromFaceIJWrap(f, i, j-size).Parent(level), cellIDFromFaceIJWrap(f, i+size, j).Parent(level), cellIDFromFaceIJWrap(f, i, j+size).Parent(level), cellIDFromFaceIJWrap(f, i-size, j).Parent(level), } } // VertexNeighbors returns the neighboring cellIDs with vertex closest to this cell at the given level. // (Normally there are four neighbors, but the closest vertex may only have three neighbors if it is one of // the 8 cube vertices.) func (ci CellID) VertexNeighbors(level int) []CellID { halfSize := sizeIJ(level + 1) size := halfSize << 1 f, i, j, _ := ci.faceIJOrientation() var isame, jsame bool var ioffset, joffset int if i&halfSize != 0 { ioffset = size isame = (i + size) < maxSize } else { ioffset = -size isame = (i - size) >= 0 } if j&halfSize != 0 { joffset = size jsame = (j + size) < maxSize } else { joffset = -size jsame = (j - size) >= 0 } results := []CellID{ ci.Parent(level), cellIDFromFaceIJSame(f, i+ioffset, j, isame).Parent(level), cellIDFromFaceIJSame(f, i, j+joffset, jsame).Parent(level), } if isame || jsame { results = append(results, cellIDFromFaceIJSame(f, i+ioffset, j+joffset, isame && jsame).Parent(level)) } return results } // AllNeighbors returns all neighbors of this cell at the given level. Two // cells X and Y are neighbors if their boundaries intersect but their // interiors do not. In particular, two cells that intersect at a single // point are neighbors. Note that for cells adjacent to a face vertex, the // same neighbor may be returned more than once. There could be up to eight // neighbors including the diagonal ones that share the vertex. // // This requires level >= ci.Level(). func (ci CellID) AllNeighbors(level int) []CellID { var neighbors []CellID face, i, j, _ := ci.faceIJOrientation() // Find the coordinates of the lower left-hand leaf cell. We need to // normalize (i,j) to a known position within the cell because level // may be larger than this cell's level. size := sizeIJ(ci.Level()) i &= -size j &= -size nbrSize := sizeIJ(level) // We compute the top-bottom, left-right, and diagonal neighbors in one // pass. The loop test is at the end of the loop to avoid 32-bit overflow. for k := -nbrSize; ; k += nbrSize { var sameFace bool if k < 0 { sameFace = (j+k >= 0) } else if k >= size { sameFace = (j+k < maxSize) } else { sameFace = true // Top and bottom neighbors. neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j-nbrSize, j-size >= 0).Parent(level)) neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j+size, j+size < maxSize).Parent(level)) } // Left, right, and diagonal neighbors. neighbors = append(neighbors, cellIDFromFaceIJSame(face, i-nbrSize, j+k, sameFace && i-size >= 0).Parent(level)) neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+size, j+k, sameFace && i+size < maxSize).Parent(level)) if k >= size { break } } return neighbors } // RangeMin returns the minimum CellID that is contained within this cell. func (ci CellID) RangeMin() CellID { return CellID(uint64(ci) - (ci.lsb() - 1)) } // RangeMax returns the maximum CellID that is contained within this cell. func (ci CellID) RangeMax() CellID { return CellID(uint64(ci) + (ci.lsb() - 1)) } // Contains returns true iff the CellID contains oci. func (ci CellID) Contains(oci CellID) bool { return uint64(ci.RangeMin()) <= uint64(oci) && uint64(oci) <= uint64(ci.RangeMax()) } // Intersects returns true iff the CellID intersects oci. func (ci CellID) Intersects(oci CellID) bool { return uint64(oci.RangeMin()) <= uint64(ci.RangeMax()) && uint64(oci.RangeMax()) >= uint64(ci.RangeMin()) } // String returns the string representation of the cell ID in the form "1/3210". func (ci CellID) String() string { if !ci.IsValid() { return "Invalid: " + strconv.FormatInt(int64(ci), 16) } var b bytes.Buffer b.WriteByte("012345"[ci.Face()]) // values > 5 will have been picked off by !IsValid above b.WriteByte('/') for level := 1; level <= ci.Level(); level++ { b.WriteByte("0123"[ci.ChildPosition(level)]) } return b.String() } // cellIDFromString returns a CellID from a string in the form "1/3210". func cellIDFromString(s string) CellID { level := len(s) - 2 if level < 0 || level > maxLevel { return CellID(0) } face := int(s[0] - '0') if face < 0 || face > 5 || s[1] != '/' { return CellID(0) } id := CellIDFromFace(face) for i := 2; i < len(s); i++ { childPos := s[i] - '0' if childPos < 0 || childPos > 3 { return CellID(0) } id = id.Children()[childPos] } return id } // Point returns the center of the s2 cell on the sphere as a Point. // The maximum directional error in Point (compared to the exact // mathematical result) is 1.5 * dblEpsilon radians, and the maximum length // error is 2 * dblEpsilon (the same as Normalize). func (ci CellID) Point() Point { return Point{ci.rawPoint().Normalize()} } // LatLng returns the center of the s2 cell on the sphere as a LatLng. func (ci CellID) LatLng() LatLng { return LatLngFromPoint(Point{ci.rawPoint()}) } // ChildBegin returns the first child in a traversal of the children of this cell, in Hilbert curve order. // // for ci := c.ChildBegin(); ci != c.ChildEnd(); ci = ci.Next() { // ... // } func (ci CellID) ChildBegin() CellID { ol := ci.lsb() return CellID(uint64(ci) - ol + ol>>2) } // ChildBeginAtLevel returns the first cell in a traversal of children a given level deeper than this cell, in // Hilbert curve order. The given level must be no smaller than the cell's level. // See ChildBegin for example use. func (ci CellID) ChildBeginAtLevel(level int) CellID { return CellID(uint64(ci) - ci.lsb() + lsbForLevel(level)) } // ChildEnd returns the first cell after a traversal of the children of this cell in Hilbert curve order. // The returned cell may be invalid. func (ci CellID) ChildEnd() CellID { ol := ci.lsb() return CellID(uint64(ci) + ol + ol>>2) } // ChildEndAtLevel returns the first cell after the last child in a traversal of children a given level deeper // than this cell, in Hilbert curve order. // The given level must be no smaller than the cell's level. // The returned cell may be invalid. func (ci CellID) ChildEndAtLevel(level int) CellID { return CellID(uint64(ci) + ci.lsb() + lsbForLevel(level)) } // Next returns the next cell along the Hilbert curve. // This is expected to be used with ChildBegin and ChildEnd, // or ChildBeginAtLevel and ChildEndAtLevel. func (ci CellID) Next() CellID { return CellID(uint64(ci) + ci.lsb()<<1) } // Prev returns the previous cell along the Hilbert curve. func (ci CellID) Prev() CellID { return CellID(uint64(ci) - ci.lsb()<<1) } // NextWrap returns the next cell along the Hilbert curve, wrapping from last to // first as necessary. This should not be used with ChildBegin and ChildEnd. func (ci CellID) NextWrap() CellID { n := ci.Next() if uint64(n) < wrapOffset { return n } return CellID(uint64(n) - wrapOffset) } // PrevWrap returns the previous cell along the Hilbert curve, wrapping around from // first to last as necessary. This should not be used with ChildBegin and ChildEnd. func (ci CellID) PrevWrap() CellID { p := ci.Prev() if uint64(p) < wrapOffset { return p } return CellID(uint64(p) + wrapOffset) } // AdvanceWrap advances or retreats the indicated number of steps along the // Hilbert curve at the current level and returns the new position. The // position wraps between the first and last faces as necessary. func (ci CellID) AdvanceWrap(steps int64) CellID { if steps == 0 { return ci } // We clamp the number of steps if necessary to ensure that we do not // advance past the End() or before the Begin() of this level. shift := uint(2*(maxLevel-ci.Level()) + 1) if steps < 0 { if min := -int64(uint64(ci) >> shift); steps < min { wrap := int64(wrapOffset >> shift) steps %= wrap if steps < min { steps += wrap } } } else { // Unlike Advance(), we don't want to return End(level). if max := int64((wrapOffset - uint64(ci)) >> shift); steps > max { wrap := int64(wrapOffset >> shift) steps %= wrap if steps > max { steps -= wrap } } } // If steps is negative, then shifting it left has undefined behavior. // Cast to uint64 for a 2's complement answer. return CellID(uint64(ci) + (uint64(steps) << shift)) } // Encode encodes the CellID. func (ci CellID) Encode(w io.Writer) error { e := &encoder{w: w} ci.encode(e) return e.err } func (ci CellID) encode(e *encoder) { e.writeUint64(uint64(ci)) } // Decode decodes the CellID. func (ci *CellID) Decode(r io.Reader) error { d := &decoder{r: asByteReader(r)} ci.decode(d) return d.err } func (ci *CellID) decode(d *decoder) { *ci = CellID(d.readUint64()) } // TODO: the methods below are not exported yet. Settle on the entire API design // before doing this. Do we want to mirror the C++ one as closely as possible? // distanceFromBegin returns the number of steps along the Hilbert curve that // this cell is from the first node in the S2 hierarchy at our level. (i.e., // FromFace(0).ChildBeginAtLevel(ci.Level())). This is analogous to Pos(), but // for this cell's level. // The return value is always non-negative. func (ci CellID) distanceFromBegin() int64 { return int64(ci >> uint64(2*(maxLevel-ci.Level())+1)) } // rawPoint returns an unnormalized r3 vector from the origin through the center // of the s2 cell on the sphere. func (ci CellID) rawPoint() r3.Vector { face, si, ti := ci.faceSiTi() return faceUVToXYZ(face, stToUV((0.5/maxSize)*float64(si)), stToUV((0.5/maxSize)*float64(ti))) } // faceSiTi returns the Face/Si/Ti coordinates of the center of the cell. func (ci CellID) faceSiTi() (face int, si, ti uint32) { face, i, j, _ := ci.faceIJOrientation() delta := 0 if ci.IsLeaf() { delta = 1 } else { if (i^(int(ci)>>2))&1 != 0 { delta = 2 } } return face, uint32(2*i + delta), uint32(2*j + delta) } // faceIJOrientation uses the global lookupIJ table to unfiddle the bits of ci. func (ci CellID) faceIJOrientation() (f, i, j, orientation int) { f = ci.Face() orientation = f & swapMask nbits := maxLevel - 7*lookupBits // first iteration // Each iteration maps 8 bits of the Hilbert curve position into // 4 bits of "i" and "j". The lookup table transforms a key of the // form "ppppppppoo" to a value of the form "iiiijjjjoo", where the // letters [ijpo] represents bits of "i", "j", the Hilbert curve // position, and the Hilbert curve orientation respectively. // // On the first iteration we need to be careful to clear out the bits // representing the cube face. for k := 7; k >= 0; k-- { orientation += (int(uint64(ci)>>uint64(k*2*lookupBits+1)) & ((1 << uint(2*nbits)) - 1)) << 2 orientation = lookupIJ[orientation] i += (orientation >> (lookupBits + 2)) << uint(k*lookupBits) j += ((orientation >> 2) & ((1 << lookupBits) - 1)) << uint(k*lookupBits) orientation &= (swapMask | invertMask) nbits = lookupBits // following iterations } // The position of a non-leaf cell at level "n" consists of a prefix of // 2*n bits that identifies the cell, followed by a suffix of // 2*(maxLevel-n)+1 bits of the form 10*. If n==maxLevel, the suffix is // just "1" and has no effect. Otherwise, it consists of "10", followed // by (maxLevel-n-1) repetitions of "00", followed by "0". The "10" has // no effect, while each occurrence of "00" has the effect of reversing // the swapMask bit. if ci.lsb()&0x1111111111111110 != 0 { orientation ^= swapMask } return } // cellIDFromFaceIJ returns a leaf cell given its cube face (range 0..5) and IJ coordinates. func cellIDFromFaceIJ(f, i, j int) CellID { // Note that this value gets shifted one bit to the left at the end // of the function. n := uint64(f) << (posBits - 1) // Alternating faces have opposite Hilbert curve orientations; this // is necessary in order for all faces to have a right-handed // coordinate system. bits := f & swapMask // Each iteration maps 4 bits of "i" and "j" into 8 bits of the Hilbert // curve position. The lookup table transforms a 10-bit key of the form // "iiiijjjjoo" to a 10-bit value of the form "ppppppppoo", where the // letters [ijpo] denote bits of "i", "j", Hilbert curve position, and // Hilbert curve orientation respectively. for k := 7; k >= 0; k-- { mask := (1 << lookupBits) - 1 bits += ((i >> uint(k*lookupBits)) & mask) << (lookupBits + 2) bits += ((j >> uint(k*lookupBits)) & mask) << 2 bits = lookupPos[bits] n |= uint64(bits>>2) << (uint(k) * 2 * lookupBits) bits &= (swapMask | invertMask) } return CellID(n*2 + 1) } func cellIDFromFaceIJWrap(f, i, j int) CellID { // Convert i and j to the coordinates of a leaf cell just beyond the // boundary of this face. This prevents 32-bit overflow in the case // of finding the neighbors of a face cell. i = clampInt(i, -1, maxSize) j = clampInt(j, -1, maxSize) // We want to wrap these coordinates onto the appropriate adjacent face. // The easiest way to do this is to convert the (i,j) coordinates to (x,y,z) // (which yields a point outside the normal face boundary), and then call // xyzToFaceUV to project back onto the correct face. // // The code below converts (i,j) to (si,ti), and then (si,ti) to (u,v) using // the linear projection (u=2*s-1 and v=2*t-1). (The code further below // converts back using the inverse projection, s=0.5*(u+1) and t=0.5*(v+1). // Any projection would work here, so we use the simplest.) We also clamp // the (u,v) coordinates so that the point is barely outside the // [-1,1]x[-1,1] face rectangle, since otherwise the reprojection step // (which divides by the new z coordinate) might change the other // coordinates enough so that we end up in the wrong leaf cell. const scale = 1.0 / maxSize limit := math.Nextafter(1, 2) u := math.Max(-limit, math.Min(limit, scale*float64((i<<1)+1-maxSize))) v := math.Max(-limit, math.Min(limit, scale*float64((j<<1)+1-maxSize))) // Find the leaf cell coordinates on the adjacent face, and convert // them to a cell id at the appropriate level. f, u, v = xyzToFaceUV(faceUVToXYZ(f, u, v)) return cellIDFromFaceIJ(f, stToIJ(0.5*(u+1)), stToIJ(0.5*(v+1))) } func cellIDFromFaceIJSame(f, i, j int, sameFace bool) CellID { if sameFace { return cellIDFromFaceIJ(f, i, j) } return cellIDFromFaceIJWrap(f, i, j) } // ijToSTMin converts the i- or j-index of a leaf cell to the minimum corresponding // s- or t-value contained by that cell. The argument must be in the range // [0..2**30], i.e. up to one position beyond the normal range of valid leaf // cell indices. func ijToSTMin(i int) float64 { return float64(i) / float64(maxSize) } // stToIJ converts value in ST coordinates to a value in IJ coordinates. func stToIJ(s float64) int { return clampInt(int(math.Floor(maxSize*s)), 0, maxSize-1) } // cellIDFromPoint returns a leaf cell containing point p. Usually there is // exactly one such cell, but for points along the edge of a cell, any // adjacent cell may be (deterministically) chosen. This is because // s2.CellIDs are considered to be closed sets. The returned cell will // always contain the given point, i.e. // // CellFromPoint(p).ContainsPoint(p) // // is always true. func cellIDFromPoint(p Point) CellID { f, u, v := xyzToFaceUV(r3.Vector{p.X, p.Y, p.Z}) i := stToIJ(uvToST(u)) j := stToIJ(uvToST(v)) return cellIDFromFaceIJ(f, i, j) } // ijLevelToBoundUV returns the bounds in (u,v)-space for the cell at the given // level containing the leaf cell with the given (i,j)-coordinates. func ijLevelToBoundUV(i, j, level int) r2.Rect { cellSize := sizeIJ(level) xLo := i & -cellSize yLo := j & -cellSize return r2.Rect{ X: r1.Interval{ Lo: stToUV(ijToSTMin(xLo)), Hi: stToUV(ijToSTMin(xLo + cellSize)), }, Y: r1.Interval{ Lo: stToUV(ijToSTMin(yLo)), Hi: stToUV(ijToSTMin(yLo + cellSize)), }, } } // Constants related to the bit mangling in the Cell ID. const ( lookupBits = 4 swapMask = 0x01 invertMask = 0x02 ) // The following lookup tables are used to convert efficiently between an // (i,j) cell index and the corresponding position along the Hilbert curve. // // lookupPos maps 4 bits of "i", 4 bits of "j", and 2 bits representing the // orientation of the current cell into 8 bits representing the order in which // that subcell is visited by the Hilbert curve, plus 2 bits indicating the // new orientation of the Hilbert curve within that subcell. (Cell // orientations are represented as combination of swapMask and invertMask.) // // lookupIJ is an inverted table used for mapping in the opposite // direction. // // We also experimented with looking up 16 bits at a time (14 bits of position // plus 2 of orientation) but found that smaller lookup tables gave better // performance. (2KB fits easily in the primary cache.) var ( ijToPos = [4][4]int{ {0, 1, 3, 2}, // canonical order {0, 3, 1, 2}, // axes swapped {2, 3, 1, 0}, // bits inverted {2, 1, 3, 0}, // swapped & inverted } posToIJ = [4][4]int{ {0, 1, 3, 2}, // canonical order: (0,0), (0,1), (1,1), (1,0) {0, 2, 3, 1}, // axes swapped: (0,0), (1,0), (1,1), (0,1) {3, 2, 0, 1}, // bits inverted: (1,1), (1,0), (0,0), (0,1) {3, 1, 0, 2}, // swapped & inverted: (1,1), (0,1), (0,0), (1,0) } posToOrientation = [4]int{swapMask, 0, 0, invertMask | swapMask} lookupIJ [1 << (2*lookupBits + 2)]int lookupPos [1 << (2*lookupBits + 2)]int ) func init() { initLookupCell(0, 0, 0, 0, 0, 0) initLookupCell(0, 0, 0, swapMask, 0, swapMask) initLookupCell(0, 0, 0, invertMask, 0, invertMask) initLookupCell(0, 0, 0, swapMask|invertMask, 0, swapMask|invertMask) } // initLookupCell initializes the lookupIJ table at init time. func initLookupCell(level, i, j, origOrientation, pos, orientation int) { if level == lookupBits { ij := (i << lookupBits) + j lookupPos[(ij<<2)+origOrientation] = (pos << 2) + orientation lookupIJ[(pos<<2)+origOrientation] = (ij << 2) + orientation return } level++ i <<= 1 j <<= 1 pos <<= 2 r := posToIJ[orientation] initLookupCell(level, i+(r[0]>>1), j+(r[0]&1), origOrientation, pos, orientation^posToOrientation[0]) initLookupCell(level, i+(r[1]>>1), j+(r[1]&1), origOrientation, pos+1, orientation^posToOrientation[1]) initLookupCell(level, i+(r[2]>>1), j+(r[2]&1), origOrientation, pos+2, orientation^posToOrientation[2]) initLookupCell(level, i+(r[3]>>1), j+(r[3]&1), origOrientation, pos+3, orientation^posToOrientation[3]) } // CommonAncestorLevel returns the level of the common ancestor of the two S2 CellIDs. func (ci CellID) CommonAncestorLevel(other CellID) (level int, ok bool) { bits := uint64(ci ^ other) if bits < ci.lsb() { bits = ci.lsb() } if bits < other.lsb() { bits = other.lsb() } msbPos := findMSBSetNonZero64(bits) if msbPos > 60 { return 0, false } return (60 - msbPos) >> 1, true } // Advance advances or retreats the indicated number of steps along the // Hilbert curve at the current level, and returns the new position. The // position is never advanced past End() or before Begin(). func (ci CellID) Advance(steps int64) CellID { if steps == 0 { return ci } // We clamp the number of steps if necessary to ensure that we do not // advance past the End() or before the Begin() of this level. Note that // minSteps and maxSteps always fit in a signed 64-bit integer. stepShift := uint(2*(maxLevel-ci.Level()) + 1) if steps < 0 { minSteps := -int64(uint64(ci) >> stepShift) if steps < minSteps { steps = minSteps } } else { maxSteps := int64((wrapOffset + ci.lsb() - uint64(ci)) >> stepShift) if steps > maxSteps { steps = maxSteps } } return ci + CellID(steps)<<stepShift } // centerST return the center of the CellID in (s,t)-space. func (ci CellID) centerST() r2.Point { _, si, ti := ci.faceSiTi() return r2.Point{siTiToST(si), siTiToST(ti)} } // sizeST returns the edge length of this CellID in (s,t)-space at the given level. func (ci CellID) sizeST(level int) float64 { return ijToSTMin(sizeIJ(level)) } // boundST returns the bound of this CellID in (s,t)-space. func (ci CellID) boundST() r2.Rect { s := ci.sizeST(ci.Level()) return r2.RectFromCenterSize(ci.centerST(), r2.Point{s, s}) } // centerUV returns the center of this CellID in (u,v)-space. Note that // the center of the cell is defined as the point at which it is recursively // subdivided into four children; in general, it is not at the midpoint of // the (u,v) rectangle covered by the cell. func (ci CellID) centerUV() r2.Point { _, si, ti := ci.faceSiTi() return r2.Point{stToUV(siTiToST(si)), stToUV(siTiToST(ti))} } // boundUV returns the bound of this CellID in (u,v)-space. func (ci CellID) boundUV() r2.Rect { _, i, j, _ := ci.faceIJOrientation() return ijLevelToBoundUV(i, j, ci.Level()) } // expandEndpoint returns a new u-coordinate u' such that the distance from the // line u=u' to the given edge (u,v0)-(u,v1) is exactly the given distance // (which is specified as the sine of the angle corresponding to the distance). func expandEndpoint(u, maxV, sinDist float64) float64 { // This is based on solving a spherical right triangle, similar to the // calculation in Cap.RectBound. // Given an edge of the form (u,v0)-(u,v1), let maxV = max(abs(v0), abs(v1)). sinUShift := sinDist * math.Sqrt((1+u*u+maxV*maxV)/(1+u*u)) cosUShift := math.Sqrt(1 - sinUShift*sinUShift) // The following is an expansion of tan(atan(u) + asin(sinUShift)). return (cosUShift*u + sinUShift) / (cosUShift - sinUShift*u) } // expandedByDistanceUV returns a rectangle expanded in (u,v)-space so that it // contains all points within the given distance of the boundary, and return the // smallest such rectangle. If the distance is negative, then instead shrink this // rectangle so that it excludes all points within the given absolute distance // of the boundary. // // Distances are measured *on the sphere*, not in (u,v)-space. For example, // you can use this method to expand the (u,v)-bound of an CellID so that // it contains all points within 5km of the original cell. You can then // test whether a point lies within the expanded bounds like this: // // if u, v, ok := faceXYZtoUV(face, point); ok && bound.ContainsPoint(r2.Point{u,v}) { ... } // // Limitations: // // - Because the rectangle is drawn on one of the six cube-face planes // (i.e., {x,y,z} = +/-1), it can cover at most one hemisphere. This // limits the maximum amount that a rectangle can be expanded. For // example, CellID bounds can be expanded safely by at most 45 degrees // (about 5000 km on the Earth's surface). // // - The implementation is not exact for negative distances. The resulting // rectangle will exclude all points within the given distance of the // boundary but may be slightly smaller than necessary. func expandedByDistanceUV(uv r2.Rect, distance s1.Angle) r2.Rect { // Expand each of the four sides of the rectangle just enough to include all // points within the given distance of that side. (The rectangle may be // expanded by a different amount in (u,v)-space on each side.) maxU := math.Max(math.Abs(uv.X.Lo), math.Abs(uv.X.Hi)) maxV := math.Max(math.Abs(uv.Y.Lo), math.Abs(uv.Y.Hi)) sinDist := math.Sin(float64(distance)) return r2.Rect{ X: r1.Interval{expandEndpoint(uv.X.Lo, maxV, -sinDist), expandEndpoint(uv.X.Hi, maxV, sinDist)}, Y: r1.Interval{expandEndpoint(uv.Y.Lo, maxU, -sinDist), expandEndpoint(uv.Y.Hi, maxU, sinDist)}} } // MaxTile returns the largest cell with the same RangeMin such that // RangeMax < limit.RangeMin. It returns limit if no such cell exists. // This method can be used to generate a small set of CellIDs that covers // a given range (a tiling). This example shows how to generate a tiling // for a semi-open range of leaf cells [start, limit): // // for id := start.MaxTile(limit); id != limit; id = id.Next().MaxTile(limit)) { ... } // // Note that in general the cells in the tiling will be of different sizes; // they gradually get larger (near the middle of the range) and then // gradually get smaller as limit is approached. func (ci CellID) MaxTile(limit CellID) CellID { start := ci.RangeMin() if start >= limit.RangeMin() { return limit } if ci.RangeMax() >= limit { // The cell is too large, shrink it. Note that when generating coverings // of CellID ranges, this loop usually executes only once. Also because // ci.RangeMin() < limit.RangeMin(), we will always exit the loop by the // time we reach a leaf cell. for { ci = ci.Children()[0] if ci.RangeMax() < limit { break } } return ci } // The cell may be too small. Grow it if necessary. Note that generally // this loop only iterates once. for !ci.isFace() { parent := ci.immediateParent() if parent.RangeMin() != start || parent.RangeMax() >= limit { break } ci = parent } return ci } // centerFaceSiTi returns the (face, si, ti) coordinates of the center of the cell. // Note that although (si,ti) coordinates span the range [0,2**31] in general, // the cell center coordinates are always in the range [1,2**31-1] and // therefore can be represented using a signed 32-bit integer. func (ci CellID) centerFaceSiTi() (face, si, ti int) { // First we compute the discrete (i,j) coordinates of a leaf cell contained // within the given cell. Given that cells are represented by the Hilbert // curve position corresponding at their center, it turns out that the cell // returned by faceIJOrientation is always one of two leaf cells closest // to the center of the cell (unless the given cell is a leaf cell itself, // in which case there is only one possibility). // // Given a cell of size s >= 2 (i.e. not a leaf cell), and letting (imin, // jmin) be the coordinates of its lower left-hand corner, the leaf cell // returned by faceIJOrientation is either (imin + s/2, jmin + s/2) // (imin + s/2 - 1, jmin + s/2 - 1). The first case is the one we want. // We can distinguish these two cases by looking at the low bit of i or // j. In the second case the low bit is one, unless s == 2 (i.e. the // level just above leaf cells) in which case the low bit is zero. // // In the code below, the expression ((i ^ (int(id) >> 2)) & 1) is true // if we are in the second case described above. face, i, j, _ := ci.faceIJOrientation() delta := 0 if ci.IsLeaf() { delta = 1 } else if (int64(i)^(int64(ci)>>2))&1 == 1 { delta = 2 } // Note that (2 * {i,j} + delta) will never overflow a 32-bit integer. return face, 2*i + delta, 2*j + delta }