Merge pull request #214 from NyaaaWhatsUpDoc/improvement/update-storage-library

add git.iim.gay/grufwub/go-store for storage backend, replacing blob.Storage
This commit is contained in:
kim 2021-09-12 10:10:24 +01:00 committed by GitHub
commit f6492d12d9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
89 changed files with 9362 additions and 230 deletions

9
go.mod
View file

@ -3,6 +3,7 @@ module github.com/superseriousbusiness/gotosocial
go 1.17
require (
git.iim.gay/grufwub/go-store v0.4.1
github.com/ReneKroon/ttlcache v1.7.0
github.com/buckket/go-blurhash v1.1.0
github.com/coreos/go-oidc/v3 v3.0.0
@ -41,6 +42,13 @@ require (
)
require (
git.iim.gay/grufwub/fastpath v0.2.2 // indirect
git.iim.gay/grufwub/go-bufpool v0.2.1 // indirect
git.iim.gay/grufwub/go-bytes v0.7.0 // indirect
git.iim.gay/grufwub/go-errors v0.2.3 // indirect
git.iim.gay/grufwub/go-hashenc v0.3.0 // indirect
git.iim.gay/grufwub/go-mutexes v0.5.0 // indirect
git.iim.gay/grufwub/go-nowish v0.3.4 // indirect
github.com/aymerick/douceur v0.2.0 // indirect
github.com/cpuguy83/go-md2man/v2 v2.0.1 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
@ -61,6 +69,7 @@ require (
github.com/golang-jwt/jwt v3.2.2+incompatible // indirect
github.com/golang/geo v0.0.0-20210211234256-740aa86cb551 // indirect
github.com/golang/protobuf v1.5.2 // indirect
github.com/golang/snappy v0.0.3 // indirect
github.com/gorilla/context v1.1.1 // indirect
github.com/gorilla/css v1.0.0 // indirect
github.com/gorilla/securecookie v1.1.1 // indirect

19
go.sum
View file

@ -31,6 +31,23 @@ cloud.google.com/go/storage v1.6.0/go.mod h1:N7U0C8pVQ/+NIKOBQyamJIeKQKkZ+mxpohl
cloud.google.com/go/storage v1.8.0/go.mod h1:Wv1Oy7z6Yz3DshWRJFhqM/UCfaWIRTdp0RXyy7KQOVs=
cloud.google.com/go/storage v1.10.0/go.mod h1:FLPqc6j+Ki4BU591ie1oL6qBQGu2Bl/tZ9ullr3+Kg0=
dmitri.shuralyov.com/gpu/mtl v0.0.0-20190408044501-666a987793e9/go.mod h1:H6x//7gZCb22OMCxBHrMx7a5I7Hp++hsVxbQ4BYO7hU=
git.iim.gay/grufwub/fastpath v0.2.2 h1:ST89k6XukDE2xN5zZ0VGi7Jo2A/DPhik9dr3/ny4QGg=
git.iim.gay/grufwub/fastpath v0.2.2/go.mod h1:HYwrf4ku2CfP/1D3ItBqBbFHayuWkiV6BOwYQQ86dbo=
git.iim.gay/grufwub/go-bufpool v0.2.1 h1:TRwEzLtdvutp3+W/5wQYxmW6lAz9twQKmsfiUO0XfSU=
git.iim.gay/grufwub/go-bufpool v0.2.1/go.mod h1:X/QI5K0hxyhWPRtu+D+ZRzLqEOqD1Ns/rpNNWq2R1DU=
git.iim.gay/grufwub/go-bytes v0.7.0 h1:tGwIrVOANiaifx7702yDdkp5uMVYGk+rheZd6ZuSvEo=
git.iim.gay/grufwub/go-bytes v0.7.0/go.mod h1:ADc2p+R74ZjQf0FzIaIUnLyuHdbGCk7ldlaiHauAs+U=
git.iim.gay/grufwub/go-errors v0.2.3 h1:MSvzN/tW5Vj5Rm4EmBfdVpzyYjAY92ANE+ESNpZnjvw=
git.iim.gay/grufwub/go-errors v0.2.3/go.mod h1:rfKZpjI7A67zJfzpt5zfwAUMA7gec0EHXZEuYv/A9UI=
git.iim.gay/grufwub/go-fixedmap v0.1.3/go.mod h1:KB4nV2+NeBMVFvFwpdgsP74AsMiDeX68oD20wiC2S3I=
git.iim.gay/grufwub/go-hashenc v0.3.0 h1:2etpzwoUTPTLvlWZ9u9a+FUCGBcVU37x5zM5XZ0kahQ=
git.iim.gay/grufwub/go-hashenc v0.3.0/go.mod h1:wjztiGUzaZsEw5kKE6gz/UOFN2cbcDnGiUSUjOLXi4o=
git.iim.gay/grufwub/go-mutexes v0.5.0 h1:HojjhBWI1ry1TTvijczhm2oQ5CxLbxzihawqYk2Umto=
git.iim.gay/grufwub/go-mutexes v0.5.0/go.mod h1:xMhjpEP5UsCuFQD4qCIcq4pJLf7vMXZ56TD/u+wWJ4Y=
git.iim.gay/grufwub/go-nowish v0.3.4 h1:VgUzSEO7xJsJFN2HPbPYHT79s3pUkd5Z8hQOPecZzFU=
git.iim.gay/grufwub/go-nowish v0.3.4/go.mod h1:oII7zlMQMFclFzgmI1qRd7DdQXKNHWcJYnwHFgdgiRI=
git.iim.gay/grufwub/go-store v0.4.1 h1:orSqupN2iTm8P0sUpGWlCl6qckM2phkFnsB3TFTo6aQ=
git.iim.gay/grufwub/go-store v0.4.1/go.mod h1:NaSfOLKNzjj9lUQ0MA/gLGEeRiXhwOx26zR+l/SC9VM=
github.com/BurntSushi/toml v0.3.1/go.mod h1:xHWCNGjB5oqiDr8zfno3MHue2Ht5sIBksp03qcyfWMU=
github.com/BurntSushi/xgb v0.0.0-20160522181843-27f122750802/go.mod h1:IVnqGOEym/WlBOVXweHU+Q+/VP0lqqI8lqeDx9IjBqo=
github.com/Masterminds/semver/v3 v3.1.1 h1:hLg3sBzpNErnxhQtUy/mmLR2I9foDujNK030IGemrRc=
@ -194,6 +211,8 @@ github.com/golang/protobuf v1.4.2/go.mod h1:oDoupMAO8OvCJWAcko0GGGIgR6R6ocIYbsSw
github.com/golang/protobuf v1.5.0/go.mod h1:FsONVRAS9T7sI+LIUmWTfcYkHO4aIWwzhcaSAoJOfIk=
github.com/golang/protobuf v1.5.2 h1:ROPKBNFfQgOUMifHyP+KYbvpjbdoFNs+aK7DXlji0Tw=
github.com/golang/protobuf v1.5.2/go.mod h1:XVQd3VNwM+JqD3oG2Ue2ip4fOMUkwXdXDdiuN0vRsmY=
github.com/golang/snappy v0.0.3 h1:fHPg5GQYlCeLIPB9BZqMVR5nR9A+IM5zcgeTdjMYmLA=
github.com/golang/snappy v0.0.3/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q=
github.com/gomodule/redigo v2.0.0+incompatible/go.mod h1:B4C85qUVwatsJoIUNIfCRsp7qO0iAmpGFZ4EELWSbC4=
github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ=
github.com/google/btree v1.0.0/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ=

View file

@ -6,11 +6,11 @@ import (
"net/http"
"net/http/httptest"
"git.iim.gay/grufwub/go-store/kv"
"github.com/gin-gonic/gin"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/suite"
"github.com/superseriousbusiness/gotosocial/internal/api/client/account"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
@ -28,7 +28,7 @@ type AccountStandardTestSuite struct {
db db.DB
log *logrus.Logger
tc typeutils.TypeConverter
storage blob.Storage
storage *kv.KVStore
federator federation.Federator
processor processing.Processor

View file

@ -26,12 +26,12 @@ import (
"net/http/httptest"
"testing"
"git.iim.gay/grufwub/go-store/kv"
"github.com/gin-gonic/gin"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/suite"
"github.com/superseriousbusiness/gotosocial/internal/api/client/fileserver"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
@ -49,7 +49,7 @@ type ServeFileTestSuite struct {
config *config.Config
db db.DB
log *logrus.Logger
storage blob.Storage
storage *kv.KVStore
federator federation.Federator
tc typeutils.TypeConverter
processor processing.Processor
@ -152,7 +152,7 @@ func (suite *ServeFileTestSuite) TestServeOriginalFileSuccessful() {
assert.NoError(suite.T(), err)
assert.NotNil(suite.T(), b)
fileInStorage, err := suite.storage.RetrieveFileFrom(targetAttachment.File.Path)
fileInStorage, err := suite.storage.Get(targetAttachment.File.Path)
assert.NoError(suite.T(), err)
assert.NotNil(suite.T(), fileInStorage)
assert.Equal(suite.T(), b, fileInStorage)

View file

@ -28,13 +28,13 @@ import (
"net/http/httptest"
"testing"
"git.iim.gay/grufwub/go-store/kv"
"github.com/gin-gonic/gin"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/suite"
mediamodule "github.com/superseriousbusiness/gotosocial/internal/api/client/media"
"github.com/superseriousbusiness/gotosocial/internal/api/model"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
@ -52,7 +52,7 @@ type MediaCreateTestSuite struct {
config *config.Config
db db.DB
log *logrus.Logger
storage blob.Storage
storage *kv.KVStore
federator federation.Federator
tc typeutils.TypeConverter
mediaHandler media.Handler
@ -118,7 +118,6 @@ func (suite *MediaCreateTestSuite) TearDownTest() {
*/
func (suite *MediaCreateTestSuite) TestStatusCreatePOSTImageHandlerSuccessful() {
// set up the context for the request
t := suite.testTokens["local_account_1"]
oauthToken := oauth.DBTokenToToken(t)
@ -130,10 +129,15 @@ func (suite *MediaCreateTestSuite) TestStatusCreatePOSTImageHandlerSuccessful()
ctx.Set(oauth.SessionAuthorizedAccount, suite.testAccounts["local_account_1"])
// see what's in storage *before* the request
storageKeysBeforeRequest, err := suite.storage.ListKeys()
storageKeysBeforeRequest := []string{}
iter, err := suite.storage.Iterator(nil)
if err != nil {
panic(err)
}
for iter.Next() {
storageKeysBeforeRequest = append(storageKeysBeforeRequest, iter.Key())
}
iter.Release()
// create the request
buf, w, err := testrig.CreateMultipartFormData("file", "../../../../testrig/media/test-jpeg.jpg", map[string]string{
@ -150,10 +154,15 @@ func (suite *MediaCreateTestSuite) TestStatusCreatePOSTImageHandlerSuccessful()
suite.mediaModule.MediaCreatePOSTHandler(ctx)
// check what's in storage *after* the request
storageKeysAfterRequest, err := suite.storage.ListKeys()
storageKeysAfterRequest := []string{}
iter, err = suite.storage.Iterator(nil)
if err != nil {
panic(err)
}
for iter.Next() {
storageKeysAfterRequest = append(storageKeysAfterRequest, iter.Key())
}
iter.Release()
// check response
suite.EqualValues(http.StatusOK, recorder.Code)

View file

@ -19,10 +19,10 @@
package status_test
import (
"git.iim.gay/grufwub/go-store/kv"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/suite"
"github.com/superseriousbusiness/gotosocial/internal/api/client/status"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
@ -41,7 +41,7 @@ type StatusStandardTestSuite struct {
tc typeutils.TypeConverter
federator federation.Federator
processor processing.Processor
storage blob.Storage
storage *kv.KVStore
// standard suite models
testTokens map[string]*gtsmodel.Token

View file

@ -1,11 +1,11 @@
package user_test
import (
"git.iim.gay/grufwub/go-store/kv"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/suite"
"github.com/superseriousbusiness/gotosocial/internal/api/s2s/user"
"github.com/superseriousbusiness/gotosocial/internal/api/security"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
@ -24,7 +24,7 @@ type UserStandardTestSuite struct {
tc typeutils.TypeConverter
federator federation.Federator
processor processing.Processor
storage blob.Storage
storage *kv.KVStore
securityModule *security.Module
// standard suite models

View file

@ -1,55 +0,0 @@
package blob
import (
"fmt"
"github.com/sirupsen/logrus"
"github.com/superseriousbusiness/gotosocial/internal/config"
)
// NewInMem returns an in-memory implementation of the Storage interface.
// This is good for testing and whatnot but ***SHOULD ABSOLUTELY NOT EVER
// BE USED IN A PRODUCTION SETTING***, because A) everything will be wiped out
// if you restart the server and B) if you store lots of images your RAM use
// will absolutely go through the roof.
func NewInMem(c *config.Config, log *logrus.Logger) (Storage, error) {
return &inMemStorage{
stored: make(map[string][]byte),
log: log,
}, nil
}
type inMemStorage struct {
stored map[string][]byte
log *logrus.Logger
}
func (s *inMemStorage) StoreFileAt(path string, data []byte) error {
l := s.log.WithField("func", "StoreFileAt")
l.Debugf("storing at path %s", path)
s.stored[path] = data
return nil
}
func (s *inMemStorage) RetrieveFileFrom(path string) ([]byte, error) {
l := s.log.WithField("func", "RetrieveFileFrom")
l.Debugf("retrieving from path %s", path)
d, ok := s.stored[path]
if !ok || len(d) == 0 {
return nil, fmt.Errorf("no data found at path %s", path)
}
return d, nil
}
func (s *inMemStorage) ListKeys() ([]string, error) {
keys := []string{}
for k := range s.stored {
keys = append(keys, k)
}
return keys, nil
}
func (s *inMemStorage) RemoveFileAt(path string) error {
delete(s.stored, path)
return nil
}

View file

@ -1,70 +0,0 @@
package blob
import (
"fmt"
"os"
"path/filepath"
"strings"
"github.com/sirupsen/logrus"
"github.com/superseriousbusiness/gotosocial/internal/config"
)
// NewLocal returns an implementation of the Storage interface that uses
// the local filesystem for storing and retrieving files, attachments, etc.
func NewLocal(c *config.Config, log *logrus.Logger) (Storage, error) {
return &localStorage{
config: c,
log: log,
}, nil
}
type localStorage struct {
config *config.Config
log *logrus.Logger
}
func (s *localStorage) StoreFileAt(path string, data []byte) error {
l := s.log.WithField("func", "StoreFileAt")
l.Debugf("storing at path %s", path)
components := strings.Split(path, "/")
dir := strings.Join(components[0:len(components)-1], "/")
if err := os.MkdirAll(dir, 0777); err != nil {
return fmt.Errorf("error writing file at %s: %s", path, err)
}
if err := os.WriteFile(path, data, 0777); err != nil {
return fmt.Errorf("error writing file at %s: %s", path, err)
}
return nil
}
func (s *localStorage) RetrieveFileFrom(path string) ([]byte, error) {
l := s.log.WithField("func", "RetrieveFileFrom")
l.Debugf("retrieving from path %s", path)
b, err := os.ReadFile(path)
if err != nil {
return nil, fmt.Errorf("error reading file at %s: %s", path, err)
}
return b, nil
}
func (s *localStorage) ListKeys() ([]string, error) {
keys := []string{}
err := filepath.Walk(s.config.StorageConfig.BasePath, func(path string, info os.FileInfo, err error) error {
if err != nil {
return err
}
if !info.IsDir() {
keys = append(keys, path)
}
return nil
})
if err != nil {
return nil, err
}
return keys, nil
}
func (s *localStorage) RemoveFileAt(path string) error {
return os.Remove(path)
}

View file

@ -1,29 +0,0 @@
/*
GoToSocial
Copyright (C) 2021 GoToSocial Authors admin@gotosocial.org
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package blob
// Storage is an interface for storing and retrieving blobs
// such as images, videos, and any other attachments/documents
// that shouldn't be stored in a database.
type Storage interface {
StoreFileAt(path string, data []byte) error
RetrieveFileFrom(path string) ([]byte, error)
ListKeys() ([]string, error)
RemoveFileAt(path string) error
}

View file

@ -8,6 +8,7 @@ import (
"os/signal"
"syscall"
"git.iim.gay/grufwub/go-store/kv"
"github.com/sirupsen/logrus"
"github.com/superseriousbusiness/gotosocial/internal/api"
"github.com/superseriousbusiness/gotosocial/internal/api/client/account"
@ -32,7 +33,6 @@ import (
"github.com/superseriousbusiness/gotosocial/internal/api/s2s/user"
"github.com/superseriousbusiness/gotosocial/internal/api/s2s/webfinger"
"github.com/superseriousbusiness/gotosocial/internal/api/security"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/cliactions"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db/bundb"
@ -76,7 +76,8 @@ var Start cliactions.GTSAction = func(ctx context.Context, c *config.Config, log
return fmt.Errorf("error creating router: %s", err)
}
storageBackend, err := blob.NewLocal(c, log)
// Open the storage backend
storage, err := kv.OpenFile(c.StorageConfig.BasePath, nil)
if err != nil {
return fmt.Errorf("error creating storage backend: %s", err)
}
@ -86,11 +87,11 @@ var Start cliactions.GTSAction = func(ctx context.Context, c *config.Config, log
timelineManager := timelineprocessing.NewManager(dbService, typeConverter, c, log)
// build backend handlers
mediaHandler := media.New(c, dbService, storageBackend, log)
mediaHandler := media.New(c, dbService, storage, log)
oauthServer := oauth.New(dbService, log)
transportController := transport.NewController(c, dbService, &federation.Clock{}, http.DefaultClient, log)
federator := federation.NewFederator(dbService, federatingDB, transportController, c, log, typeConverter, mediaHandler)
processor := processing.NewProcessor(c, typeConverter, federator, oauthServer, mediaHandler, storageBackend, timelineManager, dbService, log)
processor := processing.NewProcessor(c, typeConverter, federator, oauthServer, mediaHandler, storage, timelineManager, dbService, log)
if err := processor.Start(ctx); err != nil {
return fmt.Errorf("error starting processor: %s", err)
}

View file

@ -24,11 +24,11 @@ import (
"io"
"net/http"
"git.iim.gay/grufwub/go-store/kv"
"github.com/go-fed/activity/streams"
"github.com/go-fed/activity/streams/vocab"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/suite"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation/dereferencing"
@ -42,7 +42,7 @@ type DereferencerStandardTestSuite struct {
config *config.Config
db db.DB
log *logrus.Logger
storage blob.Storage
storage *kv.KVStore
testRemoteStatuses map[string]vocab.ActivityStreamsNote
testRemoteAccounts map[string]vocab.ActivityStreamsPerson

View file

@ -24,13 +24,13 @@ import (
"net/http/httptest"
"testing"
"git.iim.gay/grufwub/go-store/kv"
"github.com/go-fed/activity/pub"
"github.com/go-fed/httpsig"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/suite"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
@ -45,7 +45,7 @@ type ProtocolTestSuite struct {
config *config.Config
db db.DB
log *logrus.Logger
storage blob.Storage
storage *kv.KVStore
typeConverter typeutils.TypeConverter
accounts map[string]*gtsmodel.Account
activities map[string]testrig.ActivityWithSignature
@ -65,7 +65,6 @@ func (suite *ProtocolTestSuite) SetupSuite() {
func (suite *ProtocolTestSuite) SetupTest() {
testrig.StandardDBSetup(suite.db, suite.accounts)
}
// TearDownTest drops tables to make sure there's no data in the db
@ -75,7 +74,6 @@ func (suite *ProtocolTestSuite) TearDownTest() {
// make sure PostInboxRequestBodyHook properly sets the inbox username and activity on the context
func (suite *ProtocolTestSuite) TestPostInboxRequestBodyHook() {
// the activity we're gonna use
activity := suite.activities["dm_for_zork"]
@ -106,7 +104,6 @@ func (suite *ProtocolTestSuite) TestPostInboxRequestBodyHook() {
}
func (suite *ProtocolTestSuite) TestAuthenticatePostInbox() {
// the activity we're gonna use
activity := suite.activities["dm_for_zork"]
sendingAccount := suite.accounts["remote_account_1"]

View file

@ -26,8 +26,8 @@ import (
"strings"
"time"
"git.iim.gay/grufwub/go-store/kv"
"github.com/sirupsen/logrus"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/gtsmodel"
@ -86,12 +86,12 @@ type Handler interface {
type mediaHandler struct {
config *config.Config
db db.DB
storage blob.Storage
storage *kv.KVStore
log *logrus.Logger
}
// New returns a new handler with the given config, db, storage, and logger
func New(config *config.Config, database db.DB, storage blob.Storage, log *logrus.Logger) Handler {
func New(config *config.Config, database db.DB, storage *kv.KVStore, log *logrus.Logger) Handler {
return &mediaHandler{
config: config,
db: database,
@ -250,19 +250,19 @@ func (mh *mediaHandler) ProcessLocalEmoji(ctx context.Context, emojiBytes []byte
// serve url and storage path for the original emoji -- can be png or gif
emojiURL := fmt.Sprintf("%s/%s/%s/%s/%s.%s", URLbase, instanceAccount.ID, Emoji, Original, newEmojiID, extension)
emojiPath := fmt.Sprintf("%s/%s/%s/%s/%s.%s", mh.config.StorageConfig.BasePath, instanceAccount.ID, Emoji, Original, newEmojiID, extension)
emojiPath := fmt.Sprintf("%s/%s/%s/%s.%s", instanceAccount.ID, Emoji, Original, newEmojiID, extension)
// serve url and storage path for the static version -- will always be png
emojiStaticURL := fmt.Sprintf("%s/%s/%s/%s/%s.png", URLbase, instanceAccount.ID, Emoji, Static, newEmojiID)
emojiStaticPath := fmt.Sprintf("%s/%s/%s/%s/%s.png", mh.config.StorageConfig.BasePath, instanceAccount.ID, Emoji, Static, newEmojiID)
emojiStaticPath := fmt.Sprintf("%s/%s/%s/%s.png", instanceAccount.ID, Emoji, Static, newEmojiID)
// store the original
if err := mh.storage.StoreFileAt(emojiPath, original.image); err != nil {
// Store the original emoji
if err := mh.storage.Put(emojiPath, original.image); err != nil {
return nil, fmt.Errorf("storage error: %s", err)
}
// store the static
if err := mh.storage.StoreFileAt(emojiStaticPath, static.image); err != nil {
// Store the static emoji
if err := mh.storage.Put(emojiStaticPath, static.image); err != nil {
return nil, fmt.Errorf("storage error: %s", err)
}
@ -293,7 +293,6 @@ func (mh *mediaHandler) ProcessLocalEmoji(ctx context.Context, emojiBytes []byte
}
func (mh *mediaHandler) ProcessRemoteHeaderOrAvatar(ctx context.Context, t transport.Transport, currentAttachment *gtsmodel.MediaAttachment, accountID string) (*gtsmodel.MediaAttachment, error) {
if !currentAttachment.Header && !currentAttachment.Avatar {
return nil, errors.New("provided attachment was set to neither header nor avatar")
}

View file

@ -84,14 +84,14 @@ func (mh *mediaHandler) processHeaderOrAvi(imageBytes []byte, contentType string
smallURL := fmt.Sprintf("%s/%s/%s/small/%s.%s", URLbase, accountID, mediaType, newMediaID, extension)
// we store the original...
originalPath := fmt.Sprintf("%s/%s/%s/%s/%s.%s", mh.config.StorageConfig.BasePath, accountID, mediaType, Original, newMediaID, extension)
if err := mh.storage.StoreFileAt(originalPath, original.image); err != nil {
originalPath := fmt.Sprintf("%s/%s/%s/%s.%s", accountID, mediaType, Original, newMediaID, extension)
if err := mh.storage.Put(originalPath, original.image); err != nil {
return nil, fmt.Errorf("storage error: %s", err)
}
// and a thumbnail...
smallPath := fmt.Sprintf("%s/%s/%s/%s/%s.%s", mh.config.StorageConfig.BasePath, accountID, mediaType, Small, newMediaID, extension)
if err := mh.storage.StoreFileAt(smallPath, small.image); err != nil {
smallPath := fmt.Sprintf("%s/%s/%s/%s.%s", accountID, mediaType, Small, newMediaID, extension)
if err := mh.storage.Put(smallPath, small.image); err != nil {
return nil, fmt.Errorf("storage error: %s", err)
}

View file

@ -72,14 +72,14 @@ func (mh *mediaHandler) processImageAttachment(data []byte, minAttachment *gtsmo
smallURL := fmt.Sprintf("%s/%s/attachment/small/%s.jpeg", URLbase, minAttachment.AccountID, newMediaID) // all thumbnails/smalls are encoded as jpeg
// we store the original...
originalPath := fmt.Sprintf("%s/%s/%s/%s/%s.%s", mh.config.StorageConfig.BasePath, minAttachment.AccountID, Attachment, Original, newMediaID, extension)
if err := mh.storage.StoreFileAt(originalPath, original.image); err != nil {
originalPath := fmt.Sprintf("%s/%s/%s/%s.%s", minAttachment.AccountID, Attachment, Original, newMediaID, extension)
if err := mh.storage.Put(originalPath, original.image); err != nil {
return nil, fmt.Errorf("storage error: %s", err)
}
// and a thumbnail...
smallPath := fmt.Sprintf("%s/%s/%s/%s/%s.jpeg", mh.config.StorageConfig.BasePath, minAttachment.AccountID, Attachment, Small, newMediaID) // all thumbnails/smalls are encoded as jpeg
if err := mh.storage.StoreFileAt(smallPath, small.image); err != nil {
smallPath := fmt.Sprintf("%s/%s/%s/%s.jpeg", minAttachment.AccountID, Attachment, Small, newMediaID) // all thumbnails/smalls are encoded as jpeg
if err := mh.storage.Put(smallPath, small.image); err != nil {
return nil, fmt.Errorf("storage error: %s", err)
}
@ -130,5 +130,4 @@ func (mh *mediaHandler) processImageAttachment(data []byte, minAttachment *gtsmo
}
return attachment, nil
}

View file

@ -19,10 +19,10 @@
package account_test
import (
"git.iim.gay/grufwub/go-store/kv"
"github.com/go-fed/activity/pub"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/suite"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
@ -43,7 +43,7 @@ type AccountStandardTestSuite struct {
db db.DB
log *logrus.Logger
tc typeutils.TypeConverter
storage blob.Storage
storage *kv.KVStore
mediaHandler media.Handler
oauthServer oauth.Server
fromClientAPIChan chan messages.FromClientAPI

View file

@ -24,14 +24,14 @@ func (p *processor) Delete(ctx context.Context, mediaAttachmentID string) gtserr
// delete the thumbnail from storage
if attachment.Thumbnail.Path != "" {
if err := p.storage.RemoveFileAt(attachment.Thumbnail.Path); err != nil {
if err := p.storage.Delete(attachment.Thumbnail.Path); err != nil {
errs = append(errs, fmt.Sprintf("remove thumbnail at path %s: %s", attachment.Thumbnail.Path, err))
}
}
// delete the file from storage
if attachment.File.Path != "" {
if err := p.storage.RemoveFileAt(attachment.File.Path); err != nil {
if err := p.storage.Delete(attachment.File.Path); err != nil {
errs = append(errs, fmt.Sprintf("remove file at path %s: %s", attachment.File.Path, err))
}
}

View file

@ -110,7 +110,7 @@ func (p *processor) GetFile(ctx context.Context, account *gtsmodel.Account, form
}
}
bytes, err := p.storage.RetrieveFileFrom(storagePath)
bytes, err := p.storage.Get(storagePath)
if err != nil {
return nil, gtserror.NewErrorNotFound(fmt.Errorf("error retrieving from storage: %s", err))
}

View file

@ -21,9 +21,9 @@ package media
import (
"context"
"git.iim.gay/grufwub/go-store/kv"
"github.com/sirupsen/logrus"
apimodel "github.com/superseriousbusiness/gotosocial/internal/api/model"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/gtserror"
@ -47,13 +47,13 @@ type processor struct {
tc typeutils.TypeConverter
config *config.Config
mediaHandler media.Handler
storage blob.Storage
storage *kv.KVStore
db db.DB
log *logrus.Logger
}
// New returns a new media processor.
func New(db db.DB, tc typeutils.TypeConverter, mediaHandler media.Handler, storage blob.Storage, config *config.Config, log *logrus.Logger) Processor {
func New(db db.DB, tc typeutils.TypeConverter, mediaHandler media.Handler, storage *kv.KVStore, config *config.Config, log *logrus.Logger) Processor {
return &processor{
tc: tc,
config: config,

View file

@ -23,9 +23,9 @@ import (
"net/http"
"net/url"
"git.iim.gay/grufwub/go-store/kv"
"github.com/sirupsen/logrus"
apimodel "github.com/superseriousbusiness/gotosocial/internal/api/model"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
@ -234,7 +234,7 @@ type processor struct {
tc typeutils.TypeConverter
oauthServer oauth.Server
mediaHandler media.Handler
storage blob.Storage
storage *kv.KVStore
timelineManager timeline.Manager
db db.DB
filter visibility.Filter
@ -251,8 +251,7 @@ type processor struct {
}
// NewProcessor returns a new Processor that uses the given federator and logger
func NewProcessor(config *config.Config, tc typeutils.TypeConverter, federator federation.Federator, oauthServer oauth.Server, mediaHandler media.Handler, storage blob.Storage, timelineManager timeline.Manager, db db.DB, log *logrus.Logger) Processor {
func NewProcessor(config *config.Config, tc typeutils.TypeConverter, federator federation.Federator, oauthServer oauth.Server, mediaHandler media.Handler, storage *kv.KVStore, timelineManager timeline.Manager, db db.DB, log *logrus.Logger) Processor {
fromClientAPI := make(chan messages.FromClientAPI, 1000)
fromFederator := make(chan messages.FromFederator, 1000)

View file

@ -21,9 +21,9 @@ package processing_test
import (
"context"
"git.iim.gay/grufwub/go-store/kv"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/suite"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
@ -43,7 +43,7 @@ type ProcessingStandardTestSuite struct {
config *config.Config
db db.DB
log *logrus.Logger
storage blob.Storage
storage *kv.KVStore
typeconverter typeutils.TypeConverter
transportController transport.Controller
federator federation.Federator

View file

@ -19,13 +19,13 @@
package testrig
import (
"github.com/superseriousbusiness/gotosocial/internal/blob"
"git.iim.gay/grufwub/go-store/kv"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
"github.com/superseriousbusiness/gotosocial/internal/transport"
)
// NewTestFederator returns a federator with the given database and (mock!!) transport controller.
func NewTestFederator(db db.DB, tc transport.Controller, storage blob.Storage) federation.Federator {
func NewTestFederator(db db.DB, tc transport.Controller, storage *kv.KVStore) federation.Federator {
return federation.NewFederator(db, NewTestFederatingDB(db), tc, NewTestConfig(), NewTestLog(), NewTestTypeConverter(db), NewTestMediaHandler(db, storage))
}

View file

@ -19,13 +19,13 @@
package testrig
import (
"github.com/superseriousbusiness/gotosocial/internal/blob"
"git.iim.gay/grufwub/go-store/kv"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/media"
)
// NewTestMediaHandler returns a media handler with the default test config, the default test logger,
// and the given db and storage.
func NewTestMediaHandler(db db.DB, storage blob.Storage) media.Handler {
func NewTestMediaHandler(db db.DB, storage *kv.KVStore) media.Handler {
return media.New(NewTestConfig(), db, storage, NewTestLog())
}

View file

@ -19,13 +19,13 @@
package testrig
import (
"github.com/superseriousbusiness/gotosocial/internal/blob"
"git.iim.gay/grufwub/go-store/kv"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/federation"
"github.com/superseriousbusiness/gotosocial/internal/processing"
)
// NewTestProcessor returns a Processor suitable for testing purposes
func NewTestProcessor(db db.DB, storage blob.Storage, federator federation.Federator) processing.Processor {
func NewTestProcessor(db db.DB, storage *kv.KVStore, federator federation.Federator) processing.Processor {
return processing.NewProcessor(NewTestConfig(), NewTestTypeConverter(db), federator, NewTestOauthServer(db), NewTestMediaHandler(db, storage), storage, NewTestTimelineManager(db), db, NewTestLog())
}

View file

@ -19,23 +19,28 @@
package testrig
import (
"bytes"
"errors"
"fmt"
"io"
"os"
"github.com/superseriousbusiness/gotosocial/internal/blob"
"git.iim.gay/grufwub/go-store/kv"
"git.iim.gay/grufwub/go-store/storage"
"git.iim.gay/grufwub/go-store/util"
)
// NewTestStorage returns a new in memory storage with the default test config
func NewTestStorage() blob.Storage {
s, err := blob.NewInMem(NewTestConfig(), NewTestLog())
func NewTestStorage() *kv.KVStore {
storage, err := kv.OpenStorage(&inMemStorage{storage: map[string][]byte{}, overwrite: false})
if err != nil {
panic(err)
}
return s
return storage
}
// StandardStorageSetup populates the storage with standard test entries from the given directory.
func StandardStorageSetup(s blob.Storage, relativePath string) {
func StandardStorageSetup(s *kv.KVStore, relativePath string) {
storedA := newTestStoredAttachments()
a := NewTestAttachments()
for k, paths := range storedA {
@ -51,14 +56,14 @@ func StandardStorageSetup(s blob.Storage, relativePath string) {
if err != nil {
panic(err)
}
if err := s.StoreFileAt(pathOriginal, bOriginal); err != nil {
if err := s.Put(pathOriginal, bOriginal); err != nil {
panic(err)
}
bSmall, err := os.ReadFile(fmt.Sprintf("%s/%s", relativePath, filenameSmall))
if err != nil {
panic(err)
}
if err := s.StoreFileAt(pathSmall, bSmall); err != nil {
if err := s.Put(pathSmall, bSmall); err != nil {
panic(err)
}
}
@ -78,28 +83,109 @@ func StandardStorageSetup(s blob.Storage, relativePath string) {
if err != nil {
panic(err)
}
if err := s.StoreFileAt(pathOriginal, bOriginal); err != nil {
if err := s.Put(pathOriginal, bOriginal); err != nil {
panic(err)
}
bStatic, err := os.ReadFile(fmt.Sprintf("%s/%s", relativePath, filenameStatic))
if err != nil {
panic(err)
}
if err := s.StoreFileAt(pathStatic, bStatic); err != nil {
if err := s.Put(pathStatic, bStatic); err != nil {
panic(err)
}
}
}
// StandardStorageTeardown deletes everything in storage so that it's clean for the next test
func StandardStorageTeardown(s blob.Storage) {
keys, err := s.ListKeys()
func StandardStorageTeardown(s *kv.KVStore) {
iter, err := s.Iterator(nil)
if err != nil {
panic(err)
}
keys := []string{}
for iter.Next() {
keys = append(keys, iter.Key())
}
iter.Release()
for _, k := range keys {
if err := s.RemoveFileAt(k); err != nil {
if err := s.Delete(k); err != nil {
panic(err)
}
}
}
type inMemStorage struct {
storage map[string][]byte
overwrite bool
}
func (s *inMemStorage) Clean() error {
return nil
}
func (s *inMemStorage) ReadBytes(key string) ([]byte, error) {
b, ok := s.storage[key]
if !ok {
return nil, errors.New("key not found")
}
return b, nil
}
func (s *inMemStorage) ReadStream(key string) (io.ReadCloser, error) {
b, err := s.ReadBytes(key)
if err != nil {
return nil, err
}
return util.NopReadCloser(bytes.NewReader(b)), nil
}
func (s *inMemStorage) WriteBytes(key string, value []byte) error {
if _, ok := s.storage[key]; ok && !s.overwrite {
return errors.New("key already in storage")
}
s.storage[key] = copyBytes(value)
return nil
}
func (s *inMemStorage) WriteStream(key string, r io.Reader) error {
b, err := io.ReadAll(r)
if err != nil {
return err
}
return s.WriteBytes(key, b)
}
func (s *inMemStorage) Stat(key string) (bool, error) {
_, ok := s.storage[key]
return ok, nil
}
func (s *inMemStorage) Remove(key string) error {
if _, ok := s.storage[key]; !ok {
return errors.New("key not found")
}
delete(s.storage, key)
return nil
}
func (s *inMemStorage) WalkKeys(opts *storage.WalkKeysOptions) error {
if opts == nil || opts.WalkFn == nil {
return errors.New("invalid walkfn")
}
for key := range s.storage {
opts.WalkFn(entry(key))
}
return nil
}
type entry string
func (e entry) Key() string {
return string(e)
}
func copyBytes(b []byte) []byte {
p := make([]byte, len(b))
copy(p, b)
return p
}

View file

@ -0,0 +1,7 @@
Alternative path library with a `strings.Builder` like path builder.
Benchmarks compared to `"path"`:
![benchmarks](https://git.iim.gay/grufwub/go-path/raw/main/benchmarks.png)
Better documentation + README in progress...

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

View file

@ -0,0 +1,379 @@
package fastpath
import (
"unsafe"
)
// allocate this just once
var dot = []byte(".")
type Builder struct {
noCopy noCopy
b []byte // b is the underlying byte buffer
dd int // pos of last '..' appended to builder
abs bool // abs stores whether path passed to first .Append() is absolute
set bool // set stores whether b.abs has been set i.e. not first call to .Append()
// lp int // pos of beginning of previous path segment
// cp int // pos of beginning of current path segment
}
// NewBuilder returns a new Builder object using the supplied byte
// slice as the underlying buffer
func NewBuilder(b []byte) Builder {
if b != nil {
b = b[:0]
}
return Builder{
noCopy: noCopy{},
b: b,
dd: 0,
abs: false,
set: false,
}
}
// Reset resets the Builder object
func (b *Builder) Reset() {
b.b = b.b[:0]
b.dd = 0
b.abs = false
b.set = false
// b.lp = 0
// b.cp = 0
}
// Len returns the number of accumulated bytes in the Builder
func (b *Builder) Len() int {
return len(b.b)
}
// Cap returns the capacity of the underlying Builder buffer
func (b *Builder) Cap() int {
return cap(b.b)
}
// Bytes returns the accumulated path bytes.
func (b *Builder) Bytes() []byte {
if b.Len() < 1 {
return dot
}
return b.b
}
// String returns the accumulated path string.
func (b *Builder) String() string {
if b.Len() < 1 {
return string(dot)
}
return string(b.b)
}
// StringPtr returns a ptr to the accumulated path string.
//
// Please note the underlying byte slice for this string is
// tied to the builder, so any changes will result in the
// returned string changing. Consider using .String() if
// this is undesired behaviour.
func (b *Builder) StringPtr() string {
if b.Len() < 1 {
return *(*string)(unsafe.Pointer(&dot))
}
return *(*string)(unsafe.Pointer(&b.b))
}
// Basename returns the base name of the accumulated path string
// func (b *Builder) Basename() string {
// if b.cp >= b.Len() {
// return dot
// }
// return deepcopy(b.string()[b.cp:])
// }
// BasenamePtr returns a ptr to the base name of the accumulated
// path string.
//
// Please note the underlying byte slice for this string is
// tied to the builder, so any changes will result in the
// returned string changing. Consider using .NewString() if
// this is undesired behaviour.
// func (b *Builder) BasenamePtr() string {
// if b.cp >= b.Len() {
// return dot
// }
// return b.string()[b.cp:]
// }
// Dirname returns the dir path of the accumulated path string
// func (b *Builder) Dirname() string {
// if b.cp < 1 || b.cp-1 >= b.Len() {
// return dot
// }
// return deepcopy(b.string()[:b.cp-1])
// }
// DirnamePtr returns a ptr to the dir path of the accumulated
// path string.
//
// Please note the underlying byte slice for this string is
// tied to the builder, so any changes will result in the
// returned string changing. Consider using .NewString() if
// this is undesired behaviour.
// func (b *Builder) DirnamePtr() string {
// if b.cp < 1 || b.cp-1 >= b.Len() {
// return dot
// }
// return b.String()[:b.cp-1]
// }
func (b *Builder) Absolute() bool {
return b.abs
}
func (b *Builder) SetAbsolute(val bool) {
if !b.set {
if val {
// .Append() has not be called,
// add a '/' and set abs
b.guarantee(1)
b.appendByte('/')
b.abs = true
}
// Set as having been set
b.set = true
return
}
if !val && b.abs {
// Already set and absolute. Update
b.abs = false
// If not empty (i.e. not just '/'),
// then shift bytes 1 left
if b.Len() > 1 {
copy(b.b, b.b[1:])
}
// Truncate 1 byte. In the case of empty,
// i.e. just '/' then it will drop this
b.truncate(1)
} else if val && !b.abs {
// Already set but NOT abs. Update
b.abs = true
// Guarantee 1 byte available
b.guarantee(1)
// If empty, just append '/'
if b.Len() < 1 {
b.appendByte('/')
return
}
// Increase length
l := b.Len()
b.b = b.b[:l+1]
// Shift bytes 1 right
copy(b.b[1:], b.b[:l])
// Set first byte '/'
b.b[0] = '/'
}
}
// Append adds and cleans the supplied path bytes to the
// builder's internal buffer, growing the buffer if necessary
// to accomodate the extra path length
func (b *Builder) Append(p []byte) {
b.AppendString(*(*string)(unsafe.Pointer(&p)))
}
// AppendString adds and cleans the supplied path string to the
// builder's internal buffer, growing the buffer if necessary
// to accomodate the extra path length
func (b *Builder) AppendString(path string) {
defer func() {
// If buffer is empty, and an absolute path,
// ensure it starts with a '/'
if b.Len() < 1 && b.abs {
b.appendByte('/')
}
}()
// Empty path, nothing to do
if len(path) == 0 {
return
}
// Guarantee at least the total length
// of supplied path available in the buffer
b.guarantee(len(path))
// Try store if absolute
if !b.set {
b.abs = len(path) > 0 && path[0] == '/'
b.set = true
}
i := 0
for i < len(path) {
switch {
// Empty path segment
case path[i] == '/':
i++
// Singular '.' path segment, treat as empty
case path[i] == '.' && (i+1 == len(path) || path[i+1] == '/'):
i++
// Backtrack segment
case path[i] == '.' && path[i+1] == '.' && (i+2 == len(path) || path[i+2] == '/'):
i += 2
switch {
// Check if it's possible to backtrack with
// our current state of the buffer. i.e. is
// our buffer length longer than the last
// '..' we placed?
case b.Len() > b.dd:
b.backtrack()
// b.cp = b.lp
// b.lp = 0
// If we reached here, need to check if
// we can append '..' to the path buffer,
// which is ONLY when path is NOT absolute
case !b.abs:
if b.Len() > 0 {
b.appendByte('/')
}
b.appendByte('.')
b.appendByte('.')
b.dd = b.Len()
// b.lp = lp - 2
// b.cp = b.dd
}
default:
if (b.abs && b.Len() != 1) || (!b.abs && b.Len() > 0) {
b.appendByte('/')
}
// b.lp = b.cp
// b.cp = b.Len()
i += b.appendSlice(path[i:])
}
}
}
// Clean creates the shortest possible functional equivalent
// to the supplied path, resetting the builder before performing
// this operation. The builder object is NOT reset after return
func (b *Builder) Clean(path string) string {
b.Reset()
b.AppendString(path)
return b.String()
}
// Join connects and cleans multiple paths, resetting the builder before
// performing this operation and returning the shortest possible combination
// of all the supplied paths. The builder object is NOT reset after return
func (b *Builder) Join(base string, paths ...string) string {
empty := (len(base) < 1)
b.Reset()
b.AppendString(base)
for _, path := range paths {
b.AppendString(path)
empty = empty && (len(path) < 1)
}
if empty {
return ""
}
return b.String()
}
// Guarantee ensures there is at least the requested size
// free bytes available in the buffer, reallocating if
// necessary
func (b *Builder) Guarantee(size int) {
b.guarantee(size)
}
// Truncate reduces the length of the buffer by the requested
// number of bytes. If the builder is set to absolute, the first
// byte (i.e. '/') will never be truncated
func (b *Builder) Truncate(size int) {
// If absolute and just '/', do nothing
if b.abs && b.Len() == 1 {
return
}
// Truncate requested bytes
b.truncate(size)
}
// truncate reduces the length of the buffer by the requested size,
// no sanity checks are performed
func (b *Builder) truncate(size int) {
b.b = b.b[:b.Len()-size]
}
// guarantee ensures there is at least the requested size
// free bytes available in the buffer, reallocating if necessary.
// no sanity checks are performed
func (b *Builder) guarantee(size int) {
if size > b.Cap()-b.Len() {
nb := make([]byte, 2*b.Cap()+size)
copy(nb, b.b)
b.b = nb[:b.Len()]
}
}
// appendByte appends the supplied byte to the end of
// the buffer. appending is achieved by continually reslicing the
// buffer and setting the next byte-at-index, this is safe as guarantee()
// will have been called beforehand
func (b *Builder) appendByte(c byte) {
b.b = b.b[:b.Len()+1]
b.b[b.Len()-1] = c
}
// appendSlice appends the supplied string slice to
// the end of the buffer and returns the number of indices
// we were able to iterate before hitting a path separator '/'.
// appending is achieved by continually reslicing the buffer
// and setting the next byte-at-index, this is safe as guarantee()
// will have been called beforehand
func (b *Builder) appendSlice(slice string) int {
i := 0
for i < len(slice) && slice[i] != '/' {
b.b = b.b[:b.Len()+1]
b.b[b.Len()-1] = slice[i]
i++
}
return i
}
// backtrack reduces the end of the buffer back to the last
// separating '/', or end of buffer
func (b *Builder) backtrack() {
b.b = b.b[:b.Len()-1]
for b.Len()-1 > b.dd && b.b[b.Len()-1] != '/' {
b.b = b.b[:b.Len()-1]
}
if b.Len() > 0 {
b.b = b.b[:b.Len()-1]
}
}
type noCopy struct{}
func (n *noCopy) Lock() {}
func (n *noCopy) Unlock() {}

View file

@ -0,0 +1,32 @@
package fastpath
import "sync"
// 1/8 max unix path length
const defaultBufSize = 512
var (
builderPool sync.Pool
once = sync.Once{}
)
func pool() *sync.Pool {
once.Do(func() {
builderPool = sync.Pool{
New: func() interface{} {
builder := NewBuilder(make([]byte, defaultBufSize))
return &builder
},
}
})
return &builderPool
}
func AcquireBuilder() *Builder {
return pool().Get().(*Builder)
}
func ReleaseBuilder(b *Builder) {
b.Reset()
pool().Put(b)
}

View file

@ -0,0 +1,6 @@
Variable size bufferpool that supports storing buffers up to 512kb in size
See documentation for more information: https://godocs.io/git.iim.gay/grufwub/go-bufpool
Please note, the test here is a worst-case scenario for allocations (the size
requests always increase so a new slice is always required)

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,96 @@
package bufpool
import (
"sync"
"git.iim.gay/grufwub/go-bytes"
)
// MAX returns the maximum possible sized slice that can be stored in a BufferPool
func MAX() int {
return log2Max
}
// BufferPool is a variable sized buffer pool, separated into memory pages increasing
// by powers of 2. This can offer large improvements over a sync.Pool designed to allocate
// buffers of single sizes, or multiple buffer pools of differing allocation sizes
type BufferPool struct {
noCopy noCopy //nolint
// pools is a predefined-length array of sync.Pools, handling
// ranges in capacity of 2**(n) --> 2**(n+1)
pools [log2MaxPower + 1]sync.Pool
once sync.Once
}
// init simply sets the allocator funcs for each of the pools
func (p *BufferPool) init() {
for i := range p.pools {
p.pools[i].New = func() interface{} {
return &bytes.Buffer{}
}
}
}
// Get retrieves a Buffer of at least supplied capacity from the pool,
// allocating only if strictly necessary. If a capacity above the maximum
// supported (see .MAX()) is requested, a slice is allocated with
// expectance that it will just be dropped on call to .Put()
func (p *BufferPool) Get(cap int) *bytes.Buffer {
// If cap out of bounds, just alloc
if cap < 2 || cap > log2Max {
buf := bytes.NewBuffer(make([]byte, 0, cap))
return &buf
}
// Ensure initialized
p.once.Do(p.init)
// Calculate page idx from log2 table
pow := uint8(log2Table[cap])
pool := &p.pools[pow-1]
// Attempt to fetch buf from pool
buf := pool.Get().(*bytes.Buffer)
// Check of required capacity
if buf.Cap() < cap {
// We allocate via this method instead
// of by buf.Guarantee() as this way we
// can allocate only what the user requested.
//
// buf.Guarantee() can allocate alot more...
buf.B = make([]byte, 0, cap)
}
return buf
}
// Put resets and place the supplied Buffer back in its appropriate pool. Buffers
// Buffers below or above maximum supported capacity (see .MAX()) will be dropped
func (p *BufferPool) Put(buf *bytes.Buffer) {
// Drop out of size range buffers
if buf.Cap() < 2 || buf.Cap() > log2Max {
return
}
// Ensure initialized
p.once.Do(p.init)
// Calculate page idx from log2 table
pow := uint8(log2Table[buf.Cap()])
pool := &p.pools[pow-1]
// Reset, place in pool
buf.Reset()
pool.Put(buf)
}
//nolint
type noCopy struct{}
//nolint
func (n *noCopy) Lock() {}
//nolint
func (n *noCopy) Unlock() {}

View file

@ -0,0 +1,12 @@
drop-in replacement for standard "bytes" library
contains alternative Buffer implementation that provides direct access to the
underlying byte-slice, with some interesting alternative struct methods. provides
no safety guards, if you pass bad values it will blow up in your face...
and alternative `ToUpper()` and `ToLower()` implementations that use lookup
tables for improved performance
provides direct call-throughs to most of the "bytes" library functions to facilitate
this being a direct drop-in. in some time, i may offer alternative implementations
for other functions too

View file

@ -0,0 +1,138 @@
package bytes
import (
"unicode/utf8"
)
// Buffer is a very simple buffer implementation that allows
// access to and reslicing of the underlying byte slice.
type Buffer struct {
noCopy noCopy
B []byte
}
func NewBuffer(b []byte) Buffer {
return Buffer{
noCopy: noCopy{},
B: b,
}
}
func (b *Buffer) Write(p []byte) (int, error) {
b.Grow(len(p))
return copy(b.B[b.Len()-len(p):], p), nil
}
func (b *Buffer) WriteString(s string) (int, error) {
b.Grow(len(s))
return copy(b.B[b.Len()-len(s):], s), nil
}
func (b *Buffer) WriteByte(c byte) error {
l := b.Len()
b.Grow(1)
b.B[l] = c
return nil
}
func (b *Buffer) WriteRune(r rune) (int, error) {
if r < utf8.RuneSelf {
b.WriteByte(byte(r))
return 1, nil
}
l := b.Len()
b.Grow(utf8.UTFMax)
n := utf8.EncodeRune(b.B[l:b.Len()], r)
b.B = b.B[:l+n]
return n, nil
}
func (b *Buffer) WriteAt(p []byte, start int64) (int, error) {
b.Grow(len(p) - int(int64(b.Len())-start))
return copy(b.B[start:], p), nil
}
func (b *Buffer) WriteStringAt(s string, start int64) (int, error) {
b.Grow(len(s) - int(int64(b.Len())-start))
return copy(b.B[start:], s), nil
}
func (b *Buffer) Truncate(size int) {
b.B = b.B[:b.Len()-size]
}
func (b *Buffer) ShiftByte(index int) {
copy(b.B[index:], b.B[index+1:])
}
func (b *Buffer) Shift(start int64, size int) {
copy(b.B[start:], b.B[start+int64(size):])
}
func (b *Buffer) DeleteByte(index int) {
b.ShiftByte(index)
b.Truncate(1)
}
func (b *Buffer) Delete(start int64, size int) {
b.Shift(start, size)
b.Truncate(size)
}
func (b *Buffer) InsertByte(index int64, c byte) {
l := b.Len()
b.Grow(1)
copy(b.B[index+1:], b.B[index:l])
b.B[index] = c
}
func (b *Buffer) Insert(index int64, p []byte) {
l := b.Len()
b.Grow(len(p))
copy(b.B[index+int64(len(p)):], b.B[index:l])
copy(b.B[index:], p)
}
func (b *Buffer) Bytes() []byte {
return b.B
}
func (b *Buffer) String() string {
return string(b.B)
}
func (b *Buffer) StringPtr() string {
return BytesToString(b.B)
}
func (b *Buffer) Cap() int {
return cap(b.B)
}
func (b *Buffer) Len() int {
return len(b.B)
}
func (b *Buffer) Reset() {
b.B = b.B[:0]
}
func (b *Buffer) Grow(size int) {
b.Guarantee(size)
b.B = b.B[:b.Len()+size]
}
func (b *Buffer) Guarantee(size int) {
if size > b.Cap()-b.Len() {
nb := make([]byte, 2*b.Cap()+size)
copy(nb, b.B)
b.B = nb[:b.Len()]
}
}
type noCopy struct{}
func (n *noCopy) Lock() {}
func (n *noCopy) Unlock() {}

View file

@ -0,0 +1,261 @@
package bytes
import (
"bytes"
"reflect"
"unsafe"
)
var (
_ Bytes = &Buffer{}
_ Bytes = bytesType{}
)
// Bytes defines a standard way of retrieving the content of a
// byte buffer of some-kind.
type Bytes interface {
// Bytes returns the byte slice content
Bytes() []byte
// String returns byte slice cast directly to string, this
// will cause an allocation but comes with the safety of
// being an immutable Go string
String() string
// StringPtr returns byte slice cast to string via the unsafe
// package. This comes with the same caveats of accessing via
// .Bytes() in that the content is liable change and is NOT
// immutable, despite being a string type
StringPtr() string
}
type bytesType []byte
func (b bytesType) Bytes() []byte {
return b
}
func (b bytesType) String() string {
return string(b)
}
func (b bytesType) StringPtr() string {
return BytesToString(b)
}
// ToBytes casts the provided byte slice as the simplest possible
// Bytes interface implementation
func ToBytes(b []byte) Bytes {
return bytesType(b)
}
// Copy returns a new copy of slice b, does NOT maintain nil values
func Copy(b []byte) []byte {
p := make([]byte, len(b))
copy(p, b)
return p
}
// BytesToString returns byte slice cast to string via the "unsafe" package
func BytesToString(b []byte) string {
return *(*string)(unsafe.Pointer(&b))
}
// StringToBytes returns the string cast to string via the "unsafe" and "reflect" packages
func StringToBytes(s string) []byte {
// thank you to https://github.com/valyala/fasthttp/blob/master/bytesconv.go
var b []byte
// Get byte + string headers
bh := (*reflect.SliceHeader)(unsafe.Pointer(&b))
sh := (*reflect.StringHeader)(unsafe.Pointer(&s))
// Manually set bytes to string
bh.Data = sh.Data
bh.Len = sh.Len
bh.Cap = sh.Len
return b
}
// // InsertByte inserts the supplied byte into the slice at provided position
// func InsertByte(b []byte, at int, c byte) []byte {
// return append(append(b[:at], c), b[at:]...)
// }
// // Insert inserts the supplied byte slice into the slice at provided position
// func Insert(b []byte, at int, s []byte) []byte {
// return append(append(b[:at], s...), b[at:]...)
// }
// ToUpper offers a faster ToUpper implementation using a lookup table
func ToUpper(b []byte) {
for i := 0; i < len(b); i++ {
c := &b[i]
*c = toUpperTable[*c]
}
}
// ToLower offers a faster ToLower implementation using a lookup table
func ToLower(b []byte) {
for i := 0; i < len(b); i++ {
c := &b[i]
*c = toLowerTable[*c]
}
}
// HasBytePrefix returns whether b has the provided byte prefix
func HasBytePrefix(b []byte, c byte) bool {
return (len(b) > 0) && (b[0] == c)
}
// HasByteSuffix returns whether b has the provided byte suffix
func HasByteSuffix(b []byte, c byte) bool {
return (len(b) > 0) && (b[len(b)-1] == c)
}
// HasBytePrefix returns b without the provided leading byte
func TrimBytePrefix(b []byte, c byte) []byte {
if HasBytePrefix(b, c) {
return b[1:]
}
return b
}
// TrimByteSuffix returns b without the provided trailing byte
func TrimByteSuffix(b []byte, c byte) []byte {
if HasByteSuffix(b, c) {
return b[:len(b)-1]
}
return b
}
// Compare is a direct call-through to standard library bytes.Compare()
func Compare(b, s []byte) int {
return bytes.Compare(b, s)
}
// Contains is a direct call-through to standard library bytes.Contains()
func Contains(b, s []byte) bool {
return bytes.Contains(b, s)
}
// TrimPrefix is a direct call-through to standard library bytes.TrimPrefix()
func TrimPrefix(b, s []byte) []byte {
return bytes.TrimPrefix(b, s)
}
// TrimSuffix is a direct call-through to standard library bytes.TrimSuffix()
func TrimSuffix(b, s []byte) []byte {
return bytes.TrimSuffix(b, s)
}
// Equal is a direct call-through to standard library bytes.Equal()
func Equal(b, s []byte) bool {
return bytes.Equal(b, s)
}
// EqualFold is a direct call-through to standard library bytes.EqualFold()
func EqualFold(b, s []byte) bool {
return bytes.EqualFold(b, s)
}
// Fields is a direct call-through to standard library bytes.Fields()
func Fields(b []byte) [][]byte {
return bytes.Fields(b)
}
// FieldsFunc is a direct call-through to standard library bytes.FieldsFunc()
func FieldsFunc(b []byte, fn func(rune) bool) [][]byte {
return bytes.FieldsFunc(b, fn)
}
// HasPrefix is a direct call-through to standard library bytes.HasPrefix()
func HasPrefix(b, s []byte) bool {
return bytes.HasPrefix(b, s)
}
// HasSuffix is a direct call-through to standard library bytes.HasSuffix()
func HasSuffix(b, s []byte) bool {
return bytes.HasSuffix(b, s)
}
// Index is a direct call-through to standard library bytes.Index()
func Index(b, s []byte) int {
return bytes.Index(b, s)
}
// IndexByte is a direct call-through to standard library bytes.IndexByte()
func IndexByte(b []byte, c byte) int {
return bytes.IndexByte(b, c)
}
// IndexAny is a direct call-through to standard library bytes.IndexAny()
func IndexAny(b []byte, s string) int {
return bytes.IndexAny(b, s)
}
// IndexRune is a direct call-through to standard library bytes.IndexRune()
func IndexRune(b []byte, r rune) int {
return bytes.IndexRune(b, r)
}
// IndexFunc is a direct call-through to standard library bytes.IndexFunc()
func IndexFunc(b []byte, fn func(rune) bool) int {
return bytes.IndexFunc(b, fn)
}
// LastIndex is a direct call-through to standard library bytes.LastIndex()
func LastIndex(b, s []byte) int {
return bytes.LastIndex(b, s)
}
// LastIndexByte is a direct call-through to standard library bytes.LastIndexByte()
func LastIndexByte(b []byte, c byte) int {
return bytes.LastIndexByte(b, c)
}
// LastIndexAny is a direct call-through to standard library bytes.LastIndexAny()
func LastIndexAny(b []byte, s string) int {
return bytes.LastIndexAny(b, s)
}
// LastIndexFunc is a direct call-through to standard library bytes.LastIndexFunc()
func LastIndexFunc(b []byte, fn func(rune) bool) int {
return bytes.LastIndexFunc(b, fn)
}
// Replace is a direct call-through to standard library bytes.Replace()
func Replace(b, s, r []byte, c int) []byte {
return bytes.Replace(b, s, r, c)
}
// ReplaceAll is a direct call-through to standard library bytes.ReplaceAll()
func ReplaceAll(b, s, r []byte) []byte {
return bytes.ReplaceAll(b, s, r)
}
// Split is a direct call-through to standard library bytes.Split()
func Split(b, s []byte) [][]byte {
return bytes.Split(b, s)
}
// SplitAfter is a direct call-through to standard library bytes.SplitAfter()
func SplitAfter(b, s []byte) [][]byte {
return bytes.SplitAfter(b, s)
}
// SplitN is a direct call-through to standard library bytes.SplitN()
func SplitN(b, s []byte, c int) [][]byte {
return bytes.SplitN(b, s, c)
}
// SplitAfterN is a direct call-through to standard library bytes.SplitAfterN()
func SplitAfterN(b, s []byte, c int) [][]byte {
return bytes.SplitAfterN(b, s, c)
}
// NewReader is a direct call-through to standard library bytes.NewReader()
func NewReader(b []byte) *bytes.Reader {
return bytes.NewReader(b)
}

View file

@ -0,0 +1,11 @@
package bytes
// Code generated by go run bytesconv_table_gen.go; DO NOT EDIT.
// See bytesconv_table_gen.go for more information about these tables.
//
// Source: https://github.com/valyala/fasthttp/blob/master/bytes_table_gen.go
const (
toLowerTable = "\x00\x01\x02\x03\x04\x05\x06\a\b\t\n\v\f\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !\"#$%&'()*+,-./0123456789:;<=>?@abcdefghijklmnopqrstuvwxyz[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\u007f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff"
toUpperTable = "\x00\x01\x02\x03\x04\x05\x06\a\b\t\n\v\f\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`ABCDEFGHIJKLMNOPQRSTUVWXYZ{|}~\u007f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff"
)

View file

@ -0,0 +1,39 @@
package bytes
import (
"bytes"
"sync"
)
type SizedBufferPool struct {
pool sync.Pool
len int
cap int
}
func (p *SizedBufferPool) Init(len, cap int) {
p.pool.New = func() interface{} {
buf := NewBuffer(make([]byte, len, cap))
return &buf
}
p.len = len
p.cap = cap
}
func (p *SizedBufferPool) Acquire() *bytes.Buffer {
return p.pool.Get().(*bytes.Buffer)
}
func (p *SizedBufferPool) Release(buf *bytes.Buffer) {
// If not enough cap, ignore
if buf.Cap() < p.cap {
return
}
// Set length to expected
buf.Reset()
buf.Grow(p.len)
// Place in pool
p.pool.Put(buf)
}

View file

@ -0,0 +1,661 @@
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.

View file

@ -0,0 +1,7 @@
[![godocs.io](https://godocs.io/github.com/grufwub/go-errors?status.svg)](https://godocs.io/github.com/grufwub/go-errors)
An error library that allows wrapping of one error with another,
extending with further information and preserving all wrapped errors
for comparisons.
Where possible this library wraps standard errors library functions.

View file

@ -0,0 +1,192 @@
package errors
import (
"errors"
"fmt"
)
var (
_ Definition = definition("")
_ Error = &derivedError{}
)
// BaseError defines a simple error implementation
type BaseError interface {
// Error returns the error string
Error() string
// Is checks whether an error is equal to this one
Is(error) bool
// Unwrap attempts to unwrap any contained errors
Unwrap() error
}
// Definition describes an error implementation that allows creating
// errors derived from this. e.g. global errors defined at runtime
// that are called with `.New()` or `.Wrap()` to derive new errors with
// extra contextual information when needed
type Definition interface {
// New returns a new Error based on Definition using
// supplied string as contextual information
New(a ...interface{}) Error
// Newf returns a new Error based on Definition using
// supplied format string as contextual information
Newf(string, ...interface{}) Error
// Wrap returns a new Error, wrapping supplied error with
// a wrapper with definition as the outer error
Wrap(error) Error
// must implement BaseError
BaseError
}
// Error defines an error implementation that supports wrapping errors, easily
// accessing inner / outer errors in the wrapping structure, and setting extra
// contextual information related to this error
type Error interface {
// Outer returns the outermost error
Outer() error
// Extra allows you to set extra contextual information. Please note
// that multiple calls to .Extra() will overwrite previously set information
Extra(...interface{}) Error
// Extraf allows you to set extra contextual information using a format string.
// Please note that multiple calls to .Extraf() will overwrite previously set
// information
Extraf(string, ...interface{}) Error
// must implement BaseError
BaseError
}
// New returns a simple error implementation. This exists so that `go-errors` can
// be a drop-in replacement for the standard "errors" library
func New(msg string) error {
return definition(msg)
}
// Define returns a new error Definition
func Define(msg string) Definition {
return definition(msg)
}
// Wrap wraps the supplied inner error within a struct of the outer error
func Wrap(outer, inner error) Error {
// If this is a wrapped error but inner is nil, use this
if derived, ok := outer.(*derivedError); ok && derived.inner == nil {
derived.inner = inner
return derived
}
// Create new derived error
return &derivedError{
msg: "",
extra: "",
outer: outer,
inner: inner,
}
}
type definition string
func (e definition) New(a ...interface{}) Error {
return &derivedError{
msg: fmt.Sprint(a...),
extra: "",
inner: nil,
outer: e,
}
}
func (e definition) Newf(msg string, a ...interface{}) Error {
return &derivedError{
msg: fmt.Sprintf(msg, a...),
extra: "",
inner: nil,
outer: e,
}
}
func (e definition) Wrap(err error) Error {
return &derivedError{
msg: "",
extra: "",
inner: err,
outer: e,
}
}
func (e definition) Error() string {
return string(e)
}
func (e definition) Is(err error) bool {
switch err := err.(type) {
case definition:
return e == err
case *derivedError:
return err.Is(e)
default:
return false
}
}
func (e definition) Unwrap() error {
return nil
}
type derivedError struct {
msg string // msg provides the set message for this derived error
extra string // extra provides any extra set contextual information
inner error // inner is the error being wrapped
outer error // outer is the outmost error in this wrapper
}
func (e *derivedError) Error() string {
// Error starts with outer error
s := e.outer.Error() + ` (`
// Add any message
if e.msg != "" {
s += `msg="` + e.msg + `" `
}
// Add any wrapped error
if e.inner != nil {
s += `wrapped="` + e.inner.Error() + `" `
}
// Add any extra information
if e.extra != "" {
s += `extra="` + e.extra + `" `
}
// Return error string
return s[:len(s)-1] + `)`
}
func (e *derivedError) Is(err error) bool {
return errors.Is(e.outer, err) || errors.Is(e.inner, err)
}
func (e *derivedError) Outer() error {
return e.outer
}
func (e *derivedError) Unwrap() error {
return e.inner
}
func (e *derivedError) Extra(a ...interface{}) Error {
e.extra = fmt.Sprint(a...)
return e
}
func (e *derivedError) Extraf(s string, a ...interface{}) Error {
e.extra = fmt.Sprintf(s, a...)
return e
}

View file

@ -0,0 +1,45 @@
package errors
import (
"sync/atomic"
"unsafe"
)
// OnceError is an error structure that supports safe multi-threaded
// usage and setting only once (until reset)
type OnceError struct {
err unsafe.Pointer
}
// NewOnce returns a new OnceError instance
func NewOnce() OnceError {
return OnceError{
err: nil,
}
}
func (e *OnceError) Store(err error) {
// Nothing to do
if err == nil {
return
}
// Only set if not already
atomic.CompareAndSwapPointer(
&e.err,
nil,
unsafe.Pointer(&err),
)
}
func (e *OnceError) Load() error {
return *(*error)(atomic.LoadPointer(&e.err))
}
func (e *OnceError) IsSet() bool {
return (atomic.LoadPointer(&e.err) != nil)
}
func (e *OnceError) Reset() {
atomic.StorePointer(&e.err, nil)
}

View file

@ -0,0 +1,18 @@
package errors
import "errors"
// Is wraps "errors".Is()
func Is(err, target error) bool {
return errors.Is(err, target)
}
// As wraps "errors".As()
func As(err error, target interface{}) bool {
return errors.As(err, target)
}
// Unwrap wraps "errors".Unwrap()
func Unwrap(err error) error {
return errors.Unwrap(err)
}

View file

@ -0,0 +1 @@
HashEncoder provides a means of quickly hash-summing and encoding data

View file

@ -0,0 +1,42 @@
package hashenc
import (
"encoding/base32"
"encoding/base64"
"encoding/hex"
)
// Encoder defines an interface for encoding binary data
type Encoder interface {
// Encode encodes the data at src into dst
Encode(dst []byte, src []byte)
// EncodedLen returns the encoded length for input data of supplied length
EncodedLen(int) int
}
// Base32 returns a new base32 Encoder
func Base32() Encoder {
return base32.StdEncoding.WithPadding(base64.NoPadding)
}
// Base64 returns a new base64 Encoder
func Base64() Encoder {
return base64.URLEncoding.WithPadding(base64.NoPadding)
}
// Hex returns a new hex Encoder
func Hex() Encoder {
return &hexEncoder{}
}
// hexEncoder simply provides an empty receiver to satisfy Encoder
type hexEncoder struct{}
func (*hexEncoder) Encode(dst []byte, src []byte) {
hex.Encode(dst, src)
}
func (*hexEncoder) EncodedLen(len int) int {
return hex.EncodedLen(len)
}

View file

@ -0,0 +1,136 @@
package hashenc
import (
"crypto/md5"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"hash"
"sync"
)
// Hash defines a pooled hash.Hash implementation
type Hash interface {
// Hash ensures we implement the base hash.Hash implementation
hash.Hash
// Release resets the Hash and places it back in the pool
Release()
}
// poolHash is our Hash implementation, providing a hash.Hash and a pool to return to
type poolHash struct {
hash.Hash
pool *sync.Pool
}
func (h *poolHash) Release() {
h.Reset()
h.pool.Put(h)
}
// SHA512Pool defines a pool of SHA512 hashes
type SHA512Pool interface {
// SHA512 returns a Hash implementing the SHA512 hashing algorithm
SHA512() Hash
}
// NewSHA512Pool returns a new SHA512Pool implementation
func NewSHA512Pool() SHA512Pool {
p := &sha512Pool{}
p.New = func() interface{} {
return &poolHash{
Hash: sha512.New(),
pool: &p.Pool,
}
}
return p
}
// sha512Pool is our SHA512Pool implementation, simply wrapping sync.Pool
type sha512Pool struct {
sync.Pool
}
func (p *sha512Pool) SHA512() Hash {
return p.Get().(Hash)
}
// SHA256Pool defines a pool of SHA256 hashes
type SHA256Pool interface {
// SHA256 returns a Hash implementing the SHA256 hashing algorithm
SHA256() Hash
}
// NewSHA256Pool returns a new SHA256Pool implementation
func NewSHA256Pool() SHA256Pool {
p := &sha256Pool{}
p.New = func() interface{} {
return &poolHash{
Hash: sha256.New(),
pool: &p.Pool,
}
}
return p
}
// sha256Pool is our SHA256Pool implementation, simply wrapping sync.Pool
type sha256Pool struct {
sync.Pool
}
func (p *sha256Pool) SHA256() Hash {
return p.Get().(Hash)
}
// SHA1Pool defines a pool of SHA1 hashes
type SHA1Pool interface {
SHA1() Hash
}
// NewSHA1Pool returns a new SHA1Pool implementation
func NewSHA1Pool() SHA1Pool {
p := &sha1Pool{}
p.New = func() interface{} {
return &poolHash{
Hash: sha1.New(),
pool: &p.Pool,
}
}
return p
}
// sha1Pool is our SHA1Pool implementation, simply wrapping sync.Pool
type sha1Pool struct {
sync.Pool
}
func (p *sha1Pool) SHA1() Hash {
return p.Get().(Hash)
}
// MD5Pool defines a pool of MD5 hashes
type MD5Pool interface {
MD5() Hash
}
// NewMD5Pool returns a new MD5 implementation
func NewMD5Pool() MD5Pool {
p := &md5Pool{}
p.New = func() interface{} {
return &poolHash{
Hash: md5.New(),
pool: &p.Pool,
}
}
return p
}
// md5Pool is our MD5Pool implementation, simply wrapping sync.Pool
type md5Pool struct {
sync.Pool
}
func (p *md5Pool) MD5() Hash {
return p.Get().(Hash)
}

View file

@ -0,0 +1,58 @@
package hashenc
import (
"hash"
"git.iim.gay/grufwub/go-bytes"
)
// HashEncoder defines an interface for calculating encoded hash sums of binary data
type HashEncoder interface {
// EncodeSum calculates the hash sum of src and encodes (at most) Size() into dst
EncodeSum(dst []byte, src []byte)
// EncodedSum calculates the encoded hash sum of src and returns data in a newly allocated bytes.Bytes
EncodedSum(src []byte) bytes.Bytes
// Size returns the expected length of encoded hashes
Size() int
}
// New returns a new HashEncoder instance based on supplied hash.Hash and Encoder supplying functions
func New(hash hash.Hash, enc Encoder) HashEncoder {
hashSize := hash.Size()
return &henc{
hash: hash,
hbuf: make([]byte, hashSize),
enc: enc,
size: enc.EncodedLen(hashSize),
}
}
// henc is the HashEncoder implementation
type henc struct {
hash hash.Hash
hbuf []byte
enc Encoder
size int
}
func (henc *henc) EncodeSum(dst []byte, src []byte) {
// Hash supplied bytes
henc.hash.Reset()
henc.hash.Write(src)
henc.hbuf = henc.hash.Sum(henc.hbuf[:0])
// Encode the hashsum and return a copy
henc.enc.Encode(dst, henc.hbuf)
}
func (henc *henc) EncodedSum(src []byte) bytes.Bytes {
dst := make([]byte, henc.size)
henc.EncodeSum(dst, src)
return bytes.ToBytes(dst)
}
func (henc *henc) Size() int {
return henc.size
}

View file

@ -0,0 +1,661 @@
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.

View file

@ -0,0 +1 @@
Library that provides more complex mutex implementations than default libraries

View file

@ -0,0 +1,113 @@
package mutexes
import (
"sync"
)
// MutexMap is a structure that allows having a map of self-evicting mutexes
// by key. You do not need to worry about managing the contents of the map,
// only requesting RLock/Lock for keys, and ensuring to call the returned
// unlock functions.
type MutexMap interface {
// Lock acquires a mutex lock for supplied key, returning an Unlock function
Lock(key string) (unlock func())
// RLock acquires a mutex read lock for supplied key, returning an RUnlock function
RLock(key string) (runlock func())
}
type mutexMap struct {
// NOTE:
// Individual keyed mutexes should ONLY ever
// be locked within the protection of the outer
// mapMu lock. If you lock these outside the
// protection of this, there is a chance for
// deadlocks
mus map[string]RWMutex
mapMu sync.Mutex
pool sync.Pool
}
// NewMap returns a new MutexMap instance based on supplied
// RWMutex allocator function, nil implies use default
func NewMap(newFn func() RWMutex) MutexMap {
if newFn == nil {
newFn = NewRW
}
return &mutexMap{
mus: make(map[string]RWMutex),
mapMu: sync.Mutex{},
pool: sync.Pool{
New: func() interface{} {
return newFn()
},
},
}
}
func (mm *mutexMap) evict(key string, mu RWMutex) {
// Acquire map lock
mm.mapMu.Lock()
// Toggle mutex lock to
// ensure it is unused
unlock := mu.Lock()
unlock()
// Delete mutex key
delete(mm.mus, key)
mm.mapMu.Unlock()
// Release to pool
mm.pool.Put(mu)
}
// GetRLock acquires a mutex read lock for supplied key, returning an RUnlock function
func (mm *mutexMap) RLock(key string) func() {
return mm.getLock(key, func(mu RWMutex) func() {
return mu.RLock()
})
}
// GetLock acquires a mutex lock for supplied key, returning an Unlock function
func (mm *mutexMap) Lock(key string) func() {
return mm.getLock(key, func(mu RWMutex) func() {
return mu.Lock()
})
}
func (mm *mutexMap) getLock(key string, doLock func(RWMutex) func()) func() {
// Get map lock
mm.mapMu.Lock()
// Look for mutex
mu, ok := mm.mus[key]
if ok {
// Lock and return
// its unlocker func
unlock := doLock(mu)
mm.mapMu.Unlock()
return unlock
}
// Note: even though the mutex data structure is
// small, benchmarking does actually show that pooled
// alloc of mutexes here is faster
// Acquire mu + add
mu = mm.pool.Get().(RWMutex)
mm.mus[key] = mu
// Lock mutex + unlock map
unlockFn := doLock(mu)
mm.mapMu.Unlock()
return func() {
// Unlock mutex
unlockFn()
// Release function
go mm.evict(key, mu)
}
}

View file

@ -0,0 +1,105 @@
package mutexes
import (
"sync"
)
// Mutex defines a wrappable mutex. By forcing unlocks
// via returned function it makes wrapping much easier
type Mutex interface {
// Lock performs a mutex lock, returning an unlock function
Lock() (unlock func())
}
// RWMutex defines a wrappable read-write mutex. By forcing
// unlocks via returned functions it makes wrapping much easier
type RWMutex interface {
Mutex
// RLock performs a mutex read lock, returning an unlock function
RLock() (runlock func())
}
// New returns a new base Mutex implementation
func New() Mutex {
return &baseMutex{}
}
// NewRW returns a new base RWMutex implementation
func NewRW() RWMutex {
return &baseRWMutex{}
}
// WithFunc wraps the supplied Mutex to call the provided hooks on lock / unlock
func WithFunc(mu Mutex, onLock, onUnlock func()) Mutex {
return &fnMutex{mu: mu, lo: onLock, un: onUnlock}
}
// WithFuncRW wrapps the supplied RWMutex to call the provided hooks on lock / rlock / unlock/ runlock
func WithFuncRW(mu RWMutex, onLock, onRLock, onUnlock, onRUnlock func()) RWMutex {
return &fnRWMutex{mu: mu, lo: onLock, rlo: onRLock, un: onUnlock, run: onRUnlock}
}
// baseMutex simply wraps a sync.Mutex to implement our Mutex interface
type baseMutex struct{ mu sync.Mutex }
func (mu *baseMutex) Lock() func() {
mu.mu.Lock()
return mu.mu.Unlock
}
// baseRWMutex simply wraps a sync.RWMutex to implement our RWMutex interface
type baseRWMutex struct{ mu sync.RWMutex }
func (mu *baseRWMutex) Lock() func() {
mu.mu.Lock()
return mu.mu.Unlock
}
func (mu *baseRWMutex) RLock() func() {
mu.mu.RLock()
return mu.mu.RUnlock
}
// fnMutex wraps a Mutex to add hooks for Lock and Unlock
type fnMutex struct {
mu Mutex
lo func()
un func()
}
func (mu *fnMutex) Lock() func() {
unlock := mu.mu.Lock()
mu.lo()
return func() {
mu.un()
unlock()
}
}
// fnRWMutex wraps a RWMutex to add hooks for Lock, RLock, Unlock and RUnlock
type fnRWMutex struct {
mu RWMutex
lo func()
rlo func()
un func()
run func()
}
func (mu *fnRWMutex) Lock() func() {
unlock := mu.mu.Lock()
mu.lo()
return func() {
mu.un()
unlock()
}
}
func (mu *fnRWMutex) RLock() func() {
unlock := mu.mu.RLock()
mu.rlo()
return func() {
mu.run()
unlock()
}
}

View file

@ -0,0 +1,39 @@
package mutexes
import "sync"
// WithSafety wrapps the supplied Mutex to protect unlock fns
// from being called multiple times
func WithSafety(mu Mutex) Mutex {
return &safeMutex{mu: mu}
}
// WithSafetyRW wrapps the supplied RWMutex to protect unlock
// fns from being called multiple times
func WithSafetyRW(mu RWMutex) RWMutex {
return &safeRWMutex{mu: mu}
}
// safeMutex simply wraps a Mutex to add multi-unlock safety
type safeMutex struct{ mu Mutex }
func (mu *safeMutex) Lock() func() {
unlock := mu.mu.Lock()
once := sync.Once{}
return func() { once.Do(unlock) }
}
// safeRWMutex simply wraps a RWMutex to add multi-unlock safety
type safeRWMutex struct{ mu RWMutex }
func (mu *safeRWMutex) Lock() func() {
unlock := mu.mu.Lock()
once := sync.Once{}
return func() { once.Do(unlock) }
}
func (mu *safeRWMutex) RLock() func() {
unlock := mu.mu.RLock()
once := sync.Once{}
return func() { once.Do(unlock) }
}

View file

@ -0,0 +1,104 @@
package mutexes
import (
"sync"
"time"
"git.iim.gay/grufwub/go-nowish"
)
// TimeoutMutex defines a Mutex with timeouts on locks
type TimeoutMutex interface {
Mutex
// LockFunc is functionally the same as Lock(), but allows setting a custom hook called on timeout
LockFunc(func()) func()
}
// TimeoutRWMutex defines a RWMutex with timeouts on locks
type TimeoutRWMutex interface {
RWMutex
// LockFunc is functionally the same as Lock(), but allows setting a custom hook called on timeout
LockFunc(func()) func()
// RLockFunc is functionally the same as RLock(), but allows setting a custom hook called on timeout
RLockFunc(func()) func()
}
// WithTimeout wraps the supplied Mutex to add a timeout
func WithTimeout(mu Mutex, d time.Duration) TimeoutMutex {
return &timeoutMutex{mu: mu, d: d}
}
// WithTimeoutRW wraps the supplied RWMutex to add read/write timeouts
func WithTimeoutRW(mu RWMutex, rd, wd time.Duration) TimeoutRWMutex {
return &timeoutRWMutex{mu: mu, rd: rd, wd: wd}
}
// timeoutMutex wraps a Mutex with timeout
type timeoutMutex struct {
mu Mutex // mu is the wrapped mutex
d time.Duration // d is the timeout duration
}
func (mu *timeoutMutex) Lock() func() {
return mu.LockFunc(func() { panic("timed out") })
}
func (mu *timeoutMutex) LockFunc(fn func()) func() {
return mutexTimeout(mu.d, mu.mu.Lock(), fn)
}
// TimeoutRWMutex wraps a RWMutex with timeouts
type timeoutRWMutex struct {
mu RWMutex // mu is the wrapped rwmutex
rd time.Duration // rd is the rlock timeout duration
wd time.Duration // wd is the lock timeout duration
}
func (mu *timeoutRWMutex) Lock() func() {
return mu.LockFunc(func() { panic("timed out") })
}
func (mu *timeoutRWMutex) LockFunc(fn func()) func() {
return mutexTimeout(mu.wd, mu.mu.Lock(), fn)
}
func (mu *timeoutRWMutex) RLock() func() {
return mu.RLockFunc(func() { panic("timed out") })
}
func (mu *timeoutRWMutex) RLockFunc(fn func()) func() {
return mutexTimeout(mu.rd, mu.mu.RLock(), fn)
}
// timeoutPool provides nowish.Timeout objects for timeout mutexes
var timeoutPool = sync.Pool{
New: func() interface{} {
return nowish.NewTimeout()
},
}
// mutexTimeout performs a timed unlock, calling supplied fn if timeout is reached
func mutexTimeout(d time.Duration, unlock func(), fn func()) func() {
if d < 1 {
// No timeout, just unlock
return unlock
}
// Acquire timeout obj
t := timeoutPool.Get().(nowish.Timeout)
// Start the timeout with hook
t.Start(d, fn)
// Return func cancelling timeout,
// replacing Timeout in pool and
// finally unlocking mutex
return func() {
t.Cancel()
timeoutPool.Put(t)
unlock()
}
}

View file

@ -0,0 +1,5 @@
nowish is a very simple library for creating Go clocks that give a good (ish)
estimate of the "now" time, "ish" depending on the precision you request
similar to fastime, but more bare bones and using unsafe pointers instead of
atomic value since we don't need to worry about type changes

View file

@ -0,0 +1,141 @@
package nowish
import (
"sync"
"sync/atomic"
"time"
"unsafe"
)
// Start returns a new Clock instance initialized and
// started with the provided precision, along with the
// stop function for it's underlying timer
func Start(precision time.Duration) (*Clock, func()) {
c := Clock{}
return &c, c.Start(precision)
}
type Clock struct {
noCopy noCopy //nolint noCopy because a copy will fuck with atomics
// format stores the time formatting style string
format string
// valid indicates whether the current value stored in .Format is valid
valid uint32
// mutex protects writes to .Format, not because it would be unsafe, but
// because we want to minimize unnnecessary allocations
mutex sync.Mutex
// Format is an unsafe pointer to the last-updated time format string
Format unsafe.Pointer
// Time is an unsafe pointer to the last-updated time.Time object
Time unsafe.Pointer
}
// Start starts the clock with the provided precision, the
// returned function is the stop function for the underlying timer
func (c *Clock) Start(precision time.Duration) func() {
// Create ticker from duration
tick := time.NewTicker(precision)
// Set initial time
t := time.Now()
atomic.StorePointer(&c.Time, unsafe.Pointer(&t))
// Set initial format
s := ""
atomic.StorePointer(&c.Format, unsafe.Pointer(&s))
// If formatting string unset, set default
c.mutex.Lock()
if c.format == "" {
c.format = time.RFC822
}
c.mutex.Unlock()
// Start main routine
go c.run(tick)
// Return stop fn
return tick.Stop
}
// run is the internal clock ticking loop
func (c *Clock) run(tick *time.Ticker) {
for {
// Wait on tick
_, ok := <-tick.C
// Channel closed
if !ok {
break
}
// Update time
t := time.Now()
atomic.StorePointer(&c.Time, unsafe.Pointer(&t))
// Invalidate format string
atomic.StoreUint32(&c.valid, 0)
}
}
// Now returns a good (ish) estimate of the current 'now' time
func (c *Clock) Now() time.Time {
return *(*time.Time)(atomic.LoadPointer(&c.Time))
}
// NowFormat returns the formatted "now" time, cached until next tick and "now" updates
func (c *Clock) NowFormat() string {
// If format still valid, return this
if atomic.LoadUint32(&c.valid) == 1 {
return *(*string)(atomic.LoadPointer(&c.Format))
}
// Get mutex lock
c.mutex.Lock()
// Double check still invalid
if atomic.LoadUint32(&c.valid) == 1 {
c.mutex.Unlock()
return *(*string)(atomic.LoadPointer(&c.Format))
}
// Calculate time format
b := c.Now().AppendFormat(
make([]byte, 0, len(c.format)),
c.format,
)
// Update the stored value and set valid!
atomic.StorePointer(&c.Format, unsafe.Pointer(&b))
atomic.StoreUint32(&c.valid, 1)
// Unlock and return
c.mutex.Unlock()
// Note:
// it's safe to do this conversion here
// because this byte slice will never change.
// and we have the direct pointer to it, we're
// not requesting it atomicly via c.Format
return *(*string)(unsafe.Pointer(&b))
}
// SetFormat sets the time format string used by .NowFormat()
func (c *Clock) SetFormat(format string) {
// Get mutex lock
c.mutex.Lock()
// Update time format
c.format = format
// Invalidate current format string
atomic.StoreUint32(&c.valid, 0)
// Unlock
c.mutex.Unlock()
}

View file

@ -0,0 +1,111 @@
package nowish
import (
"errors"
"sync/atomic"
"time"
)
// ErrTimeoutStarted is returned if a Timeout interface is attempted to be reused while still in operation
var ErrTimeoutStarted = errors.New("nowish: timeout already started")
// timeoutState provides a thread-safe timeout state mechanism
type timeoutState uint32
// start attempts to start the state, must be already reset, returns success
func (t *timeoutState) start() bool {
return atomic.CompareAndSwapUint32((*uint32)(t), 0, 1)
}
// stop attempts to stop the state, must already be started, returns success
func (t *timeoutState) stop() bool {
return atomic.CompareAndSwapUint32((*uint32)(t), 1, 2)
}
// reset is fairly self explanatory
func (t *timeoutState) reset() {
atomic.StoreUint32((*uint32)(t), 0)
}
// Timeout provides a reusable structure for enforcing timeouts with a cancel
type Timeout interface {
// Start starts the timer with supplied timeout. If timeout is reached before
// cancel then supplied timeout hook will be called. Error may be called if
// Timeout is already running when this function is called
Start(time.Duration, func()) error
// Cancel cancels the currently running timer. If a cancel is achieved, then
// this function will return after the timeout goroutine is finished
Cancel()
}
// NewTimeout returns a new Timeout instance
func NewTimeout() Timeout {
t := &timeout{
tk: time.NewTicker(time.Minute),
ch: make(chan struct{}),
}
t.tk.Stop() // don't keep it running
return t
}
// timeout is the Timeout implementation that we force
// initialization on via NewTimeout by unexporting it
type timeout struct {
noCopy noCopy //nolint noCopy because a copy will mess with atomics
tk *time.Ticker // tk is the underlying timeout-timer
ch chan struct{} // ch is the cancel propagation channel
st timeoutState // st stores the current timeout state (and protects concurrent use)
}
func (t *timeout) Start(d time.Duration, hook func()) error {
// Attempt to acquire start
if !t.st.start() {
return ErrTimeoutStarted
}
// Start the ticker
t.tk.Reset(d)
go func() {
cancelled := false
select {
// Timeout reached
case <-t.tk.C:
if !t.st.stop() {
// cancel was called in the nick of time
<-t.ch
cancelled = true
}
// Cancel called
case <-t.ch:
cancelled = true
}
// Stop ticker
t.tk.Stop()
// If timed out call hook
if !cancelled {
hook()
}
// Finally, reset state
t.st.reset()
}()
return nil
}
func (t *timeout) Cancel() {
// Attempt to acquire stop
if !t.st.stop() {
return
}
// Send a cancel signal
t.ch <- struct{}{}
}

View file

@ -0,0 +1,10 @@
package nowish
//nolint
type noCopy struct{}
//nolint
func (*noCopy) Lock() {}
//nolint
func (*noCopy) Unlock() {}

View file

@ -0,0 +1,64 @@
package kv
import (
"git.iim.gay/grufwub/go-errors"
"git.iim.gay/grufwub/go-store/storage"
)
var ErrIteratorClosed = errors.Define("store/kv: iterator closed")
// KVIterator provides a read-only iterator to all the key-value
// pairs in a KVStore. While the iterator is open the store is read
// locked, you MUST release the iterator when you are finished with
// it.
//
// Please note:
// - individual iterators are NOT concurrency safe, though it is safe to
// have multiple iterators running concurrently
type KVIterator struct {
store *KVStore // store is the linked KVStore
entries []storage.StorageEntry
index int
key string
onClose func()
}
// Next attempts to set the next key-value pair, the
// return value is if there was another pair remaining
func (i *KVIterator) Next() bool {
next := i.index + 1
if next >= len(i.entries) {
i.key = ""
return false
}
i.key = i.entries[next].Key()
i.index = next
return true
}
// Key returns the next key from the store
func (i *KVIterator) Key() string {
return i.key
}
// Release releases the KVIterator and KVStore's read lock
func (i *KVIterator) Release() {
// Reset key, path, entries
i.store = nil
i.key = ""
i.entries = nil
// Perform requested callback
i.onClose()
}
// Value returns the next value from the KVStore
func (i *KVIterator) Value() ([]byte, error) {
// Check store isn't closed
if i.store == nil {
return nil, ErrIteratorClosed
}
// Attempt to fetch from store
return i.store.get(i.key)
}

View file

@ -0,0 +1,125 @@
package kv
import (
"io"
"git.iim.gay/grufwub/go-errors"
)
var ErrStateClosed = errors.Define("store/kv: state closed")
// StateRO provides a read-only window to the store. While this
// state is active during the Read() function window, the entire
// store will be read-locked. The state is thread-safe for concurrent
// use UNTIL the moment that your supplied function to Read() returns,
// then the state has zero guarantees
type StateRO struct {
store *KVStore
}
func (st *StateRO) Get(key string) ([]byte, error) {
// Check not closed
if st.store == nil {
return nil, ErrStateClosed
}
// Pass request to store
return st.store.get(key)
}
func (st *StateRO) GetStream(key string) (io.ReadCloser, error) {
// Check not closed
if st.store == nil {
return nil, ErrStateClosed
}
// Pass request to store
return st.store.getStream(key)
}
func (st *StateRO) Has(key string) (bool, error) {
// Check not closed
if st.store == nil {
return false, ErrStateClosed
}
// Pass request to store
return st.store.has(key)
}
func (st *StateRO) close() {
st.store = nil
}
// StateRW provides a read-write window to the store. While this
// state is active during the Update() function window, the entire
// store will be locked. The state is thread-safe for concurrent
// use UNTIL the moment that your supplied function to Update() returns,
// then the state has zero guarantees
type StateRW struct {
store *KVStore
}
func (st *StateRW) Get(key string) ([]byte, error) {
// Check not closed
if st.store == nil {
return nil, ErrStateClosed
}
// Pass request to store
return st.store.get(key)
}
func (st *StateRW) GetStream(key string) (io.ReadCloser, error) {
// Check not closed
if st.store == nil {
return nil, ErrStateClosed
}
// Pass request to store
return st.store.getStream(key)
}
func (st *StateRW) Put(key string, value []byte) error {
// Check not closed
if st.store == nil {
return ErrStateClosed
}
// Pass request to store
return st.store.put(key, value)
}
func (st *StateRW) PutStream(key string, r io.Reader) error {
// Check not closed
if st.store == nil {
return ErrStateClosed
}
// Pass request to store
return st.store.putStream(key, r)
}
func (st *StateRW) Has(key string) (bool, error) {
// Check not closed
if st.store == nil {
return false, ErrStateClosed
}
// Pass request to store
return st.store.has(key)
}
func (st *StateRW) Delete(key string) error {
// Check not closed
if st.store == nil {
return ErrStateClosed
}
// Pass request to store
return st.store.delete(key)
}
func (st *StateRW) close() {
st.store = nil
}

View file

@ -0,0 +1,243 @@
package kv
import (
"io"
"sync"
"git.iim.gay/grufwub/go-mutexes"
"git.iim.gay/grufwub/go-store/storage"
"git.iim.gay/grufwub/go-store/util"
)
// KVStore is a very simple, yet performant key-value store
type KVStore struct {
mutexMap mutexes.MutexMap // mutexMap is a map of keys to mutexes to protect file access
mutex sync.RWMutex // mutex is the total store mutex
storage storage.Storage // storage is the underlying storage
}
func OpenFile(path string, cfg *storage.DiskConfig) (*KVStore, error) {
// Attempt to open disk storage
storage, err := storage.OpenFile(path, cfg)
if err != nil {
return nil, err
}
// Return new KVStore
return OpenStorage(storage)
}
func OpenBlock(path string, cfg *storage.BlockConfig) (*KVStore, error) {
// Attempt to open block storage
storage, err := storage.OpenBlock(path, cfg)
if err != nil {
return nil, err
}
// Return new KVStore
return OpenStorage(storage)
}
func OpenStorage(storage storage.Storage) (*KVStore, error) {
// Perform initial storage clean
err := storage.Clean()
if err != nil {
return nil, err
}
// Return new KVStore
return &KVStore{
mutexMap: mutexes.NewMap(mutexes.NewRW),
mutex: sync.RWMutex{},
storage: storage,
}, nil
}
// Get fetches the bytes for supplied key in the store
func (st *KVStore) Get(key string) ([]byte, error) {
// Acquire store read lock
st.mutex.RLock()
defer st.mutex.RUnlock()
// Pass to unprotected fn
return st.get(key)
}
func (st *KVStore) get(key string) ([]byte, error) {
// Acquire read lock for key
runlock := st.mutexMap.RLock(key)
defer runlock()
// Read file bytes
return st.storage.ReadBytes(key)
}
// GetStream fetches a ReadCloser for the bytes at the supplied key location in the store
func (st *KVStore) GetStream(key string) (io.ReadCloser, error) {
// Acquire store read lock
st.mutex.RLock()
defer st.mutex.RUnlock()
// Pass to unprotected fn
return st.getStream(key)
}
func (st *KVStore) getStream(key string) (io.ReadCloser, error) {
// Acquire read lock for key
runlock := st.mutexMap.RLock(key)
// Attempt to open stream for read
rd, err := st.storage.ReadStream(key)
if err != nil {
runlock()
return nil, err
}
// Wrap readcloser in our own callback closer
return util.ReadCloserWithCallback(rd, runlock), nil
}
// Put places the bytes at the supplied key location in the store
func (st *KVStore) Put(key string, value []byte) error {
// Acquire store write lock
st.mutex.Lock()
defer st.mutex.Unlock()
// Pass to unprotected fn
return st.put(key, value)
}
func (st *KVStore) put(key string, value []byte) error {
// Acquire write lock for key
unlock := st.mutexMap.Lock(key)
defer unlock()
// Write file bytes
return st.storage.WriteBytes(key, value)
}
// PutStream writes the bytes from the supplied Reader at the supplied key location in the store
func (st *KVStore) PutStream(key string, r io.Reader) error {
// Acquire store write lock
st.mutex.Lock()
defer st.mutex.Unlock()
// Pass to unprotected fn
return st.putStream(key, r)
}
func (st *KVStore) putStream(key string, r io.Reader) error {
// Acquire write lock for key
unlock := st.mutexMap.Lock(key)
defer unlock()
// Write file stream
return st.storage.WriteStream(key, r)
}
// Has checks whether the supplied key exists in the store
func (st *KVStore) Has(key string) (bool, error) {
// Acquire store read lock
st.mutex.RLock()
defer st.mutex.RUnlock()
// Pass to unprotected fn
return st.has(key)
}
func (st *KVStore) has(key string) (bool, error) {
// Acquire read lock for key
runlock := st.mutexMap.RLock(key)
defer runlock()
// Stat file on disk
return st.storage.Stat(key)
}
// Delete removes the supplied key-value pair from the store
func (st *KVStore) Delete(key string) error {
// Acquire store write lock
st.mutex.Lock()
defer st.mutex.Unlock()
// Pass to unprotected fn
return st.delete(key)
}
func (st *KVStore) delete(key string) error {
// Acquire write lock for key
unlock := st.mutexMap.Lock(key)
defer unlock()
// Remove file from disk
return st.storage.Remove(key)
}
// Iterator returns an Iterator for key-value pairs in the store, using supplied match function
func (st *KVStore) Iterator(matchFn func(string) bool) (*KVIterator, error) {
// If no function, match all
if matchFn == nil {
matchFn = func(string) bool { return true }
}
// Get store read lock
st.mutex.RLock()
// Setup the walk keys function
entries := []storage.StorageEntry{}
walkFn := func(entry storage.StorageEntry) {
// Ignore unmatched entries
if !matchFn(entry.Key()) {
return
}
// Add to entries
entries = append(entries, entry)
}
// Walk keys in the storage
err := st.storage.WalkKeys(&storage.WalkKeysOptions{WalkFn: walkFn})
if err != nil {
st.mutex.RUnlock()
return nil, err
}
// Return new iterator
return &KVIterator{
store: st,
entries: entries,
index: -1,
key: "",
onClose: st.mutex.RUnlock,
}, nil
}
// Read provides a read-only window to the store, holding it in a read-locked state until
// the supplied function returns
func (st *KVStore) Read(do func(*StateRO)) {
// Get store read lock
st.mutex.RLock()
defer st.mutex.RUnlock()
// Create new store state (defer close)
state := &StateRO{store: st}
defer state.close()
// Pass state
do(state)
}
// Update provides a read-write window to the store, holding it in a read-write-locked state
// until the supplied functions returns
func (st *KVStore) Update(do func(*StateRW)) {
// Get store lock
st.mutex.Lock()
defer st.mutex.Unlock()
// Create new store state (defer close)
state := &StateRW{store: st}
defer state.close()
// Pass state
do(state)
}

View file

@ -0,0 +1,785 @@
package storage
import (
"crypto/sha256"
"io"
"io/fs"
"os"
"strings"
"sync"
"syscall"
"git.iim.gay/grufwub/fastpath"
"git.iim.gay/grufwub/go-bytes"
"git.iim.gay/grufwub/go-errors"
"git.iim.gay/grufwub/go-hashenc"
"git.iim.gay/grufwub/go-store/util"
)
var (
nodePathPrefix = "node/"
blockPathPrefix = "block/"
)
// DefaultBlockConfig is the default BlockStorage configuration
var DefaultBlockConfig = &BlockConfig{
BlockSize: 1024 * 16,
WriteBufSize: 4096,
Overwrite: false,
Compression: NoCompression(),
}
// BlockConfig defines options to be used when opening a BlockStorage
type BlockConfig struct {
// BlockSize is the chunking size to use when splitting and storing blocks of data
BlockSize int
// WriteBufSize is the buffer size to use when writing file streams (PutStream)
WriteBufSize int
// Overwrite allows overwriting values of stored keys in the storage
Overwrite bool
// Compression is the Compressor to use when reading / writing files, default is no compression
Compression Compressor
}
// getBlockConfig returns a valid BlockConfig for supplied ptr
func getBlockConfig(cfg *BlockConfig) BlockConfig {
// If nil, use default
if cfg == nil {
cfg = DefaultBlockConfig
}
// Assume nil compress == none
if cfg.Compression == nil {
cfg.Compression = NoCompression()
}
// Assume 0 chunk size == use default
if cfg.BlockSize < 1 {
cfg.BlockSize = DefaultBlockConfig.BlockSize
}
// Assume 0 buf size == use default
if cfg.WriteBufSize < 1 {
cfg.WriteBufSize = DefaultDiskConfig.WriteBufSize
}
// Return owned config copy
return BlockConfig{
BlockSize: cfg.BlockSize,
WriteBufSize: cfg.WriteBufSize,
Overwrite: cfg.Overwrite,
Compression: cfg.Compression,
}
}
// BlockStorage is a Storage implementation that stores input data as chunks on
// a filesystem. Each value is chunked into blocks of configured size and these
// blocks are stored with name equal to their base64-encoded SHA256 hash-sum. A
// "node" file is finally created containing an array of hashes contained within
// this value
type BlockStorage struct {
path string // path is the root path of this store
blockPath string // blockPath is the joined root path + block path prefix
nodePath string // nodePath is the joined root path + node path prefix
config BlockConfig // cfg is the supplied configuration for this store
hashPool sync.Pool // hashPool is this store's hashEncoder pool
// NOTE:
// BlockStorage does not need to lock each of the underlying block files
// as the filename itself directly relates to the contents. If there happens
// to be an overwrite, it will just be of the same data since the filename is
// the hash of the data.
}
// OpenBlock opens a BlockStorage instance for given folder path and configuration
func OpenBlock(path string, cfg *BlockConfig) (*BlockStorage, error) {
// Acquire path builder
pb := util.AcquirePathBuilder()
defer util.ReleasePathBuilder(pb)
// Clean provided path, ensure ends in '/' (should
// be dir, this helps with file path trimming later)
path = pb.Clean(path) + "/"
// Get checked config
config := getBlockConfig(cfg)
// Attempt to open path
file, err := os.OpenFile(path, defaultFileROFlags, defaultDirPerms)
if err != nil {
// If not a not-exist error, return
if !os.IsNotExist(err) {
return nil, err
}
// Attempt to make store path dirs
err = os.MkdirAll(path, defaultDirPerms)
if err != nil {
return nil, err
}
// Reopen dir now it's been created
file, err = os.OpenFile(path, defaultFileROFlags, defaultDirPerms)
if err != nil {
return nil, err
}
}
defer file.Close()
// Double check this is a dir (NOT a file!)
stat, err := file.Stat()
if err != nil {
return nil, err
} else if !stat.IsDir() {
return nil, errPathIsFile
}
// Return new BlockStorage
return &BlockStorage{
path: path,
blockPath: pb.Join(path, blockPathPrefix),
nodePath: pb.Join(path, nodePathPrefix),
config: config,
hashPool: sync.Pool{
New: func() interface{} {
return newHashEncoder()
},
},
}, nil
}
// Clean implements storage.Clean()
func (st *BlockStorage) Clean() error {
nodes := map[string]*node{}
// Acquire path builder
pb := fastpath.AcquireBuilder()
defer fastpath.ReleaseBuilder(pb)
// Walk nodes dir for entries
onceErr := errors.OnceError{}
err := util.WalkDir(pb, st.nodePath, func(npath string, fsentry fs.DirEntry) {
// Only deal with regular files
if !fsentry.Type().IsRegular() {
return
}
// Stop if we hit error previously
if onceErr.IsSet() {
return
}
// Get joined node path name
npath = pb.Join(npath, fsentry.Name())
// Attempt to open RO file
file, err := open(npath, defaultFileROFlags)
if err != nil {
onceErr.Store(err)
return
}
defer file.Close()
// Alloc new Node + acquire hash buffer for writes
hbuf := util.AcquireBuffer(encodedHashLen)
defer util.ReleaseBuffer(hbuf)
node := node{}
// Write file contents to node
_, err = io.CopyBuffer(
&nodeWriter{
node: &node,
buf: hbuf,
},
file,
nil,
)
if err != nil {
onceErr.Store(err)
return
}
// Append to nodes slice
nodes[fsentry.Name()] = &node
})
// Handle errors (though nodePath may not have been created yet)
if err != nil && !os.IsNotExist(err) {
return err
} else if onceErr.IsSet() {
return onceErr.Load()
}
// Walk blocks dir for entries
onceErr.Reset()
err = util.WalkDir(pb, st.blockPath, func(bpath string, fsentry fs.DirEntry) {
// Only deal with regular files
if !fsentry.Type().IsRegular() {
return
}
// Stop if we hit error previously
if onceErr.IsSet() {
return
}
inUse := false
for key, node := range nodes {
if node.removeHash(fsentry.Name()) {
if len(node.hashes) < 1 {
// This node contained hash, and after removal is now empty.
// Remove this node from our tracked nodes slice
delete(nodes, key)
}
inUse = true
}
}
// Block hash is used by node
if inUse {
return
}
// Get joined block path name
bpath = pb.Join(bpath, fsentry.Name())
// Remove this unused block path
err := os.Remove(bpath)
if err != nil {
onceErr.Store(err)
return
}
})
// Handle errors (though blockPath may not have been created yet)
if err != nil && !os.IsNotExist(err) {
return err
} else if onceErr.IsSet() {
return onceErr.Load()
}
// If there are nodes left at this point, they are corrupt
// (i.e. they're referencing block hashes that don't exist)
if len(nodes) > 0 {
nodeKeys := []string{}
for key := range nodes {
nodeKeys = append(nodeKeys, key)
}
return errCorruptNodes.Extend("%v", nodeKeys)
}
return nil
}
// ReadBytes implements Storage.ReadBytes()
func (st *BlockStorage) ReadBytes(key string) ([]byte, error) {
// Get stream reader for key
rc, err := st.ReadStream(key)
if err != nil {
return nil, err
}
// Read all bytes and return
return io.ReadAll(rc)
}
// ReadStream implements Storage.ReadStream()
func (st *BlockStorage) ReadStream(key string) (io.ReadCloser, error) {
// Get node file path for key
npath, err := st.nodePathForKey(key)
if err != nil {
return nil, err
}
// Attempt to open RO file
file, err := open(npath, defaultFileROFlags)
if err != nil {
return nil, err
}
defer file.Close()
// Alloc new Node + acquire hash buffer for writes
hbuf := util.AcquireBuffer(encodedHashLen)
defer util.ReleaseBuffer(hbuf)
node := node{}
// Write file contents to node
_, err = io.CopyBuffer(
&nodeWriter{
node: &node,
buf: hbuf,
},
file,
nil,
)
if err != nil {
return nil, err
}
// Return new block reader
return util.NopReadCloser(&blockReader{
storage: st,
node: &node,
}), nil
}
func (st *BlockStorage) readBlock(key string) ([]byte, error) {
// Get block file path for key
bpath := st.blockPathForKey(key)
// Attempt to open RO file
file, err := open(bpath, defaultFileROFlags)
if err != nil {
return nil, err
}
defer file.Close()
// Wrap the file in a compressor
cFile, err := st.config.Compression.Reader(file)
if err != nil {
return nil, err
}
defer cFile.Close()
// Read the entire file
return io.ReadAll(cFile)
}
// WriteBytes implements Storage.WriteBytes()
func (st *BlockStorage) WriteBytes(key string, value []byte) error {
return st.WriteStream(key, bytes.NewReader(value))
}
// WriteStream implements Storage.WriteStream()
func (st *BlockStorage) WriteStream(key string, r io.Reader) error {
// Get node file path for key
npath, err := st.nodePathForKey(key)
if err != nil {
return err
}
// Check if this exists
ok, err := stat(key)
if err != nil {
return err
}
// Check if we allow overwrites
if ok && !st.config.Overwrite {
return ErrAlreadyExists
}
// Ensure nodes dir (and any leading up to) exists
err = os.MkdirAll(st.nodePath, defaultDirPerms)
if err != nil {
return err
}
// Ensure blocks dir (and any leading up to) exists
err = os.MkdirAll(st.blockPath, defaultDirPerms)
if err != nil {
return err
}
// Alloc new node
node := node{}
// Acquire HashEncoder
hc := st.hashPool.Get().(*hashEncoder)
defer st.hashPool.Put(hc)
// Create new waitgroup and OnceError for
// goroutine error tracking and propagating
wg := sync.WaitGroup{}
onceErr := errors.OnceError{}
loop:
for !onceErr.IsSet() {
// Fetch new buffer for this loop
buf := util.AcquireBuffer(st.config.BlockSize)
buf.Grow(st.config.BlockSize)
// Read next chunk
n, err := io.ReadFull(r, buf.B)
switch err {
case nil, io.ErrUnexpectedEOF:
// do nothing
case io.EOF:
util.ReleaseBuffer(buf)
break loop
default:
util.ReleaseBuffer(buf)
return err
}
// Hash the encoded data
sum := hc.EncodeSum(buf.B)
// Append to the node's hashes
node.hashes = append(node.hashes, sum.String())
// If already on disk, skip
has, err := st.statBlock(sum.StringPtr())
if err != nil {
util.ReleaseBuffer(buf)
return err
} else if has {
util.ReleaseBuffer(buf)
continue loop
}
// Write in separate goroutine
wg.Add(1)
go func() {
// Defer buffer release + signal done
defer func() {
util.ReleaseBuffer(buf)
wg.Done()
}()
// Write block to store at hash
err = st.writeBlock(sum.StringPtr(), buf.B[:n])
if err != nil {
onceErr.Store(err)
return
}
}()
// We reached EOF
if n < buf.Len() {
break loop
}
}
// Wait, check errors
wg.Wait()
if onceErr.IsSet() {
return onceErr.Load()
}
// If no hashes created, return
if len(node.hashes) < 1 {
return errNoHashesWritten
}
// Prepare to swap error if need-be
errSwap := errSwapNoop
// Build file RW flags
// NOTE: we performed an initial check for
// this before writing blocks, but if
// the utilizer of this storage didn't
// correctly mutex protect this key then
// someone may have beaten us to the
// punch at writing the node file.
flags := defaultFileRWFlags
if !st.config.Overwrite {
flags |= syscall.O_EXCL
// Catch + replace err exist
errSwap = errSwapExist
}
// Attempt to open RW file
file, err := open(npath, flags)
if err != nil {
return errSwap(err)
}
defer file.Close()
// Acquire write buffer
buf := util.AcquireBuffer(st.config.WriteBufSize)
defer util.ReleaseBuffer(buf)
buf.Grow(st.config.WriteBufSize)
// Finally, write data to file
_, err = io.CopyBuffer(file, &nodeReader{node: &node}, nil)
return err
}
// writeBlock writes the block with hash and supplied value to the filesystem
func (st *BlockStorage) writeBlock(hash string, value []byte) error {
// Get block file path for key
bpath := st.blockPathForKey(hash)
// Attempt to open RW file
file, err := open(bpath, defaultFileRWFlags)
if err != nil {
if err == ErrAlreadyExists {
err = nil /* race issue describe in struct NOTE */
}
return err
}
defer file.Close()
// Wrap the file in a compressor
cFile, err := st.config.Compression.Writer(file)
if err != nil {
return err
}
defer cFile.Close()
// Write value to file
_, err = cFile.Write(value)
return err
}
// statBlock checks for existence of supplied block hash
func (st *BlockStorage) statBlock(hash string) (bool, error) {
return stat(st.blockPathForKey(hash))
}
// Stat implements Storage.Stat()
func (st *BlockStorage) Stat(key string) (bool, error) {
// Get node file path for key
kpath, err := st.nodePathForKey(key)
if err != nil {
return false, err
}
// Check for file on disk
return stat(kpath)
}
// Remove implements Storage.Remove()
func (st *BlockStorage) Remove(key string) error {
// Get node file path for key
kpath, err := st.nodePathForKey(key)
if err != nil {
return err
}
// Attempt to remove file
return os.Remove(kpath)
}
// WalkKeys implements Storage.WalkKeys()
func (st *BlockStorage) WalkKeys(opts *WalkKeysOptions) error {
// Acquire path builder
pb := fastpath.AcquireBuilder()
defer fastpath.ReleaseBuilder(pb)
// Walk dir for entries
return util.WalkDir(pb, st.nodePath, func(npath string, fsentry fs.DirEntry) {
// Only deal with regular files
if fsentry.Type().IsRegular() {
opts.WalkFn(entry(fsentry.Name()))
}
})
}
// nodePathForKey calculates the node file path for supplied key
func (st *BlockStorage) nodePathForKey(key string) (string, error) {
// Path separators are illegal
if strings.Contains(key, "/") {
return "", ErrInvalidKey
}
// Acquire path builder
pb := util.AcquirePathBuilder()
defer util.ReleasePathBuilder(pb)
// Return joined + cleaned node-path
return pb.Join(st.nodePath, key), nil
}
// blockPathForKey calculates the block file path for supplied hash
func (st *BlockStorage) blockPathForKey(hash string) string {
pb := util.AcquirePathBuilder()
defer util.ReleasePathBuilder(pb)
return pb.Join(st.blockPath, hash)
}
// hashSeparator is the separating byte between block hashes
const hashSeparator = byte(':')
// node represents the contents of a node file in storage
type node struct {
hashes []string
}
// removeHash attempts to remove supplied block hash from the node's hash array
func (n *node) removeHash(hash string) bool {
haveDropped := false
for i := 0; i < len(n.hashes); {
if n.hashes[i] == hash {
// Drop this hash from slice
n.hashes = append(n.hashes[:i], n.hashes[i+1:]...)
haveDropped = true
} else {
// Continue iter
i++
}
}
return haveDropped
}
// nodeReader is an io.Reader implementation for the node file representation,
// which is useful when calculated node file is being written to the store
type nodeReader struct {
node *node
idx int
last int
}
func (r *nodeReader) Read(b []byte) (int, error) {
n := 0
// '-1' means we missed writing
// hash separator on last iteration
if r.last == -1 {
b[n] = hashSeparator
n++
r.last = 0
}
for r.idx < len(r.node.hashes) {
hash := r.node.hashes[r.idx]
// Copy into buffer + update read count
m := copy(b[n:], hash[r.last:])
n += m
// If incomplete copy, return here
if m < len(hash)-r.last {
r.last = m
return n, nil
}
// Check we can write last separator
if n == len(b) {
r.last = -1
return n, nil
}
// Write separator, iter, reset
b[n] = hashSeparator
n++
r.idx++
r.last = 0
}
// We reached end of hashes
return n, io.EOF
}
// nodeWriter is an io.Writer implementation for the node file representation,
// which is useful when calculated node file is being read from the store
type nodeWriter struct {
node *node
buf *bytes.Buffer
}
func (w *nodeWriter) Write(b []byte) (int, error) {
n := 0
for {
// Find next hash separator position
idx := bytes.IndexByte(b[n:], hashSeparator)
if idx == -1 {
// Check we shouldn't be expecting it
if w.buf.Len() > encodedHashLen {
return n, errInvalidNode
}
// Write all contents to buffer
w.buf.Write(b[n:])
return len(b), nil
}
// Found hash separator, write
// current buf contents to Node hashes
w.buf.Write(b[n : n+idx])
n += idx + 1
if w.buf.Len() != encodedHashLen {
return n, errInvalidNode
}
// Append to hashes & reset
w.node.hashes = append(w.node.hashes, w.buf.String())
w.buf.Reset()
}
}
// blockReader is an io.Reader implementation for the combined, linked block
// data contained with a node file. Basically, this allows reading value data
// from the store for a given node file
type blockReader struct {
storage *BlockStorage
node *node
buf []byte
prev int
}
func (r *blockReader) Read(b []byte) (int, error) {
n := 0
// Data left in buf, copy as much as we
// can into supplied read buffer
if r.prev < len(r.buf)-1 {
n += copy(b, r.buf[r.prev:])
r.prev += n
if n >= len(b) {
return n, nil
}
}
for {
// Check we have any hashes left
if len(r.node.hashes) < 1 {
return n, io.EOF
}
// Get next key from slice
key := r.node.hashes[0]
r.node.hashes = r.node.hashes[1:]
// Attempt to fetch next batch of data
var err error
r.buf, err = r.storage.readBlock(key)
if err != nil {
return n, err
}
r.prev = 0
// Copy as much as can from new buffer
m := copy(b[n:], r.buf)
r.prev += m
n += m
// If we hit end of supplied buf, return
if n >= len(b) {
return n, nil
}
}
}
// hashEncoder is a HashEncoder with built-in encode buffer
type hashEncoder struct {
henc hashenc.HashEncoder
ebuf []byte
}
// encodedHashLen is the once-calculated encoded hash-sum length
var encodedHashLen = hashenc.Base64().EncodedLen(
sha256.New().Size(),
)
// newHashEncoder returns a new hashEncoder instance
func newHashEncoder() *hashEncoder {
hash := sha256.New()
enc := hashenc.Base64()
return &hashEncoder{
henc: hashenc.New(hash, enc),
ebuf: make([]byte, enc.EncodedLen(hash.Size())),
}
}
// EncodeSum encodes the src data and returns resulting bytes, only valid until next call to EncodeSum()
func (henc *hashEncoder) EncodeSum(src []byte) bytes.Bytes {
henc.henc.EncodeSum(henc.ebuf, src)
return bytes.ToBytes(henc.ebuf)
}

View file

@ -0,0 +1,104 @@
package storage
import (
"compress/gzip"
"compress/zlib"
"io"
"git.iim.gay/grufwub/go-store/util"
"github.com/golang/snappy"
)
// Compressor defines a means of compressing/decompressing values going into a key-value store
type Compressor interface {
// Reader returns a new decompressing io.ReadCloser based on supplied (compressed) io.Reader
Reader(io.Reader) (io.ReadCloser, error)
// Writer returns a new compressing io.WriteCloser based on supplied (uncompressed) io.Writer
Writer(io.Writer) (io.WriteCloser, error)
}
type gzipCompressor struct {
level int
}
// GZipCompressor returns a new Compressor that implements GZip at default compression level
func GZipCompressor() Compressor {
return GZipCompressorLevel(gzip.DefaultCompression)
}
// GZipCompressorLevel returns a new Compressor that implements GZip at supplied compression level
func GZipCompressorLevel(level int) Compressor {
return &gzipCompressor{
level: level,
}
}
func (c *gzipCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
return gzip.NewReader(r)
}
func (c *gzipCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
return gzip.NewWriterLevel(w, c.level)
}
type zlibCompressor struct {
level int
dict []byte
}
// ZLibCompressor returns a new Compressor that implements ZLib at default compression level
func ZLibCompressor() Compressor {
return ZLibCompressorLevelDict(zlib.DefaultCompression, nil)
}
// ZLibCompressorLevel returns a new Compressor that implements ZLib at supplied compression level
func ZLibCompressorLevel(level int) Compressor {
return ZLibCompressorLevelDict(level, nil)
}
// ZLibCompressorLevelDict returns a new Compressor that implements ZLib at supplied compression level with supplied dict
func ZLibCompressorLevelDict(level int, dict []byte) Compressor {
return &zlibCompressor{
level: level,
dict: dict,
}
}
func (c *zlibCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
return zlib.NewReaderDict(r, c.dict)
}
func (c *zlibCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
return zlib.NewWriterLevelDict(w, c.level, c.dict)
}
type snappyCompressor struct{}
// SnappyCompressor returns a new Compressor that implements Snappy
func SnappyCompressor() Compressor {
return &snappyCompressor{}
}
func (c *snappyCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
return util.NopReadCloser(snappy.NewReader(r)), nil
}
func (c *snappyCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
return snappy.NewBufferedWriter(w), nil
}
type nopCompressor struct{}
// NoCompression is a Compressor that simply does nothing
func NoCompression() Compressor {
return &nopCompressor{}
}
func (c *nopCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
return util.NopReadCloser(r), nil
}
func (c *nopCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
return util.NopWriteCloser(w), nil
}

View file

@ -0,0 +1,289 @@
package storage
import (
"io"
"io/fs"
"os"
"path"
"syscall"
"git.iim.gay/grufwub/fastpath"
"git.iim.gay/grufwub/go-bytes"
"git.iim.gay/grufwub/go-store/util"
)
// DefaultDiskConfig is the default DiskStorage configuration
var DefaultDiskConfig = &DiskConfig{
Overwrite: true,
WriteBufSize: 4096,
Transform: NopTransform(),
Compression: NoCompression(),
}
// DiskConfig defines options to be used when opening a DiskStorage
type DiskConfig struct {
// Transform is the supplied key<-->path KeyTransform
Transform KeyTransform
// WriteBufSize is the buffer size to use when writing file streams (PutStream)
WriteBufSize int
// Overwrite allows overwriting values of stored keys in the storage
Overwrite bool
// Compression is the Compressor to use when reading / writing files, default is no compression
Compression Compressor
}
// getDiskConfig returns a valid DiskConfig for supplied ptr
func getDiskConfig(cfg *DiskConfig) DiskConfig {
// If nil, use default
if cfg == nil {
cfg = DefaultDiskConfig
}
// Assume nil transform == none
if cfg.Transform == nil {
cfg.Transform = NopTransform()
}
// Assume nil compress == none
if cfg.Compression == nil {
cfg.Compression = NoCompression()
}
// Assume 0 buf size == use default
if cfg.WriteBufSize < 1 {
cfg.WriteBufSize = DefaultDiskConfig.WriteBufSize
}
// Return owned config copy
return DiskConfig{
Transform: cfg.Transform,
WriteBufSize: cfg.WriteBufSize,
Overwrite: cfg.Overwrite,
Compression: cfg.Compression,
}
}
// DiskStorage is a Storage implementation that stores directly to a filesystem
type DiskStorage struct {
path string // path is the root path of this store
dots int // dots is the "dotdot" count for the root store path
config DiskConfig // cfg is the supplied configuration for this store
}
// OpenFile opens a DiskStorage instance for given folder path and configuration
func OpenFile(path string, cfg *DiskConfig) (*DiskStorage, error) {
// Acquire path builder
pb := util.AcquirePathBuilder()
defer util.ReleasePathBuilder(pb)
// Clean provided path, ensure ends in '/' (should
// be dir, this helps with file path trimming later)
path = pb.Clean(path) + "/"
// Get checked config
config := getDiskConfig(cfg)
// Attempt to open dir path
file, err := os.OpenFile(path, defaultFileROFlags, defaultDirPerms)
if err != nil {
// If not a not-exist error, return
if !os.IsNotExist(err) {
return nil, err
}
// Attempt to make store path dirs
err = os.MkdirAll(path, defaultDirPerms)
if err != nil {
return nil, err
}
// Reopen dir now it's been created
file, err = os.OpenFile(path, defaultFileROFlags, defaultDirPerms)
if err != nil {
return nil, err
}
}
defer file.Close()
// Double check this is a dir (NOT a file!)
stat, err := file.Stat()
if err != nil {
return nil, err
} else if !stat.IsDir() {
return nil, errPathIsFile
}
// Return new DiskStorage
return &DiskStorage{
path: path,
dots: util.CountDotdots(path),
config: config,
}, nil
}
// Clean implements Storage.Clean()
func (st *DiskStorage) Clean() error {
return util.CleanDirs(st.path)
}
// ReadBytes implements Storage.ReadBytes()
func (st *DiskStorage) ReadBytes(key string) ([]byte, error) {
// Get stream reader for key
rc, err := st.ReadStream(key)
if err != nil {
return nil, err
}
defer rc.Close()
// Read all bytes and return
return io.ReadAll(rc)
}
// ReadStream implements Storage.ReadStream()
func (st *DiskStorage) ReadStream(key string) (io.ReadCloser, error) {
// Get file path for key
kpath, err := st.filepath(key)
if err != nil {
return nil, err
}
// Attempt to open file (replace ENOENT with our own)
file, err := open(kpath, defaultFileROFlags)
if err != nil {
return nil, errSwapNotFound(err)
}
// Wrap the file in a compressor
cFile, err := st.config.Compression.Reader(file)
if err != nil {
file.Close() // close this here, ignore error
return nil, err
}
// Wrap compressor to ensure file close
return util.ReadCloserWithCallback(cFile, func() {
file.Close()
}), nil
}
// WriteBytes implements Storage.WriteBytes()
func (st *DiskStorage) WriteBytes(key string, value []byte) error {
return st.WriteStream(key, bytes.NewReader(value))
}
// WriteStream implements Storage.WriteStream()
func (st *DiskStorage) WriteStream(key string, r io.Reader) error {
// Get file path for key
kpath, err := st.filepath(key)
if err != nil {
return err
}
// Ensure dirs leading up to file exist
err = os.MkdirAll(path.Dir(kpath), defaultDirPerms)
if err != nil {
return err
}
// Prepare to swap error if need-be
errSwap := errSwapNoop
// Build file RW flags
flags := defaultFileRWFlags
if !st.config.Overwrite {
flags |= syscall.O_EXCL
// Catch + replace err exist
errSwap = errSwapExist
}
// Attempt to open file
file, err := open(kpath, flags)
if err != nil {
return errSwap(err)
}
defer file.Close()
// Wrap the file in a compressor
cFile, err := st.config.Compression.Writer(file)
if err != nil {
return err
}
defer cFile.Close()
// Acquire write buffer
buf := util.AcquireBuffer(st.config.WriteBufSize)
defer util.ReleaseBuffer(buf)
buf.Grow(st.config.WriteBufSize)
// Copy reader to file
_, err = io.CopyBuffer(cFile, r, buf.B)
return err
}
// Stat implements Storage.Stat()
func (st *DiskStorage) Stat(key string) (bool, error) {
// Get file path for key
kpath, err := st.filepath(key)
if err != nil {
return false, err
}
// Check for file on disk
return stat(kpath)
}
// Remove implements Storage.Remove()
func (st *DiskStorage) Remove(key string) error {
// Get file path for key
kpath, err := st.filepath(key)
if err != nil {
return err
}
// Attempt to remove file
return os.Remove(kpath)
}
// WalkKeys implements Storage.WalkKeys()
func (st *DiskStorage) WalkKeys(opts *WalkKeysOptions) error {
// Acquire path builder
pb := fastpath.AcquireBuilder()
defer fastpath.ReleaseBuilder(pb)
// Walk dir for entries
return util.WalkDir(pb, st.path, func(kpath string, fsentry fs.DirEntry) {
// Only deal with regular files
if fsentry.Type().IsRegular() {
// Get full item path (without root)
kpath = pb.Join(kpath, fsentry.Name())[len(st.path):]
// Perform provided walk function
opts.WalkFn(entry(st.config.Transform.PathToKey(kpath)))
}
})
}
// filepath checks and returns a formatted filepath for given key
func (st *DiskStorage) filepath(key string) (string, error) {
// Acquire path builder
pb := util.AcquirePathBuilder()
defer util.ReleasePathBuilder(pb)
// Calculate transformed key path
key = st.config.Transform.KeyToPath(key)
// Generated joined root path
pb.AppendString(st.path)
pb.AppendString(key)
// If path is dir traversal, and traverses FURTHER
// than store root, this is an error
if util.CountDotdots(pb.StringPtr()) > st.dots {
return "", ErrInvalidKey
}
return pb.String(), nil
}

View file

@ -0,0 +1,63 @@
package storage
import (
"fmt"
"syscall"
)
// errorString is our own simple error type
type errorString string
// Error implements error
func (e errorString) Error() string {
return string(e)
}
// Extend appends extra information to an errorString
func (e errorString) Extend(s string, a ...interface{}) errorString {
return errorString(string(e) + ": " + fmt.Sprintf(s, a...))
}
var (
// ErrNotFound is the error returned when a key cannot be found in storage
ErrNotFound = errorString("store/storage: key not found")
// ErrAlreadyExist is the error returned when a key already exists in storage
ErrAlreadyExists = errorString("store/storage: key already exists")
// ErrInvalidkey is the error returned when an invalid key is passed to storage
ErrInvalidKey = errorString("store/storage: invalid key")
// errPathIsFile is returned when a path for a disk config is actually a file
errPathIsFile = errorString("store/storage: path is file")
// errNoHashesWritten is returned when no blocks are written for given input value
errNoHashesWritten = errorString("storage/storage: no hashes written")
// errInvalidNode is returned when read on an invalid node in the store is attempted
errInvalidNode = errorString("store/storage: invalid node")
// errCorruptNodes is returned when nodes with missing blocks are found during a BlockStorage clean
errCorruptNodes = errorString("store/storage: corrupted nodes")
)
// errSwapNoop performs no error swaps
func errSwapNoop(err error) error {
return err
}
// ErrSwapNotFound swaps syscall.ENOENT for ErrNotFound
func errSwapNotFound(err error) error {
if err == syscall.ENOENT {
return ErrNotFound
}
return err
}
// errSwapExist swaps syscall.EEXIST for ErrAlreadyExists
func errSwapExist(err error) error {
if err == syscall.EEXIST {
return ErrAlreadyExists
}
return err
}

View file

@ -0,0 +1,48 @@
package storage
import (
"os"
"syscall"
"git.iim.gay/grufwub/go-store/util"
)
const (
defaultDirPerms = 0755
defaultFilePerms = 0644
defaultFileROFlags = syscall.O_RDONLY
defaultFileRWFlags = syscall.O_CREAT | syscall.O_RDWR
defaultFileLockFlags = syscall.O_RDONLY | syscall.O_EXCL | syscall.O_CREAT
)
// NOTE:
// These functions are for opening storage files,
// not necessarily for e.g. initial setup (OpenFile)
// open should not be called directly
func open(path string, flags int) (*os.File, error) {
var fd int
err := util.RetryOnEINTR(func() (err error) {
fd, err = syscall.Open(path, flags, defaultFilePerms)
return
})
if err != nil {
return nil, err
}
return os.NewFile(uintptr(fd), path), nil
}
// stat checks for a file on disk
func stat(path string) (bool, error) {
var stat syscall.Stat_t
err := util.RetryOnEINTR(func() error {
return syscall.Stat(path, &stat)
})
if err != nil {
if err == syscall.ENOENT {
err = nil
}
return false, err
}
return true, nil
}

View file

@ -0,0 +1,34 @@
package storage
import (
"os"
"syscall"
"git.iim.gay/grufwub/go-store/util"
)
type lockableFile struct {
*os.File
}
func openLock(path string) (*lockableFile, error) {
file, err := open(path, defaultFileLockFlags)
if err != nil {
return nil, err
}
return &lockableFile{file}, nil
}
func (f *lockableFile) lock() error {
return f.flock(syscall.LOCK_EX | syscall.LOCK_NB)
}
func (f *lockableFile) unlock() error {
return f.flock(syscall.LOCK_UN | syscall.LOCK_NB)
}
func (f *lockableFile) flock(how int) error {
return util.RetryOnEINTR(func() error {
return syscall.Flock(int(f.Fd()), how)
})
}

View file

@ -0,0 +1,51 @@
package storage
import (
"io"
)
// StorageEntry defines a key in Storage
type StorageEntry interface {
// Key returns the storage entry's key
Key() string
}
// entry is the simplest possible StorageEntry
type entry string
func (e entry) Key() string {
return string(e)
}
// Storage defines a means of storing and accessing key value pairs
type Storage interface {
// Clean removes unused values and unclutters the storage (e.g. removing empty folders)
Clean() error
// ReadBytes returns the byte value for key in storage
ReadBytes(key string) ([]byte, error)
// ReadStream returns an io.ReadCloser for the value bytes at key in the storage
ReadStream(key string) (io.ReadCloser, error)
// WriteBytes writes the supplied value bytes at key in the storage
WriteBytes(key string, value []byte) error
// WriteStream writes the bytes from supplied reader at key in the storage
WriteStream(key string, r io.Reader) error
// Stat checks if the supplied key is in the storage
Stat(key string) (bool, error)
// Remove attempts to remove the supplied key-value pair from storage
Remove(key string) error
// WalkKeys walks the keys in the storage
WalkKeys(opts *WalkKeysOptions) error
}
// WalkKeysOptions defines how to walk the keys in a storage implementation
type WalkKeysOptions struct {
// WalkFn is the function to apply on each StorageEntry
WalkFn func(StorageEntry)
}

View file

@ -0,0 +1,25 @@
package storage
// KeyTransform defines a method of converting store keys to storage paths (and vice-versa)
type KeyTransform interface {
// KeyToPath converts a supplied key to storage path
KeyToPath(string) string
// PathToKey converts a supplied storage path to key
PathToKey(string) string
}
type nopKeyTransform struct{}
// NopTransform returns a nop key transform (i.e. key = path)
func NopTransform() KeyTransform {
return &nopKeyTransform{}
}
func (t *nopKeyTransform) KeyToPath(key string) string {
return key
}
func (t *nopKeyTransform) PathToKey(path string) string {
return path
}

View file

@ -0,0 +1,105 @@
package util
import (
"io/fs"
"os"
"strings"
"syscall"
"git.iim.gay/grufwub/fastpath"
)
var dotdot = "../"
// CountDotdots returns the number of "dot-dots" (../) in a cleaned filesystem path
func CountDotdots(path string) int {
if !strings.HasSuffix(path, dotdot) {
return 0
}
return strings.Count(path, dotdot)
}
// WalkDir traverses the dir tree of the supplied path, performing the supplied walkFn on each entry
func WalkDir(pb *fastpath.Builder, path string, walkFn func(string, fs.DirEntry)) error {
// Read supplied dir path
dirEntries, err := os.ReadDir(path)
if err != nil {
return err
}
// Iter entries
for _, entry := range dirEntries {
// Pass to walk fn
walkFn(path, entry)
// Recurse dir entries
if entry.IsDir() {
err = WalkDir(pb, pb.Join(path, entry.Name()), walkFn)
if err != nil {
return err
}
}
}
return nil
}
// CleanDirs traverses the dir tree of the supplied path, removing any folders with zero children
func CleanDirs(path string) error {
// Acquire builder
pb := AcquirePathBuilder()
defer ReleasePathBuilder(pb)
// Get dir entries
entries, err := os.ReadDir(path)
if err != nil {
return err
}
// Recurse dirs
for _, entry := range entries {
if entry.IsDir() {
err := cleanDirs(pb, pb.Join(path, entry.Name()))
if err != nil {
return err
}
}
}
return nil
}
// cleanDirs performs the actual dir cleaning logic for the exported version
func cleanDirs(pb *fastpath.Builder, path string) error {
// Get dir entries
entries, err := os.ReadDir(path)
if err != nil {
return err
}
// If no entries, delete
if len(entries) < 1 {
return os.Remove(path)
}
// Recurse dirs
for _, entry := range entries {
if entry.IsDir() {
err := cleanDirs(pb, pb.Join(path, entry.Name()))
if err != nil {
return err
}
}
}
return nil
}
// RetryOnEINTR is a low-level filesystem function for retrying syscalls on O_EINTR received
func RetryOnEINTR(do func() error) error {
for {
err := do()
if err == syscall.EINTR {
continue
}
return err
}
}

View file

@ -0,0 +1,42 @@
package util
import "io"
// NopReadCloser turns a supplied io.Reader into io.ReadCloser with a nop Close() implementation
func NopReadCloser(r io.Reader) io.ReadCloser {
return &nopReadCloser{r}
}
// NopWriteCloser turns a supplied io.Writer into io.WriteCloser with a nop Close() implementation
func NopWriteCloser(w io.Writer) io.WriteCloser {
return &nopWriteCloser{w}
}
// ReadCloserWithCallback adds a customizable callback to be called upon Close() of a supplied io.ReadCloser
func ReadCloserWithCallback(rc io.ReadCloser, cb func()) io.ReadCloser {
return &callbackReadCloser{
ReadCloser: rc,
callback: cb,
}
}
// nopReadCloser turns an io.Reader -> io.ReadCloser with a nop Close()
type nopReadCloser struct{ io.Reader }
func (r *nopReadCloser) Close() error { return nil }
// nopWriteCloser turns an io.Writer -> io.WriteCloser with a nop Close()
type nopWriteCloser struct{ io.Writer }
func (w nopWriteCloser) Close() error { return nil }
// callbackReadCloser allows adding our own custom callback to an io.ReadCloser
type callbackReadCloser struct {
io.ReadCloser
callback func()
}
func (c *callbackReadCloser) Close() error {
defer c.callback()
return c.ReadCloser.Close()
}

View file

@ -0,0 +1,6 @@
package util
type NoCopy struct{}
func (*NoCopy) Lock() {}
func (*NoCopy) Unlock() {}

View file

@ -0,0 +1,44 @@
package util
import (
"sync"
"git.iim.gay/grufwub/fastpath"
"git.iim.gay/grufwub/go-bufpool"
"git.iim.gay/grufwub/go-bytes"
)
// pathBuilderPool is the global fastpath.Builder pool, we implement
// our own here instead of using fastpath's default one because we
// don't want to deal with fastpath's sync.Once locks on every Acquire/Release
var pathBuilderPool = sync.Pool{
New: func() interface{} {
pb := fastpath.NewBuilder(make([]byte, 0, 512))
return &pb
},
}
// AcquirePathBuilder returns a reset fastpath.Builder instance
func AcquirePathBuilder() *fastpath.Builder {
return pathBuilderPool.Get().(*fastpath.Builder)
}
// ReleasePathBuilder resets and releases provided fastpath.Builder instance to global pool
func ReleasePathBuilder(pb *fastpath.Builder) {
pb.Reset()
pathBuilderPool.Put(pb)
}
// bufferPool is the global BufferPool, we implement this here
// so we can share allocations across whatever libaries need them.
var bufferPool = bufpool.BufferPool{}
// AcquireBuffer returns a reset bytes.Buffer with at least requested capacity
func AcquireBuffer(cap int) *bytes.Buffer {
return bufferPool.Get(cap)
}
// ReleaseBuffer resets and releases provided bytes.Buffer to global BufferPool
func ReleaseBuffer(buf *bytes.Buffer) {
bufferPool.Put(buf)
}

16
vendor/github.com/golang/snappy/.gitignore generated vendored Normal file
View file

@ -0,0 +1,16 @@
cmd/snappytool/snappytool
testdata/bench
# These explicitly listed benchmark data files are for an obsolete version of
# snappy_test.go.
testdata/alice29.txt
testdata/asyoulik.txt
testdata/fireworks.jpeg
testdata/geo.protodata
testdata/html
testdata/html_x_4
testdata/kppkn.gtb
testdata/lcet10.txt
testdata/paper-100k.pdf
testdata/plrabn12.txt
testdata/urls.10K

17
vendor/github.com/golang/snappy/AUTHORS generated vendored Normal file
View file

@ -0,0 +1,17 @@
# This is the official list of Snappy-Go authors for copyright purposes.
# This file is distinct from the CONTRIBUTORS files.
# See the latter for an explanation.
# Names should be added to this file as
# Name or Organization <email address>
# The email address is not required for organizations.
# Please keep the list sorted.
Amazon.com, Inc
Damian Gryski <dgryski@gmail.com>
Google Inc.
Jan Mercl <0xjnml@gmail.com>
Klaus Post <klauspost@gmail.com>
Rodolfo Carvalho <rhcarvalho@gmail.com>
Sebastien Binet <seb.binet@gmail.com>

39
vendor/github.com/golang/snappy/CONTRIBUTORS generated vendored Normal file
View file

@ -0,0 +1,39 @@
# This is the official list of people who can contribute
# (and typically have contributed) code to the Snappy-Go repository.
# The AUTHORS file lists the copyright holders; this file
# lists people. For example, Google employees are listed here
# but not in AUTHORS, because Google holds the copyright.
#
# The submission process automatically checks to make sure
# that people submitting code are listed in this file (by email address).
#
# Names should be added to this file only after verifying that
# the individual or the individual's organization has agreed to
# the appropriate Contributor License Agreement, found here:
#
# http://code.google.com/legal/individual-cla-v1.0.html
# http://code.google.com/legal/corporate-cla-v1.0.html
#
# The agreement for individuals can be filled out on the web.
#
# When adding J Random Contributor's name to this file,
# either J's name or J's organization's name should be
# added to the AUTHORS file, depending on whether the
# individual or corporate CLA was used.
# Names should be added to this file like so:
# Name <email address>
# Please keep the list sorted.
Damian Gryski <dgryski@gmail.com>
Jan Mercl <0xjnml@gmail.com>
Jonathan Swinney <jswinney@amazon.com>
Kai Backman <kaib@golang.org>
Klaus Post <klauspost@gmail.com>
Marc-Antoine Ruel <maruel@chromium.org>
Nigel Tao <nigeltao@golang.org>
Rob Pike <r@golang.org>
Rodolfo Carvalho <rhcarvalho@gmail.com>
Russ Cox <rsc@golang.org>
Sebastien Binet <seb.binet@gmail.com>

27
vendor/github.com/golang/snappy/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2011 The Snappy-Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

107
vendor/github.com/golang/snappy/README generated vendored Normal file
View file

@ -0,0 +1,107 @@
The Snappy compression format in the Go programming language.
To download and install from source:
$ go get github.com/golang/snappy
Unless otherwise noted, the Snappy-Go source files are distributed
under the BSD-style license found in the LICENSE file.
Benchmarks.
The golang/snappy benchmarks include compressing (Z) and decompressing (U) ten
or so files, the same set used by the C++ Snappy code (github.com/google/snappy
and note the "google", not "golang"). On an "Intel(R) Core(TM) i7-3770 CPU @
3.40GHz", Go's GOARCH=amd64 numbers as of 2016-05-29:
"go test -test.bench=."
_UFlat0-8 2.19GB/s ± 0% html
_UFlat1-8 1.41GB/s ± 0% urls
_UFlat2-8 23.5GB/s ± 2% jpg
_UFlat3-8 1.91GB/s ± 0% jpg_200
_UFlat4-8 14.0GB/s ± 1% pdf
_UFlat5-8 1.97GB/s ± 0% html4
_UFlat6-8 814MB/s ± 0% txt1
_UFlat7-8 785MB/s ± 0% txt2
_UFlat8-8 857MB/s ± 0% txt3
_UFlat9-8 719MB/s ± 1% txt4
_UFlat10-8 2.84GB/s ± 0% pb
_UFlat11-8 1.05GB/s ± 0% gaviota
_ZFlat0-8 1.04GB/s ± 0% html
_ZFlat1-8 534MB/s ± 0% urls
_ZFlat2-8 15.7GB/s ± 1% jpg
_ZFlat3-8 740MB/s ± 3% jpg_200
_ZFlat4-8 9.20GB/s ± 1% pdf
_ZFlat5-8 991MB/s ± 0% html4
_ZFlat6-8 379MB/s ± 0% txt1
_ZFlat7-8 352MB/s ± 0% txt2
_ZFlat8-8 396MB/s ± 1% txt3
_ZFlat9-8 327MB/s ± 1% txt4
_ZFlat10-8 1.33GB/s ± 1% pb
_ZFlat11-8 605MB/s ± 1% gaviota
"go test -test.bench=. -tags=noasm"
_UFlat0-8 621MB/s ± 2% html
_UFlat1-8 494MB/s ± 1% urls
_UFlat2-8 23.2GB/s ± 1% jpg
_UFlat3-8 1.12GB/s ± 1% jpg_200
_UFlat4-8 4.35GB/s ± 1% pdf
_UFlat5-8 609MB/s ± 0% html4
_UFlat6-8 296MB/s ± 0% txt1
_UFlat7-8 288MB/s ± 0% txt2
_UFlat8-8 309MB/s ± 1% txt3
_UFlat9-8 280MB/s ± 1% txt4
_UFlat10-8 753MB/s ± 0% pb
_UFlat11-8 400MB/s ± 0% gaviota
_ZFlat0-8 409MB/s ± 1% html
_ZFlat1-8 250MB/s ± 1% urls
_ZFlat2-8 12.3GB/s ± 1% jpg
_ZFlat3-8 132MB/s ± 0% jpg_200
_ZFlat4-8 2.92GB/s ± 0% pdf
_ZFlat5-8 405MB/s ± 1% html4
_ZFlat6-8 179MB/s ± 1% txt1
_ZFlat7-8 170MB/s ± 1% txt2
_ZFlat8-8 189MB/s ± 1% txt3
_ZFlat9-8 164MB/s ± 1% txt4
_ZFlat10-8 479MB/s ± 1% pb
_ZFlat11-8 270MB/s ± 1% gaviota
For comparison (Go's encoded output is byte-for-byte identical to C++'s), here
are the numbers from C++ Snappy's
make CXXFLAGS="-O2 -DNDEBUG -g" clean snappy_unittest.log && cat snappy_unittest.log
BM_UFlat/0 2.4GB/s html
BM_UFlat/1 1.4GB/s urls
BM_UFlat/2 21.8GB/s jpg
BM_UFlat/3 1.5GB/s jpg_200
BM_UFlat/4 13.3GB/s pdf
BM_UFlat/5 2.1GB/s html4
BM_UFlat/6 1.0GB/s txt1
BM_UFlat/7 959.4MB/s txt2
BM_UFlat/8 1.0GB/s txt3
BM_UFlat/9 864.5MB/s txt4
BM_UFlat/10 2.9GB/s pb
BM_UFlat/11 1.2GB/s gaviota
BM_ZFlat/0 944.3MB/s html (22.31 %)
BM_ZFlat/1 501.6MB/s urls (47.78 %)
BM_ZFlat/2 14.3GB/s jpg (99.95 %)
BM_ZFlat/3 538.3MB/s jpg_200 (73.00 %)
BM_ZFlat/4 8.3GB/s pdf (83.30 %)
BM_ZFlat/5 903.5MB/s html4 (22.52 %)
BM_ZFlat/6 336.0MB/s txt1 (57.88 %)
BM_ZFlat/7 312.3MB/s txt2 (61.91 %)
BM_ZFlat/8 353.1MB/s txt3 (54.99 %)
BM_ZFlat/9 289.9MB/s txt4 (66.26 %)
BM_ZFlat/10 1.2GB/s pb (19.68 %)
BM_ZFlat/11 527.4MB/s gaviota (37.72 %)

241
vendor/github.com/golang/snappy/decode.go generated vendored Normal file
View file

@ -0,0 +1,241 @@
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package snappy
import (
"encoding/binary"
"errors"
"io"
)
var (
// ErrCorrupt reports that the input is invalid.
ErrCorrupt = errors.New("snappy: corrupt input")
// ErrTooLarge reports that the uncompressed length is too large.
ErrTooLarge = errors.New("snappy: decoded block is too large")
// ErrUnsupported reports that the input isn't supported.
ErrUnsupported = errors.New("snappy: unsupported input")
errUnsupportedLiteralLength = errors.New("snappy: unsupported literal length")
)
// DecodedLen returns the length of the decoded block.
func DecodedLen(src []byte) (int, error) {
v, _, err := decodedLen(src)
return v, err
}
// decodedLen returns the length of the decoded block and the number of bytes
// that the length header occupied.
func decodedLen(src []byte) (blockLen, headerLen int, err error) {
v, n := binary.Uvarint(src)
if n <= 0 || v > 0xffffffff {
return 0, 0, ErrCorrupt
}
const wordSize = 32 << (^uint(0) >> 32 & 1)
if wordSize == 32 && v > 0x7fffffff {
return 0, 0, ErrTooLarge
}
return int(v), n, nil
}
const (
decodeErrCodeCorrupt = 1
decodeErrCodeUnsupportedLiteralLength = 2
)
// Decode returns the decoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire decoded block.
// Otherwise, a newly allocated slice will be returned.
//
// The dst and src must not overlap. It is valid to pass a nil dst.
//
// Decode handles the Snappy block format, not the Snappy stream format.
func Decode(dst, src []byte) ([]byte, error) {
dLen, s, err := decodedLen(src)
if err != nil {
return nil, err
}
if dLen <= len(dst) {
dst = dst[:dLen]
} else {
dst = make([]byte, dLen)
}
switch decode(dst, src[s:]) {
case 0:
return dst, nil
case decodeErrCodeUnsupportedLiteralLength:
return nil, errUnsupportedLiteralLength
}
return nil, ErrCorrupt
}
// NewReader returns a new Reader that decompresses from r, using the framing
// format described at
// https://github.com/google/snappy/blob/master/framing_format.txt
func NewReader(r io.Reader) *Reader {
return &Reader{
r: r,
decoded: make([]byte, maxBlockSize),
buf: make([]byte, maxEncodedLenOfMaxBlockSize+checksumSize),
}
}
// Reader is an io.Reader that can read Snappy-compressed bytes.
//
// Reader handles the Snappy stream format, not the Snappy block format.
type Reader struct {
r io.Reader
err error
decoded []byte
buf []byte
// decoded[i:j] contains decoded bytes that have not yet been passed on.
i, j int
readHeader bool
}
// Reset discards any buffered data, resets all state, and switches the Snappy
// reader to read from r. This permits reusing a Reader rather than allocating
// a new one.
func (r *Reader) Reset(reader io.Reader) {
r.r = reader
r.err = nil
r.i = 0
r.j = 0
r.readHeader = false
}
func (r *Reader) readFull(p []byte, allowEOF bool) (ok bool) {
if _, r.err = io.ReadFull(r.r, p); r.err != nil {
if r.err == io.ErrUnexpectedEOF || (r.err == io.EOF && !allowEOF) {
r.err = ErrCorrupt
}
return false
}
return true
}
// Read satisfies the io.Reader interface.
func (r *Reader) Read(p []byte) (int, error) {
if r.err != nil {
return 0, r.err
}
for {
if r.i < r.j {
n := copy(p, r.decoded[r.i:r.j])
r.i += n
return n, nil
}
if !r.readFull(r.buf[:4], true) {
return 0, r.err
}
chunkType := r.buf[0]
if !r.readHeader {
if chunkType != chunkTypeStreamIdentifier {
r.err = ErrCorrupt
return 0, r.err
}
r.readHeader = true
}
chunkLen := int(r.buf[1]) | int(r.buf[2])<<8 | int(r.buf[3])<<16
if chunkLen > len(r.buf) {
r.err = ErrUnsupported
return 0, r.err
}
// The chunk types are specified at
// https://github.com/google/snappy/blob/master/framing_format.txt
switch chunkType {
case chunkTypeCompressedData:
// Section 4.2. Compressed data (chunk type 0x00).
if chunkLen < checksumSize {
r.err = ErrCorrupt
return 0, r.err
}
buf := r.buf[:chunkLen]
if !r.readFull(buf, false) {
return 0, r.err
}
checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
buf = buf[checksumSize:]
n, err := DecodedLen(buf)
if err != nil {
r.err = err
return 0, r.err
}
if n > len(r.decoded) {
r.err = ErrCorrupt
return 0, r.err
}
if _, err := Decode(r.decoded, buf); err != nil {
r.err = err
return 0, r.err
}
if crc(r.decoded[:n]) != checksum {
r.err = ErrCorrupt
return 0, r.err
}
r.i, r.j = 0, n
continue
case chunkTypeUncompressedData:
// Section 4.3. Uncompressed data (chunk type 0x01).
if chunkLen < checksumSize {
r.err = ErrCorrupt
return 0, r.err
}
buf := r.buf[:checksumSize]
if !r.readFull(buf, false) {
return 0, r.err
}
checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
// Read directly into r.decoded instead of via r.buf.
n := chunkLen - checksumSize
if n > len(r.decoded) {
r.err = ErrCorrupt
return 0, r.err
}
if !r.readFull(r.decoded[:n], false) {
return 0, r.err
}
if crc(r.decoded[:n]) != checksum {
r.err = ErrCorrupt
return 0, r.err
}
r.i, r.j = 0, n
continue
case chunkTypeStreamIdentifier:
// Section 4.1. Stream identifier (chunk type 0xff).
if chunkLen != len(magicBody) {
r.err = ErrCorrupt
return 0, r.err
}
if !r.readFull(r.buf[:len(magicBody)], false) {
return 0, r.err
}
for i := 0; i < len(magicBody); i++ {
if r.buf[i] != magicBody[i] {
r.err = ErrCorrupt
return 0, r.err
}
}
continue
}
if chunkType <= 0x7f {
// Section 4.5. Reserved unskippable chunks (chunk types 0x02-0x7f).
r.err = ErrUnsupported
return 0, r.err
}
// Section 4.4 Padding (chunk type 0xfe).
// Section 4.6. Reserved skippable chunks (chunk types 0x80-0xfd).
if !r.readFull(r.buf[:chunkLen], false) {
return 0, r.err
}
}
}

490
vendor/github.com/golang/snappy/decode_amd64.s generated vendored Normal file
View file

@ -0,0 +1,490 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
#include "textflag.h"
// The asm code generally follows the pure Go code in decode_other.go, except
// where marked with a "!!!".
// func decode(dst, src []byte) int
//
// All local variables fit into registers. The non-zero stack size is only to
// spill registers and push args when issuing a CALL. The register allocation:
// - AX scratch
// - BX scratch
// - CX length or x
// - DX offset
// - SI &src[s]
// - DI &dst[d]
// + R8 dst_base
// + R9 dst_len
// + R10 dst_base + dst_len
// + R11 src_base
// + R12 src_len
// + R13 src_base + src_len
// - R14 used by doCopy
// - R15 used by doCopy
//
// The registers R8-R13 (marked with a "+") are set at the start of the
// function, and after a CALL returns, and are not otherwise modified.
//
// The d variable is implicitly DI - R8, and len(dst)-d is R10 - DI.
// The s variable is implicitly SI - R11, and len(src)-s is R13 - SI.
TEXT ·decode(SB), NOSPLIT, $48-56
// Initialize SI, DI and R8-R13.
MOVQ dst_base+0(FP), R8
MOVQ dst_len+8(FP), R9
MOVQ R8, DI
MOVQ R8, R10
ADDQ R9, R10
MOVQ src_base+24(FP), R11
MOVQ src_len+32(FP), R12
MOVQ R11, SI
MOVQ R11, R13
ADDQ R12, R13
loop:
// for s < len(src)
CMPQ SI, R13
JEQ end
// CX = uint32(src[s])
//
// switch src[s] & 0x03
MOVBLZX (SI), CX
MOVL CX, BX
ANDL $3, BX
CMPL BX, $1
JAE tagCopy
// ----------------------------------------
// The code below handles literal tags.
// case tagLiteral:
// x := uint32(src[s] >> 2)
// switch
SHRL $2, CX
CMPL CX, $60
JAE tagLit60Plus
// case x < 60:
// s++
INCQ SI
doLit:
// This is the end of the inner "switch", when we have a literal tag.
//
// We assume that CX == x and x fits in a uint32, where x is the variable
// used in the pure Go decode_other.go code.
// length = int(x) + 1
//
// Unlike the pure Go code, we don't need to check if length <= 0 because
// CX can hold 64 bits, so the increment cannot overflow.
INCQ CX
// Prepare to check if copying length bytes will run past the end of dst or
// src.
//
// AX = len(dst) - d
// BX = len(src) - s
MOVQ R10, AX
SUBQ DI, AX
MOVQ R13, BX
SUBQ SI, BX
// !!! Try a faster technique for short (16 or fewer bytes) copies.
//
// if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
// goto callMemmove // Fall back on calling runtime·memmove.
// }
//
// The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
// against 21 instead of 16, because it cannot assume that all of its input
// is contiguous in memory and so it needs to leave enough source bytes to
// read the next tag without refilling buffers, but Go's Decode assumes
// contiguousness (the src argument is a []byte).
CMPQ CX, $16
JGT callMemmove
CMPQ AX, $16
JLT callMemmove
CMPQ BX, $16
JLT callMemmove
// !!! Implement the copy from src to dst as a 16-byte load and store.
// (Decode's documentation says that dst and src must not overlap.)
//
// This always copies 16 bytes, instead of only length bytes, but that's
// OK. If the input is a valid Snappy encoding then subsequent iterations
// will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
// non-nil error), so the overrun will be ignored.
//
// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
// 16-byte loads and stores. This technique probably wouldn't be as
// effective on architectures that are fussier about alignment.
MOVOU 0(SI), X0
MOVOU X0, 0(DI)
// d += length
// s += length
ADDQ CX, DI
ADDQ CX, SI
JMP loop
callMemmove:
// if length > len(dst)-d || length > len(src)-s { etc }
CMPQ CX, AX
JGT errCorrupt
CMPQ CX, BX
JGT errCorrupt
// copy(dst[d:], src[s:s+length])
//
// This means calling runtime·memmove(&dst[d], &src[s], length), so we push
// DI, SI and CX as arguments. Coincidentally, we also need to spill those
// three registers to the stack, to save local variables across the CALL.
MOVQ DI, 0(SP)
MOVQ SI, 8(SP)
MOVQ CX, 16(SP)
MOVQ DI, 24(SP)
MOVQ SI, 32(SP)
MOVQ CX, 40(SP)
CALL runtime·memmove(SB)
// Restore local variables: unspill registers from the stack and
// re-calculate R8-R13.
MOVQ 24(SP), DI
MOVQ 32(SP), SI
MOVQ 40(SP), CX
MOVQ dst_base+0(FP), R8
MOVQ dst_len+8(FP), R9
MOVQ R8, R10
ADDQ R9, R10
MOVQ src_base+24(FP), R11
MOVQ src_len+32(FP), R12
MOVQ R11, R13
ADDQ R12, R13
// d += length
// s += length
ADDQ CX, DI
ADDQ CX, SI
JMP loop
tagLit60Plus:
// !!! This fragment does the
//
// s += x - 58; if uint(s) > uint(len(src)) { etc }
//
// checks. In the asm version, we code it once instead of once per switch case.
ADDQ CX, SI
SUBQ $58, SI
MOVQ SI, BX
SUBQ R11, BX
CMPQ BX, R12
JA errCorrupt
// case x == 60:
CMPL CX, $61
JEQ tagLit61
JA tagLit62Plus
// x = uint32(src[s-1])
MOVBLZX -1(SI), CX
JMP doLit
tagLit61:
// case x == 61:
// x = uint32(src[s-2]) | uint32(src[s-1])<<8
MOVWLZX -2(SI), CX
JMP doLit
tagLit62Plus:
CMPL CX, $62
JA tagLit63
// case x == 62:
// x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
MOVWLZX -3(SI), CX
MOVBLZX -1(SI), BX
SHLL $16, BX
ORL BX, CX
JMP doLit
tagLit63:
// case x == 63:
// x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
MOVL -4(SI), CX
JMP doLit
// The code above handles literal tags.
// ----------------------------------------
// The code below handles copy tags.
tagCopy4:
// case tagCopy4:
// s += 5
ADDQ $5, SI
// if uint(s) > uint(len(src)) { etc }
MOVQ SI, BX
SUBQ R11, BX
CMPQ BX, R12
JA errCorrupt
// length = 1 + int(src[s-5])>>2
SHRQ $2, CX
INCQ CX
// offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
MOVLQZX -4(SI), DX
JMP doCopy
tagCopy2:
// case tagCopy2:
// s += 3
ADDQ $3, SI
// if uint(s) > uint(len(src)) { etc }
MOVQ SI, BX
SUBQ R11, BX
CMPQ BX, R12
JA errCorrupt
// length = 1 + int(src[s-3])>>2
SHRQ $2, CX
INCQ CX
// offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
MOVWQZX -2(SI), DX
JMP doCopy
tagCopy:
// We have a copy tag. We assume that:
// - BX == src[s] & 0x03
// - CX == src[s]
CMPQ BX, $2
JEQ tagCopy2
JA tagCopy4
// case tagCopy1:
// s += 2
ADDQ $2, SI
// if uint(s) > uint(len(src)) { etc }
MOVQ SI, BX
SUBQ R11, BX
CMPQ BX, R12
JA errCorrupt
// offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
MOVQ CX, DX
ANDQ $0xe0, DX
SHLQ $3, DX
MOVBQZX -1(SI), BX
ORQ BX, DX
// length = 4 + int(src[s-2])>>2&0x7
SHRQ $2, CX
ANDQ $7, CX
ADDQ $4, CX
doCopy:
// This is the end of the outer "switch", when we have a copy tag.
//
// We assume that:
// - CX == length && CX > 0
// - DX == offset
// if offset <= 0 { etc }
CMPQ DX, $0
JLE errCorrupt
// if d < offset { etc }
MOVQ DI, BX
SUBQ R8, BX
CMPQ BX, DX
JLT errCorrupt
// if length > len(dst)-d { etc }
MOVQ R10, BX
SUBQ DI, BX
CMPQ CX, BX
JGT errCorrupt
// forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
//
// Set:
// - R14 = len(dst)-d
// - R15 = &dst[d-offset]
MOVQ R10, R14
SUBQ DI, R14
MOVQ DI, R15
SUBQ DX, R15
// !!! Try a faster technique for short (16 or fewer bytes) forward copies.
//
// First, try using two 8-byte load/stores, similar to the doLit technique
// above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
// still OK if offset >= 8. Note that this has to be two 8-byte load/stores
// and not one 16-byte load/store, and the first store has to be before the
// second load, due to the overlap if offset is in the range [8, 16).
//
// if length > 16 || offset < 8 || len(dst)-d < 16 {
// goto slowForwardCopy
// }
// copy 16 bytes
// d += length
CMPQ CX, $16
JGT slowForwardCopy
CMPQ DX, $8
JLT slowForwardCopy
CMPQ R14, $16
JLT slowForwardCopy
MOVQ 0(R15), AX
MOVQ AX, 0(DI)
MOVQ 8(R15), BX
MOVQ BX, 8(DI)
ADDQ CX, DI
JMP loop
slowForwardCopy:
// !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
// can still try 8-byte load stores, provided we can overrun up to 10 extra
// bytes. As above, the overrun will be fixed up by subsequent iterations
// of the outermost loop.
//
// The C++ snappy code calls this technique IncrementalCopyFastPath. Its
// commentary says:
//
// ----
//
// The main part of this loop is a simple copy of eight bytes at a time
// until we've copied (at least) the requested amount of bytes. However,
// if d and d-offset are less than eight bytes apart (indicating a
// repeating pattern of length < 8), we first need to expand the pattern in
// order to get the correct results. For instance, if the buffer looks like
// this, with the eight-byte <d-offset> and <d> patterns marked as
// intervals:
//
// abxxxxxxxxxxxx
// [------] d-offset
// [------] d
//
// a single eight-byte copy from <d-offset> to <d> will repeat the pattern
// once, after which we can move <d> two bytes without moving <d-offset>:
//
// ababxxxxxxxxxx
// [------] d-offset
// [------] d
//
// and repeat the exercise until the two no longer overlap.
//
// This allows us to do very well in the special case of one single byte
// repeated many times, without taking a big hit for more general cases.
//
// The worst case of extra writing past the end of the match occurs when
// offset == 1 and length == 1; the last copy will read from byte positions
// [0..7] and write to [4..11], whereas it was only supposed to write to
// position 1. Thus, ten excess bytes.
//
// ----
//
// That "10 byte overrun" worst case is confirmed by Go's
// TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
// and finishSlowForwardCopy algorithm.
//
// if length > len(dst)-d-10 {
// goto verySlowForwardCopy
// }
SUBQ $10, R14
CMPQ CX, R14
JGT verySlowForwardCopy
makeOffsetAtLeast8:
// !!! As above, expand the pattern so that offset >= 8 and we can use
// 8-byte load/stores.
//
// for offset < 8 {
// copy 8 bytes from dst[d-offset:] to dst[d:]
// length -= offset
// d += offset
// offset += offset
// // The two previous lines together means that d-offset, and therefore
// // R15, is unchanged.
// }
CMPQ DX, $8
JGE fixUpSlowForwardCopy
MOVQ (R15), BX
MOVQ BX, (DI)
SUBQ DX, CX
ADDQ DX, DI
ADDQ DX, DX
JMP makeOffsetAtLeast8
fixUpSlowForwardCopy:
// !!! Add length (which might be negative now) to d (implied by DI being
// &dst[d]) so that d ends up at the right place when we jump back to the
// top of the loop. Before we do that, though, we save DI to AX so that, if
// length is positive, copying the remaining length bytes will write to the
// right place.
MOVQ DI, AX
ADDQ CX, DI
finishSlowForwardCopy:
// !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
// length means that we overrun, but as above, that will be fixed up by
// subsequent iterations of the outermost loop.
CMPQ CX, $0
JLE loop
MOVQ (R15), BX
MOVQ BX, (AX)
ADDQ $8, R15
ADDQ $8, AX
SUBQ $8, CX
JMP finishSlowForwardCopy
verySlowForwardCopy:
// verySlowForwardCopy is a simple implementation of forward copy. In C
// parlance, this is a do/while loop instead of a while loop, since we know
// that length > 0. In Go syntax:
//
// for {
// dst[d] = dst[d - offset]
// d++
// length--
// if length == 0 {
// break
// }
// }
MOVB (R15), BX
MOVB BX, (DI)
INCQ R15
INCQ DI
DECQ CX
JNZ verySlowForwardCopy
JMP loop
// The code above handles copy tags.
// ----------------------------------------
end:
// This is the end of the "for s < len(src)".
//
// if d != len(dst) { etc }
CMPQ DI, R10
JNE errCorrupt
// return 0
MOVQ $0, ret+48(FP)
RET
errCorrupt:
// return decodeErrCodeCorrupt
MOVQ $1, ret+48(FP)
RET

494
vendor/github.com/golang/snappy/decode_arm64.s generated vendored Normal file
View file

@ -0,0 +1,494 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
#include "textflag.h"
// The asm code generally follows the pure Go code in decode_other.go, except
// where marked with a "!!!".
// func decode(dst, src []byte) int
//
// All local variables fit into registers. The non-zero stack size is only to
// spill registers and push args when issuing a CALL. The register allocation:
// - R2 scratch
// - R3 scratch
// - R4 length or x
// - R5 offset
// - R6 &src[s]
// - R7 &dst[d]
// + R8 dst_base
// + R9 dst_len
// + R10 dst_base + dst_len
// + R11 src_base
// + R12 src_len
// + R13 src_base + src_len
// - R14 used by doCopy
// - R15 used by doCopy
//
// The registers R8-R13 (marked with a "+") are set at the start of the
// function, and after a CALL returns, and are not otherwise modified.
//
// The d variable is implicitly R7 - R8, and len(dst)-d is R10 - R7.
// The s variable is implicitly R6 - R11, and len(src)-s is R13 - R6.
TEXT ·decode(SB), NOSPLIT, $56-56
// Initialize R6, R7 and R8-R13.
MOVD dst_base+0(FP), R8
MOVD dst_len+8(FP), R9
MOVD R8, R7
MOVD R8, R10
ADD R9, R10, R10
MOVD src_base+24(FP), R11
MOVD src_len+32(FP), R12
MOVD R11, R6
MOVD R11, R13
ADD R12, R13, R13
loop:
// for s < len(src)
CMP R13, R6
BEQ end
// R4 = uint32(src[s])
//
// switch src[s] & 0x03
MOVBU (R6), R4
MOVW R4, R3
ANDW $3, R3
MOVW $1, R1
CMPW R1, R3
BGE tagCopy
// ----------------------------------------
// The code below handles literal tags.
// case tagLiteral:
// x := uint32(src[s] >> 2)
// switch
MOVW $60, R1
LSRW $2, R4, R4
CMPW R4, R1
BLS tagLit60Plus
// case x < 60:
// s++
ADD $1, R6, R6
doLit:
// This is the end of the inner "switch", when we have a literal tag.
//
// We assume that R4 == x and x fits in a uint32, where x is the variable
// used in the pure Go decode_other.go code.
// length = int(x) + 1
//
// Unlike the pure Go code, we don't need to check if length <= 0 because
// R4 can hold 64 bits, so the increment cannot overflow.
ADD $1, R4, R4
// Prepare to check if copying length bytes will run past the end of dst or
// src.
//
// R2 = len(dst) - d
// R3 = len(src) - s
MOVD R10, R2
SUB R7, R2, R2
MOVD R13, R3
SUB R6, R3, R3
// !!! Try a faster technique for short (16 or fewer bytes) copies.
//
// if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
// goto callMemmove // Fall back on calling runtime·memmove.
// }
//
// The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
// against 21 instead of 16, because it cannot assume that all of its input
// is contiguous in memory and so it needs to leave enough source bytes to
// read the next tag without refilling buffers, but Go's Decode assumes
// contiguousness (the src argument is a []byte).
CMP $16, R4
BGT callMemmove
CMP $16, R2
BLT callMemmove
CMP $16, R3
BLT callMemmove
// !!! Implement the copy from src to dst as a 16-byte load and store.
// (Decode's documentation says that dst and src must not overlap.)
//
// This always copies 16 bytes, instead of only length bytes, but that's
// OK. If the input is a valid Snappy encoding then subsequent iterations
// will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
// non-nil error), so the overrun will be ignored.
//
// Note that on arm64, it is legal and cheap to issue unaligned 8-byte or
// 16-byte loads and stores. This technique probably wouldn't be as
// effective on architectures that are fussier about alignment.
LDP 0(R6), (R14, R15)
STP (R14, R15), 0(R7)
// d += length
// s += length
ADD R4, R7, R7
ADD R4, R6, R6
B loop
callMemmove:
// if length > len(dst)-d || length > len(src)-s { etc }
CMP R2, R4
BGT errCorrupt
CMP R3, R4
BGT errCorrupt
// copy(dst[d:], src[s:s+length])
//
// This means calling runtime·memmove(&dst[d], &src[s], length), so we push
// R7, R6 and R4 as arguments. Coincidentally, we also need to spill those
// three registers to the stack, to save local variables across the CALL.
MOVD R7, 8(RSP)
MOVD R6, 16(RSP)
MOVD R4, 24(RSP)
MOVD R7, 32(RSP)
MOVD R6, 40(RSP)
MOVD R4, 48(RSP)
CALL runtime·memmove(SB)
// Restore local variables: unspill registers from the stack and
// re-calculate R8-R13.
MOVD 32(RSP), R7
MOVD 40(RSP), R6
MOVD 48(RSP), R4
MOVD dst_base+0(FP), R8
MOVD dst_len+8(FP), R9
MOVD R8, R10
ADD R9, R10, R10
MOVD src_base+24(FP), R11
MOVD src_len+32(FP), R12
MOVD R11, R13
ADD R12, R13, R13
// d += length
// s += length
ADD R4, R7, R7
ADD R4, R6, R6
B loop
tagLit60Plus:
// !!! This fragment does the
//
// s += x - 58; if uint(s) > uint(len(src)) { etc }
//
// checks. In the asm version, we code it once instead of once per switch case.
ADD R4, R6, R6
SUB $58, R6, R6
MOVD R6, R3
SUB R11, R3, R3
CMP R12, R3
BGT errCorrupt
// case x == 60:
MOVW $61, R1
CMPW R1, R4
BEQ tagLit61
BGT tagLit62Plus
// x = uint32(src[s-1])
MOVBU -1(R6), R4
B doLit
tagLit61:
// case x == 61:
// x = uint32(src[s-2]) | uint32(src[s-1])<<8
MOVHU -2(R6), R4
B doLit
tagLit62Plus:
CMPW $62, R4
BHI tagLit63
// case x == 62:
// x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
MOVHU -3(R6), R4
MOVBU -1(R6), R3
ORR R3<<16, R4
B doLit
tagLit63:
// case x == 63:
// x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
MOVWU -4(R6), R4
B doLit
// The code above handles literal tags.
// ----------------------------------------
// The code below handles copy tags.
tagCopy4:
// case tagCopy4:
// s += 5
ADD $5, R6, R6
// if uint(s) > uint(len(src)) { etc }
MOVD R6, R3
SUB R11, R3, R3
CMP R12, R3
BGT errCorrupt
// length = 1 + int(src[s-5])>>2
MOVD $1, R1
ADD R4>>2, R1, R4
// offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
MOVWU -4(R6), R5
B doCopy
tagCopy2:
// case tagCopy2:
// s += 3
ADD $3, R6, R6
// if uint(s) > uint(len(src)) { etc }
MOVD R6, R3
SUB R11, R3, R3
CMP R12, R3
BGT errCorrupt
// length = 1 + int(src[s-3])>>2
MOVD $1, R1
ADD R4>>2, R1, R4
// offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
MOVHU -2(R6), R5
B doCopy
tagCopy:
// We have a copy tag. We assume that:
// - R3 == src[s] & 0x03
// - R4 == src[s]
CMP $2, R3
BEQ tagCopy2
BGT tagCopy4
// case tagCopy1:
// s += 2
ADD $2, R6, R6
// if uint(s) > uint(len(src)) { etc }
MOVD R6, R3
SUB R11, R3, R3
CMP R12, R3
BGT errCorrupt
// offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
MOVD R4, R5
AND $0xe0, R5
MOVBU -1(R6), R3
ORR R5<<3, R3, R5
// length = 4 + int(src[s-2])>>2&0x7
MOVD $7, R1
AND R4>>2, R1, R4
ADD $4, R4, R4
doCopy:
// This is the end of the outer "switch", when we have a copy tag.
//
// We assume that:
// - R4 == length && R4 > 0
// - R5 == offset
// if offset <= 0 { etc }
MOVD $0, R1
CMP R1, R5
BLE errCorrupt
// if d < offset { etc }
MOVD R7, R3
SUB R8, R3, R3
CMP R5, R3
BLT errCorrupt
// if length > len(dst)-d { etc }
MOVD R10, R3
SUB R7, R3, R3
CMP R3, R4
BGT errCorrupt
// forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
//
// Set:
// - R14 = len(dst)-d
// - R15 = &dst[d-offset]
MOVD R10, R14
SUB R7, R14, R14
MOVD R7, R15
SUB R5, R15, R15
// !!! Try a faster technique for short (16 or fewer bytes) forward copies.
//
// First, try using two 8-byte load/stores, similar to the doLit technique
// above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
// still OK if offset >= 8. Note that this has to be two 8-byte load/stores
// and not one 16-byte load/store, and the first store has to be before the
// second load, due to the overlap if offset is in the range [8, 16).
//
// if length > 16 || offset < 8 || len(dst)-d < 16 {
// goto slowForwardCopy
// }
// copy 16 bytes
// d += length
CMP $16, R4
BGT slowForwardCopy
CMP $8, R5
BLT slowForwardCopy
CMP $16, R14
BLT slowForwardCopy
MOVD 0(R15), R2
MOVD R2, 0(R7)
MOVD 8(R15), R3
MOVD R3, 8(R7)
ADD R4, R7, R7
B loop
slowForwardCopy:
// !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
// can still try 8-byte load stores, provided we can overrun up to 10 extra
// bytes. As above, the overrun will be fixed up by subsequent iterations
// of the outermost loop.
//
// The C++ snappy code calls this technique IncrementalCopyFastPath. Its
// commentary says:
//
// ----
//
// The main part of this loop is a simple copy of eight bytes at a time
// until we've copied (at least) the requested amount of bytes. However,
// if d and d-offset are less than eight bytes apart (indicating a
// repeating pattern of length < 8), we first need to expand the pattern in
// order to get the correct results. For instance, if the buffer looks like
// this, with the eight-byte <d-offset> and <d> patterns marked as
// intervals:
//
// abxxxxxxxxxxxx
// [------] d-offset
// [------] d
//
// a single eight-byte copy from <d-offset> to <d> will repeat the pattern
// once, after which we can move <d> two bytes without moving <d-offset>:
//
// ababxxxxxxxxxx
// [------] d-offset
// [------] d
//
// and repeat the exercise until the two no longer overlap.
//
// This allows us to do very well in the special case of one single byte
// repeated many times, without taking a big hit for more general cases.
//
// The worst case of extra writing past the end of the match occurs when
// offset == 1 and length == 1; the last copy will read from byte positions
// [0..7] and write to [4..11], whereas it was only supposed to write to
// position 1. Thus, ten excess bytes.
//
// ----
//
// That "10 byte overrun" worst case is confirmed by Go's
// TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
// and finishSlowForwardCopy algorithm.
//
// if length > len(dst)-d-10 {
// goto verySlowForwardCopy
// }
SUB $10, R14, R14
CMP R14, R4
BGT verySlowForwardCopy
makeOffsetAtLeast8:
// !!! As above, expand the pattern so that offset >= 8 and we can use
// 8-byte load/stores.
//
// for offset < 8 {
// copy 8 bytes from dst[d-offset:] to dst[d:]
// length -= offset
// d += offset
// offset += offset
// // The two previous lines together means that d-offset, and therefore
// // R15, is unchanged.
// }
CMP $8, R5
BGE fixUpSlowForwardCopy
MOVD (R15), R3
MOVD R3, (R7)
SUB R5, R4, R4
ADD R5, R7, R7
ADD R5, R5, R5
B makeOffsetAtLeast8
fixUpSlowForwardCopy:
// !!! Add length (which might be negative now) to d (implied by R7 being
// &dst[d]) so that d ends up at the right place when we jump back to the
// top of the loop. Before we do that, though, we save R7 to R2 so that, if
// length is positive, copying the remaining length bytes will write to the
// right place.
MOVD R7, R2
ADD R4, R7, R7
finishSlowForwardCopy:
// !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
// length means that we overrun, but as above, that will be fixed up by
// subsequent iterations of the outermost loop.
MOVD $0, R1
CMP R1, R4
BLE loop
MOVD (R15), R3
MOVD R3, (R2)
ADD $8, R15, R15
ADD $8, R2, R2
SUB $8, R4, R4
B finishSlowForwardCopy
verySlowForwardCopy:
// verySlowForwardCopy is a simple implementation of forward copy. In C
// parlance, this is a do/while loop instead of a while loop, since we know
// that length > 0. In Go syntax:
//
// for {
// dst[d] = dst[d - offset]
// d++
// length--
// if length == 0 {
// break
// }
// }
MOVB (R15), R3
MOVB R3, (R7)
ADD $1, R15, R15
ADD $1, R7, R7
SUB $1, R4, R4
CBNZ R4, verySlowForwardCopy
B loop
// The code above handles copy tags.
// ----------------------------------------
end:
// This is the end of the "for s < len(src)".
//
// if d != len(dst) { etc }
CMP R10, R7
BNE errCorrupt
// return 0
MOVD $0, ret+48(FP)
RET
errCorrupt:
// return decodeErrCodeCorrupt
MOVD $1, R2
MOVD R2, ret+48(FP)
RET

15
vendor/github.com/golang/snappy/decode_asm.go generated vendored Normal file
View file

@ -0,0 +1,15 @@
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
// +build amd64 arm64
package snappy
// decode has the same semantics as in decode_other.go.
//
//go:noescape
func decode(dst, src []byte) int

115
vendor/github.com/golang/snappy/decode_other.go generated vendored Normal file
View file

@ -0,0 +1,115 @@
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!arm64 appengine !gc noasm
package snappy
// decode writes the decoding of src to dst. It assumes that the varint-encoded
// length of the decompressed bytes has already been read, and that len(dst)
// equals that length.
//
// It returns 0 on success or a decodeErrCodeXxx error code on failure.
func decode(dst, src []byte) int {
var d, s, offset, length int
for s < len(src) {
switch src[s] & 0x03 {
case tagLiteral:
x := uint32(src[s] >> 2)
switch {
case x < 60:
s++
case x == 60:
s += 2
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
x = uint32(src[s-1])
case x == 61:
s += 3
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
x = uint32(src[s-2]) | uint32(src[s-1])<<8
case x == 62:
s += 4
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
case x == 63:
s += 5
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
}
length = int(x) + 1
if length <= 0 {
return decodeErrCodeUnsupportedLiteralLength
}
if length > len(dst)-d || length > len(src)-s {
return decodeErrCodeCorrupt
}
copy(dst[d:], src[s:s+length])
d += length
s += length
continue
case tagCopy1:
s += 2
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
length = 4 + int(src[s-2])>>2&0x7
offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
case tagCopy2:
s += 3
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
length = 1 + int(src[s-3])>>2
offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
case tagCopy4:
s += 5
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
length = 1 + int(src[s-5])>>2
offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
}
if offset <= 0 || d < offset || length > len(dst)-d {
return decodeErrCodeCorrupt
}
// Copy from an earlier sub-slice of dst to a later sub-slice.
// If no overlap, use the built-in copy:
if offset >= length {
copy(dst[d:d+length], dst[d-offset:])
d += length
continue
}
// Unlike the built-in copy function, this byte-by-byte copy always runs
// forwards, even if the slices overlap. Conceptually, this is:
//
// d += forwardCopy(dst[d:d+length], dst[d-offset:])
//
// We align the slices into a and b and show the compiler they are the same size.
// This allows the loop to run without bounds checks.
a := dst[d : d+length]
b := dst[d-offset:]
b = b[:len(a)]
for i := range a {
a[i] = b[i]
}
d += length
}
if d != len(dst) {
return decodeErrCodeCorrupt
}
return 0
}

289
vendor/github.com/golang/snappy/encode.go generated vendored Normal file
View file

@ -0,0 +1,289 @@
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package snappy
import (
"encoding/binary"
"errors"
"io"
)
// Encode returns the encoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire encoded block.
// Otherwise, a newly allocated slice will be returned.
//
// The dst and src must not overlap. It is valid to pass a nil dst.
//
// Encode handles the Snappy block format, not the Snappy stream format.
func Encode(dst, src []byte) []byte {
if n := MaxEncodedLen(len(src)); n < 0 {
panic(ErrTooLarge)
} else if len(dst) < n {
dst = make([]byte, n)
}
// The block starts with the varint-encoded length of the decompressed bytes.
d := binary.PutUvarint(dst, uint64(len(src)))
for len(src) > 0 {
p := src
src = nil
if len(p) > maxBlockSize {
p, src = p[:maxBlockSize], p[maxBlockSize:]
}
if len(p) < minNonLiteralBlockSize {
d += emitLiteral(dst[d:], p)
} else {
d += encodeBlock(dst[d:], p)
}
}
return dst[:d]
}
// inputMargin is the minimum number of extra input bytes to keep, inside
// encodeBlock's inner loop. On some architectures, this margin lets us
// implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
// literals can be implemented as a single load to and store from a 16-byte
// register. That literal's actual length can be as short as 1 byte, so this
// can copy up to 15 bytes too much, but that's OK as subsequent iterations of
// the encoding loop will fix up the copy overrun, and this inputMargin ensures
// that we don't overrun the dst and src buffers.
const inputMargin = 16 - 1
// minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
// could be encoded with a copy tag. This is the minimum with respect to the
// algorithm used by encodeBlock, not a minimum enforced by the file format.
//
// The encoded output must start with at least a 1 byte literal, as there are
// no previous bytes to copy. A minimal (1 byte) copy after that, generated
// from an emitCopy call in encodeBlock's main loop, would require at least
// another inputMargin bytes, for the reason above: we want any emitLiteral
// calls inside encodeBlock's main loop to use the fast path if possible, which
// requires being able to overrun by inputMargin bytes. Thus,
// minNonLiteralBlockSize equals 1 + 1 + inputMargin.
//
// The C++ code doesn't use this exact threshold, but it could, as discussed at
// https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
// The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
// optimization. It should not affect the encoded form. This is tested by
// TestSameEncodingAsCppShortCopies.
const minNonLiteralBlockSize = 1 + 1 + inputMargin
// MaxEncodedLen returns the maximum length of a snappy block, given its
// uncompressed length.
//
// It will return a negative value if srcLen is too large to encode.
func MaxEncodedLen(srcLen int) int {
n := uint64(srcLen)
if n > 0xffffffff {
return -1
}
// Compressed data can be defined as:
// compressed := item* literal*
// item := literal* copy
//
// The trailing literal sequence has a space blowup of at most 62/60
// since a literal of length 60 needs one tag byte + one extra byte
// for length information.
//
// Item blowup is trickier to measure. Suppose the "copy" op copies
// 4 bytes of data. Because of a special check in the encoding code,
// we produce a 4-byte copy only if the offset is < 65536. Therefore
// the copy op takes 3 bytes to encode, and this type of item leads
// to at most the 62/60 blowup for representing literals.
//
// Suppose the "copy" op copies 5 bytes of data. If the offset is big
// enough, it will take 5 bytes to encode the copy op. Therefore the
// worst case here is a one-byte literal followed by a five-byte copy.
// That is, 6 bytes of input turn into 7 bytes of "compressed" data.
//
// This last factor dominates the blowup, so the final estimate is:
n = 32 + n + n/6
if n > 0xffffffff {
return -1
}
return int(n)
}
var errClosed = errors.New("snappy: Writer is closed")
// NewWriter returns a new Writer that compresses to w.
//
// The Writer returned does not buffer writes. There is no need to Flush or
// Close such a Writer.
//
// Deprecated: the Writer returned is not suitable for many small writes, only
// for few large writes. Use NewBufferedWriter instead, which is efficient
// regardless of the frequency and shape of the writes, and remember to Close
// that Writer when done.
func NewWriter(w io.Writer) *Writer {
return &Writer{
w: w,
obuf: make([]byte, obufLen),
}
}
// NewBufferedWriter returns a new Writer that compresses to w, using the
// framing format described at
// https://github.com/google/snappy/blob/master/framing_format.txt
//
// The Writer returned buffers writes. Users must call Close to guarantee all
// data has been forwarded to the underlying io.Writer. They may also call
// Flush zero or more times before calling Close.
func NewBufferedWriter(w io.Writer) *Writer {
return &Writer{
w: w,
ibuf: make([]byte, 0, maxBlockSize),
obuf: make([]byte, obufLen),
}
}
// Writer is an io.Writer that can write Snappy-compressed bytes.
//
// Writer handles the Snappy stream format, not the Snappy block format.
type Writer struct {
w io.Writer
err error
// ibuf is a buffer for the incoming (uncompressed) bytes.
//
// Its use is optional. For backwards compatibility, Writers created by the
// NewWriter function have ibuf == nil, do not buffer incoming bytes, and
// therefore do not need to be Flush'ed or Close'd.
ibuf []byte
// obuf is a buffer for the outgoing (compressed) bytes.
obuf []byte
// wroteStreamHeader is whether we have written the stream header.
wroteStreamHeader bool
}
// Reset discards the writer's state and switches the Snappy writer to write to
// w. This permits reusing a Writer rather than allocating a new one.
func (w *Writer) Reset(writer io.Writer) {
w.w = writer
w.err = nil
if w.ibuf != nil {
w.ibuf = w.ibuf[:0]
}
w.wroteStreamHeader = false
}
// Write satisfies the io.Writer interface.
func (w *Writer) Write(p []byte) (nRet int, errRet error) {
if w.ibuf == nil {
// Do not buffer incoming bytes. This does not perform or compress well
// if the caller of Writer.Write writes many small slices. This
// behavior is therefore deprecated, but still supported for backwards
// compatibility with code that doesn't explicitly Flush or Close.
return w.write(p)
}
// The remainder of this method is based on bufio.Writer.Write from the
// standard library.
for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
var n int
if len(w.ibuf) == 0 {
// Large write, empty buffer.
// Write directly from p to avoid copy.
n, _ = w.write(p)
} else {
n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
w.ibuf = w.ibuf[:len(w.ibuf)+n]
w.Flush()
}
nRet += n
p = p[n:]
}
if w.err != nil {
return nRet, w.err
}
n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
w.ibuf = w.ibuf[:len(w.ibuf)+n]
nRet += n
return nRet, nil
}
func (w *Writer) write(p []byte) (nRet int, errRet error) {
if w.err != nil {
return 0, w.err
}
for len(p) > 0 {
obufStart := len(magicChunk)
if !w.wroteStreamHeader {
w.wroteStreamHeader = true
copy(w.obuf, magicChunk)
obufStart = 0
}
var uncompressed []byte
if len(p) > maxBlockSize {
uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
} else {
uncompressed, p = p, nil
}
checksum := crc(uncompressed)
// Compress the buffer, discarding the result if the improvement
// isn't at least 12.5%.
compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
chunkType := uint8(chunkTypeCompressedData)
chunkLen := 4 + len(compressed)
obufEnd := obufHeaderLen + len(compressed)
if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
chunkType = chunkTypeUncompressedData
chunkLen = 4 + len(uncompressed)
obufEnd = obufHeaderLen
}
// Fill in the per-chunk header that comes before the body.
w.obuf[len(magicChunk)+0] = chunkType
w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
w.err = err
return nRet, err
}
if chunkType == chunkTypeUncompressedData {
if _, err := w.w.Write(uncompressed); err != nil {
w.err = err
return nRet, err
}
}
nRet += len(uncompressed)
}
return nRet, nil
}
// Flush flushes the Writer to its underlying io.Writer.
func (w *Writer) Flush() error {
if w.err != nil {
return w.err
}
if len(w.ibuf) == 0 {
return nil
}
w.write(w.ibuf)
w.ibuf = w.ibuf[:0]
return w.err
}
// Close calls Flush and then closes the Writer.
func (w *Writer) Close() error {
w.Flush()
ret := w.err
if w.err == nil {
w.err = errClosed
}
return ret
}

730
vendor/github.com/golang/snappy/encode_amd64.s generated vendored Normal file
View file

@ -0,0 +1,730 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
#include "textflag.h"
// The XXX lines assemble on Go 1.4, 1.5 and 1.7, but not 1.6, due to a
// Go toolchain regression. See https://github.com/golang/go/issues/15426 and
// https://github.com/golang/snappy/issues/29
//
// As a workaround, the package was built with a known good assembler, and
// those instructions were disassembled by "objdump -d" to yield the
// 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
// style comments, in AT&T asm syntax. Note that rsp here is a physical
// register, not Go/asm's SP pseudo-register (see https://golang.org/doc/asm).
// The instructions were then encoded as "BYTE $0x.." sequences, which assemble
// fine on Go 1.6.
// The asm code generally follows the pure Go code in encode_other.go, except
// where marked with a "!!!".
// ----------------------------------------------------------------------------
// func emitLiteral(dst, lit []byte) int
//
// All local variables fit into registers. The register allocation:
// - AX len(lit)
// - BX n
// - DX return value
// - DI &dst[i]
// - R10 &lit[0]
//
// The 24 bytes of stack space is to call runtime·memmove.
//
// The unusual register allocation of local variables, such as R10 for the
// source pointer, matches the allocation used at the call site in encodeBlock,
// which makes it easier to manually inline this function.
TEXT ·emitLiteral(SB), NOSPLIT, $24-56
MOVQ dst_base+0(FP), DI
MOVQ lit_base+24(FP), R10
MOVQ lit_len+32(FP), AX
MOVQ AX, DX
MOVL AX, BX
SUBL $1, BX
CMPL BX, $60
JLT oneByte
CMPL BX, $256
JLT twoBytes
threeBytes:
MOVB $0xf4, 0(DI)
MOVW BX, 1(DI)
ADDQ $3, DI
ADDQ $3, DX
JMP memmove
twoBytes:
MOVB $0xf0, 0(DI)
MOVB BX, 1(DI)
ADDQ $2, DI
ADDQ $2, DX
JMP memmove
oneByte:
SHLB $2, BX
MOVB BX, 0(DI)
ADDQ $1, DI
ADDQ $1, DX
memmove:
MOVQ DX, ret+48(FP)
// copy(dst[i:], lit)
//
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
// DI, R10 and AX as arguments.
MOVQ DI, 0(SP)
MOVQ R10, 8(SP)
MOVQ AX, 16(SP)
CALL runtime·memmove(SB)
RET
// ----------------------------------------------------------------------------
// func emitCopy(dst []byte, offset, length int) int
//
// All local variables fit into registers. The register allocation:
// - AX length
// - SI &dst[0]
// - DI &dst[i]
// - R11 offset
//
// The unusual register allocation of local variables, such as R11 for the
// offset, matches the allocation used at the call site in encodeBlock, which
// makes it easier to manually inline this function.
TEXT ·emitCopy(SB), NOSPLIT, $0-48
MOVQ dst_base+0(FP), DI
MOVQ DI, SI
MOVQ offset+24(FP), R11
MOVQ length+32(FP), AX
loop0:
// for length >= 68 { etc }
CMPL AX, $68
JLT step1
// Emit a length 64 copy, encoded as 3 bytes.
MOVB $0xfe, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
SUBL $64, AX
JMP loop0
step1:
// if length > 64 { etc }
CMPL AX, $64
JLE step2
// Emit a length 60 copy, encoded as 3 bytes.
MOVB $0xee, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
SUBL $60, AX
step2:
// if length >= 12 || offset >= 2048 { goto step3 }
CMPL AX, $12
JGE step3
CMPL R11, $2048
JGE step3
// Emit the remaining copy, encoded as 2 bytes.
MOVB R11, 1(DI)
SHRL $8, R11
SHLB $5, R11
SUBB $4, AX
SHLB $2, AX
ORB AX, R11
ORB $1, R11
MOVB R11, 0(DI)
ADDQ $2, DI
// Return the number of bytes written.
SUBQ SI, DI
MOVQ DI, ret+40(FP)
RET
step3:
// Emit the remaining copy, encoded as 3 bytes.
SUBL $1, AX
SHLB $2, AX
ORB $2, AX
MOVB AX, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
// Return the number of bytes written.
SUBQ SI, DI
MOVQ DI, ret+40(FP)
RET
// ----------------------------------------------------------------------------
// func extendMatch(src []byte, i, j int) int
//
// All local variables fit into registers. The register allocation:
// - DX &src[0]
// - SI &src[j]
// - R13 &src[len(src) - 8]
// - R14 &src[len(src)]
// - R15 &src[i]
//
// The unusual register allocation of local variables, such as R15 for a source
// pointer, matches the allocation used at the call site in encodeBlock, which
// makes it easier to manually inline this function.
TEXT ·extendMatch(SB), NOSPLIT, $0-48
MOVQ src_base+0(FP), DX
MOVQ src_len+8(FP), R14
MOVQ i+24(FP), R15
MOVQ j+32(FP), SI
ADDQ DX, R14
ADDQ DX, R15
ADDQ DX, SI
MOVQ R14, R13
SUBQ $8, R13
cmp8:
// As long as we are 8 or more bytes before the end of src, we can load and
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
CMPQ SI, R13
JA cmp1
MOVQ (R15), AX
MOVQ (SI), BX
CMPQ AX, BX
JNE bsf
ADDQ $8, R15
ADDQ $8, SI
JMP cmp8
bsf:
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
// the index of the first byte that differs. The BSF instruction finds the
// least significant 1 bit, the amd64 architecture is little-endian, and
// the shift by 3 converts a bit index to a byte index.
XORQ AX, BX
BSFQ BX, BX
SHRQ $3, BX
ADDQ BX, SI
// Convert from &src[ret] to ret.
SUBQ DX, SI
MOVQ SI, ret+40(FP)
RET
cmp1:
// In src's tail, compare 1 byte at a time.
CMPQ SI, R14
JAE extendMatchEnd
MOVB (R15), AX
MOVB (SI), BX
CMPB AX, BX
JNE extendMatchEnd
ADDQ $1, R15
ADDQ $1, SI
JMP cmp1
extendMatchEnd:
// Convert from &src[ret] to ret.
SUBQ DX, SI
MOVQ SI, ret+40(FP)
RET
// ----------------------------------------------------------------------------
// func encodeBlock(dst, src []byte) (d int)
//
// All local variables fit into registers, other than "var table". The register
// allocation:
// - AX . .
// - BX . .
// - CX 56 shift (note that amd64 shifts by non-immediates must use CX).
// - DX 64 &src[0], tableSize
// - SI 72 &src[s]
// - DI 80 &dst[d]
// - R9 88 sLimit
// - R10 . &src[nextEmit]
// - R11 96 prevHash, currHash, nextHash, offset
// - R12 104 &src[base], skip
// - R13 . &src[nextS], &src[len(src) - 8]
// - R14 . len(src), bytesBetweenHashLookups, &src[len(src)], x
// - R15 112 candidate
//
// The second column (56, 64, etc) is the stack offset to spill the registers
// when calling other functions. We could pack this slightly tighter, but it's
// simpler to have a dedicated spill map independent of the function called.
//
// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
// extra 56 bytes, to call other functions, and an extra 64 bytes, to spill
// local variables (registers) during calls gives 32768 + 56 + 64 = 32888.
TEXT ·encodeBlock(SB), 0, $32888-56
MOVQ dst_base+0(FP), DI
MOVQ src_base+24(FP), SI
MOVQ src_len+32(FP), R14
// shift, tableSize := uint32(32-8), 1<<8
MOVQ $24, CX
MOVQ $256, DX
calcShift:
// for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
// shift--
// }
CMPQ DX, $16384
JGE varTable
CMPQ DX, R14
JGE varTable
SUBQ $1, CX
SHLQ $1, DX
JMP calcShift
varTable:
// var table [maxTableSize]uint16
//
// In the asm code, unlike the Go code, we can zero-initialize only the
// first tableSize elements. Each uint16 element is 2 bytes and each MOVOU
// writes 16 bytes, so we can do only tableSize/8 writes instead of the
// 2048 writes that would zero-initialize all of table's 32768 bytes.
SHRQ $3, DX
LEAQ table-32768(SP), BX
PXOR X0, X0
memclr:
MOVOU X0, 0(BX)
ADDQ $16, BX
SUBQ $1, DX
JNZ memclr
// !!! DX = &src[0]
MOVQ SI, DX
// sLimit := len(src) - inputMargin
MOVQ R14, R9
SUBQ $15, R9
// !!! Pre-emptively spill CX, DX and R9 to the stack. Their values don't
// change for the rest of the function.
MOVQ CX, 56(SP)
MOVQ DX, 64(SP)
MOVQ R9, 88(SP)
// nextEmit := 0
MOVQ DX, R10
// s := 1
ADDQ $1, SI
// nextHash := hash(load32(src, s), shift)
MOVL 0(SI), R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
outer:
// for { etc }
// skip := 32
MOVQ $32, R12
// nextS := s
MOVQ SI, R13
// candidate := 0
MOVQ $0, R15
inner0:
// for { etc }
// s := nextS
MOVQ R13, SI
// bytesBetweenHashLookups := skip >> 5
MOVQ R12, R14
SHRQ $5, R14
// nextS = s + bytesBetweenHashLookups
ADDQ R14, R13
// skip += bytesBetweenHashLookups
ADDQ R14, R12
// if nextS > sLimit { goto emitRemainder }
MOVQ R13, AX
SUBQ DX, AX
CMPQ AX, R9
JA emitRemainder
// candidate = int(table[nextHash])
// XXX: MOVWQZX table-32768(SP)(R11*2), R15
// XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
BYTE $0x4e
BYTE $0x0f
BYTE $0xb7
BYTE $0x7c
BYTE $0x5c
BYTE $0x78
// table[nextHash] = uint16(s)
MOVQ SI, AX
SUBQ DX, AX
// XXX: MOVW AX, table-32768(SP)(R11*2)
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
BYTE $0x66
BYTE $0x42
BYTE $0x89
BYTE $0x44
BYTE $0x5c
BYTE $0x78
// nextHash = hash(load32(src, nextS), shift)
MOVL 0(R13), R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// if load32(src, s) != load32(src, candidate) { continue } break
MOVL 0(SI), AX
MOVL (DX)(R15*1), BX
CMPL AX, BX
JNE inner0
fourByteMatch:
// As per the encode_other.go code:
//
// A 4-byte match has been found. We'll later see etc.
// !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
// on inputMargin in encode.go.
MOVQ SI, AX
SUBQ R10, AX
CMPQ AX, $16
JLE emitLiteralFastPath
// ----------------------------------------
// Begin inline of the emitLiteral call.
//
// d += emitLiteral(dst[d:], src[nextEmit:s])
MOVL AX, BX
SUBL $1, BX
CMPL BX, $60
JLT inlineEmitLiteralOneByte
CMPL BX, $256
JLT inlineEmitLiteralTwoBytes
inlineEmitLiteralThreeBytes:
MOVB $0xf4, 0(DI)
MOVW BX, 1(DI)
ADDQ $3, DI
JMP inlineEmitLiteralMemmove
inlineEmitLiteralTwoBytes:
MOVB $0xf0, 0(DI)
MOVB BX, 1(DI)
ADDQ $2, DI
JMP inlineEmitLiteralMemmove
inlineEmitLiteralOneByte:
SHLB $2, BX
MOVB BX, 0(DI)
ADDQ $1, DI
inlineEmitLiteralMemmove:
// Spill local variables (registers) onto the stack; call; unspill.
//
// copy(dst[i:], lit)
//
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
// DI, R10 and AX as arguments.
MOVQ DI, 0(SP)
MOVQ R10, 8(SP)
MOVQ AX, 16(SP)
ADDQ AX, DI // Finish the "d +=" part of "d += emitLiteral(etc)".
MOVQ SI, 72(SP)
MOVQ DI, 80(SP)
MOVQ R15, 112(SP)
CALL runtime·memmove(SB)
MOVQ 56(SP), CX
MOVQ 64(SP), DX
MOVQ 72(SP), SI
MOVQ 80(SP), DI
MOVQ 88(SP), R9
MOVQ 112(SP), R15
JMP inner1
inlineEmitLiteralEnd:
// End inline of the emitLiteral call.
// ----------------------------------------
emitLiteralFastPath:
// !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
MOVB AX, BX
SUBB $1, BX
SHLB $2, BX
MOVB BX, (DI)
ADDQ $1, DI
// !!! Implement the copy from lit to dst as a 16-byte load and store.
// (Encode's documentation says that dst and src must not overlap.)
//
// This always copies 16 bytes, instead of only len(lit) bytes, but that's
// OK. Subsequent iterations will fix up the overrun.
//
// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
// 16-byte loads and stores. This technique probably wouldn't be as
// effective on architectures that are fussier about alignment.
MOVOU 0(R10), X0
MOVOU X0, 0(DI)
ADDQ AX, DI
inner1:
// for { etc }
// base := s
MOVQ SI, R12
// !!! offset := base - candidate
MOVQ R12, R11
SUBQ R15, R11
SUBQ DX, R11
// ----------------------------------------
// Begin inline of the extendMatch call.
//
// s = extendMatch(src, candidate+4, s+4)
// !!! R14 = &src[len(src)]
MOVQ src_len+32(FP), R14
ADDQ DX, R14
// !!! R13 = &src[len(src) - 8]
MOVQ R14, R13
SUBQ $8, R13
// !!! R15 = &src[candidate + 4]
ADDQ $4, R15
ADDQ DX, R15
// !!! s += 4
ADDQ $4, SI
inlineExtendMatchCmp8:
// As long as we are 8 or more bytes before the end of src, we can load and
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
CMPQ SI, R13
JA inlineExtendMatchCmp1
MOVQ (R15), AX
MOVQ (SI), BX
CMPQ AX, BX
JNE inlineExtendMatchBSF
ADDQ $8, R15
ADDQ $8, SI
JMP inlineExtendMatchCmp8
inlineExtendMatchBSF:
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
// the index of the first byte that differs. The BSF instruction finds the
// least significant 1 bit, the amd64 architecture is little-endian, and
// the shift by 3 converts a bit index to a byte index.
XORQ AX, BX
BSFQ BX, BX
SHRQ $3, BX
ADDQ BX, SI
JMP inlineExtendMatchEnd
inlineExtendMatchCmp1:
// In src's tail, compare 1 byte at a time.
CMPQ SI, R14
JAE inlineExtendMatchEnd
MOVB (R15), AX
MOVB (SI), BX
CMPB AX, BX
JNE inlineExtendMatchEnd
ADDQ $1, R15
ADDQ $1, SI
JMP inlineExtendMatchCmp1
inlineExtendMatchEnd:
// End inline of the extendMatch call.
// ----------------------------------------
// ----------------------------------------
// Begin inline of the emitCopy call.
//
// d += emitCopy(dst[d:], base-candidate, s-base)
// !!! length := s - base
MOVQ SI, AX
SUBQ R12, AX
inlineEmitCopyLoop0:
// for length >= 68 { etc }
CMPL AX, $68
JLT inlineEmitCopyStep1
// Emit a length 64 copy, encoded as 3 bytes.
MOVB $0xfe, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
SUBL $64, AX
JMP inlineEmitCopyLoop0
inlineEmitCopyStep1:
// if length > 64 { etc }
CMPL AX, $64
JLE inlineEmitCopyStep2
// Emit a length 60 copy, encoded as 3 bytes.
MOVB $0xee, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
SUBL $60, AX
inlineEmitCopyStep2:
// if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 }
CMPL AX, $12
JGE inlineEmitCopyStep3
CMPL R11, $2048
JGE inlineEmitCopyStep3
// Emit the remaining copy, encoded as 2 bytes.
MOVB R11, 1(DI)
SHRL $8, R11
SHLB $5, R11
SUBB $4, AX
SHLB $2, AX
ORB AX, R11
ORB $1, R11
MOVB R11, 0(DI)
ADDQ $2, DI
JMP inlineEmitCopyEnd
inlineEmitCopyStep3:
// Emit the remaining copy, encoded as 3 bytes.
SUBL $1, AX
SHLB $2, AX
ORB $2, AX
MOVB AX, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
inlineEmitCopyEnd:
// End inline of the emitCopy call.
// ----------------------------------------
// nextEmit = s
MOVQ SI, R10
// if s >= sLimit { goto emitRemainder }
MOVQ SI, AX
SUBQ DX, AX
CMPQ AX, R9
JAE emitRemainder
// As per the encode_other.go code:
//
// We could immediately etc.
// x := load64(src, s-1)
MOVQ -1(SI), R14
// prevHash := hash(uint32(x>>0), shift)
MOVL R14, R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// table[prevHash] = uint16(s-1)
MOVQ SI, AX
SUBQ DX, AX
SUBQ $1, AX
// XXX: MOVW AX, table-32768(SP)(R11*2)
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
BYTE $0x66
BYTE $0x42
BYTE $0x89
BYTE $0x44
BYTE $0x5c
BYTE $0x78
// currHash := hash(uint32(x>>8), shift)
SHRQ $8, R14
MOVL R14, R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// candidate = int(table[currHash])
// XXX: MOVWQZX table-32768(SP)(R11*2), R15
// XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
BYTE $0x4e
BYTE $0x0f
BYTE $0xb7
BYTE $0x7c
BYTE $0x5c
BYTE $0x78
// table[currHash] = uint16(s)
ADDQ $1, AX
// XXX: MOVW AX, table-32768(SP)(R11*2)
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
BYTE $0x66
BYTE $0x42
BYTE $0x89
BYTE $0x44
BYTE $0x5c
BYTE $0x78
// if uint32(x>>8) == load32(src, candidate) { continue }
MOVL (DX)(R15*1), BX
CMPL R14, BX
JEQ inner1
// nextHash = hash(uint32(x>>16), shift)
SHRQ $8, R14
MOVL R14, R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// s++
ADDQ $1, SI
// break out of the inner1 for loop, i.e. continue the outer loop.
JMP outer
emitRemainder:
// if nextEmit < len(src) { etc }
MOVQ src_len+32(FP), AX
ADDQ DX, AX
CMPQ R10, AX
JEQ encodeBlockEnd
// d += emitLiteral(dst[d:], src[nextEmit:])
//
// Push args.
MOVQ DI, 0(SP)
MOVQ $0, 8(SP) // Unnecessary, as the callee ignores it, but conservative.
MOVQ $0, 16(SP) // Unnecessary, as the callee ignores it, but conservative.
MOVQ R10, 24(SP)
SUBQ R10, AX
MOVQ AX, 32(SP)
MOVQ AX, 40(SP) // Unnecessary, as the callee ignores it, but conservative.
// Spill local variables (registers) onto the stack; call; unspill.
MOVQ DI, 80(SP)
CALL ·emitLiteral(SB)
MOVQ 80(SP), DI
// Finish the "d +=" part of "d += emitLiteral(etc)".
ADDQ 48(SP), DI
encodeBlockEnd:
MOVQ dst_base+0(FP), AX
SUBQ AX, DI
MOVQ DI, d+48(FP)
RET

722
vendor/github.com/golang/snappy/encode_arm64.s generated vendored Normal file
View file

@ -0,0 +1,722 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
#include "textflag.h"
// The asm code generally follows the pure Go code in encode_other.go, except
// where marked with a "!!!".
// ----------------------------------------------------------------------------
// func emitLiteral(dst, lit []byte) int
//
// All local variables fit into registers. The register allocation:
// - R3 len(lit)
// - R4 n
// - R6 return value
// - R8 &dst[i]
// - R10 &lit[0]
//
// The 32 bytes of stack space is to call runtime·memmove.
//
// The unusual register allocation of local variables, such as R10 for the
// source pointer, matches the allocation used at the call site in encodeBlock,
// which makes it easier to manually inline this function.
TEXT ·emitLiteral(SB), NOSPLIT, $32-56
MOVD dst_base+0(FP), R8
MOVD lit_base+24(FP), R10
MOVD lit_len+32(FP), R3
MOVD R3, R6
MOVW R3, R4
SUBW $1, R4, R4
CMPW $60, R4
BLT oneByte
CMPW $256, R4
BLT twoBytes
threeBytes:
MOVD $0xf4, R2
MOVB R2, 0(R8)
MOVW R4, 1(R8)
ADD $3, R8, R8
ADD $3, R6, R6
B memmove
twoBytes:
MOVD $0xf0, R2
MOVB R2, 0(R8)
MOVB R4, 1(R8)
ADD $2, R8, R8
ADD $2, R6, R6
B memmove
oneByte:
LSLW $2, R4, R4
MOVB R4, 0(R8)
ADD $1, R8, R8
ADD $1, R6, R6
memmove:
MOVD R6, ret+48(FP)
// copy(dst[i:], lit)
//
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
// R8, R10 and R3 as arguments.
MOVD R8, 8(RSP)
MOVD R10, 16(RSP)
MOVD R3, 24(RSP)
CALL runtime·memmove(SB)
RET
// ----------------------------------------------------------------------------
// func emitCopy(dst []byte, offset, length int) int
//
// All local variables fit into registers. The register allocation:
// - R3 length
// - R7 &dst[0]
// - R8 &dst[i]
// - R11 offset
//
// The unusual register allocation of local variables, such as R11 for the
// offset, matches the allocation used at the call site in encodeBlock, which
// makes it easier to manually inline this function.
TEXT ·emitCopy(SB), NOSPLIT, $0-48
MOVD dst_base+0(FP), R8
MOVD R8, R7
MOVD offset+24(FP), R11
MOVD length+32(FP), R3
loop0:
// for length >= 68 { etc }
CMPW $68, R3
BLT step1
// Emit a length 64 copy, encoded as 3 bytes.
MOVD $0xfe, R2
MOVB R2, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
SUB $64, R3, R3
B loop0
step1:
// if length > 64 { etc }
CMP $64, R3
BLE step2
// Emit a length 60 copy, encoded as 3 bytes.
MOVD $0xee, R2
MOVB R2, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
SUB $60, R3, R3
step2:
// if length >= 12 || offset >= 2048 { goto step3 }
CMP $12, R3
BGE step3
CMPW $2048, R11
BGE step3
// Emit the remaining copy, encoded as 2 bytes.
MOVB R11, 1(R8)
LSRW $3, R11, R11
AND $0xe0, R11, R11
SUB $4, R3, R3
LSLW $2, R3
AND $0xff, R3, R3
ORRW R3, R11, R11
ORRW $1, R11, R11
MOVB R11, 0(R8)
ADD $2, R8, R8
// Return the number of bytes written.
SUB R7, R8, R8
MOVD R8, ret+40(FP)
RET
step3:
// Emit the remaining copy, encoded as 3 bytes.
SUB $1, R3, R3
AND $0xff, R3, R3
LSLW $2, R3, R3
ORRW $2, R3, R3
MOVB R3, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
// Return the number of bytes written.
SUB R7, R8, R8
MOVD R8, ret+40(FP)
RET
// ----------------------------------------------------------------------------
// func extendMatch(src []byte, i, j int) int
//
// All local variables fit into registers. The register allocation:
// - R6 &src[0]
// - R7 &src[j]
// - R13 &src[len(src) - 8]
// - R14 &src[len(src)]
// - R15 &src[i]
//
// The unusual register allocation of local variables, such as R15 for a source
// pointer, matches the allocation used at the call site in encodeBlock, which
// makes it easier to manually inline this function.
TEXT ·extendMatch(SB), NOSPLIT, $0-48
MOVD src_base+0(FP), R6
MOVD src_len+8(FP), R14
MOVD i+24(FP), R15
MOVD j+32(FP), R7
ADD R6, R14, R14
ADD R6, R15, R15
ADD R6, R7, R7
MOVD R14, R13
SUB $8, R13, R13
cmp8:
// As long as we are 8 or more bytes before the end of src, we can load and
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
CMP R13, R7
BHI cmp1
MOVD (R15), R3
MOVD (R7), R4
CMP R4, R3
BNE bsf
ADD $8, R15, R15
ADD $8, R7, R7
B cmp8
bsf:
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
// the index of the first byte that differs.
// RBIT reverses the bit order, then CLZ counts the leading zeros, the
// combination of which finds the least significant bit which is set.
// The arm64 architecture is little-endian, and the shift by 3 converts
// a bit index to a byte index.
EOR R3, R4, R4
RBIT R4, R4
CLZ R4, R4
ADD R4>>3, R7, R7
// Convert from &src[ret] to ret.
SUB R6, R7, R7
MOVD R7, ret+40(FP)
RET
cmp1:
// In src's tail, compare 1 byte at a time.
CMP R7, R14
BLS extendMatchEnd
MOVB (R15), R3
MOVB (R7), R4
CMP R4, R3
BNE extendMatchEnd
ADD $1, R15, R15
ADD $1, R7, R7
B cmp1
extendMatchEnd:
// Convert from &src[ret] to ret.
SUB R6, R7, R7
MOVD R7, ret+40(FP)
RET
// ----------------------------------------------------------------------------
// func encodeBlock(dst, src []byte) (d int)
//
// All local variables fit into registers, other than "var table". The register
// allocation:
// - R3 . .
// - R4 . .
// - R5 64 shift
// - R6 72 &src[0], tableSize
// - R7 80 &src[s]
// - R8 88 &dst[d]
// - R9 96 sLimit
// - R10 . &src[nextEmit]
// - R11 104 prevHash, currHash, nextHash, offset
// - R12 112 &src[base], skip
// - R13 . &src[nextS], &src[len(src) - 8]
// - R14 . len(src), bytesBetweenHashLookups, &src[len(src)], x
// - R15 120 candidate
// - R16 . hash constant, 0x1e35a7bd
// - R17 . &table
// - . 128 table
//
// The second column (64, 72, etc) is the stack offset to spill the registers
// when calling other functions. We could pack this slightly tighter, but it's
// simpler to have a dedicated spill map independent of the function called.
//
// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
// extra 64 bytes, to call other functions, and an extra 64 bytes, to spill
// local variables (registers) during calls gives 32768 + 64 + 64 = 32896.
TEXT ·encodeBlock(SB), 0, $32896-56
MOVD dst_base+0(FP), R8
MOVD src_base+24(FP), R7
MOVD src_len+32(FP), R14
// shift, tableSize := uint32(32-8), 1<<8
MOVD $24, R5
MOVD $256, R6
MOVW $0xa7bd, R16
MOVKW $(0x1e35<<16), R16
calcShift:
// for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
// shift--
// }
MOVD $16384, R2
CMP R2, R6
BGE varTable
CMP R14, R6
BGE varTable
SUB $1, R5, R5
LSL $1, R6, R6
B calcShift
varTable:
// var table [maxTableSize]uint16
//
// In the asm code, unlike the Go code, we can zero-initialize only the
// first tableSize elements. Each uint16 element is 2 bytes and each
// iterations writes 64 bytes, so we can do only tableSize/32 writes
// instead of the 2048 writes that would zero-initialize all of table's
// 32768 bytes. This clear could overrun the first tableSize elements, but
// it won't overrun the allocated stack size.
ADD $128, RSP, R17
MOVD R17, R4
// !!! R6 = &src[tableSize]
ADD R6<<1, R17, R6
memclr:
STP.P (ZR, ZR), 64(R4)
STP (ZR, ZR), -48(R4)
STP (ZR, ZR), -32(R4)
STP (ZR, ZR), -16(R4)
CMP R4, R6
BHI memclr
// !!! R6 = &src[0]
MOVD R7, R6
// sLimit := len(src) - inputMargin
MOVD R14, R9
SUB $15, R9, R9
// !!! Pre-emptively spill R5, R6 and R9 to the stack. Their values don't
// change for the rest of the function.
MOVD R5, 64(RSP)
MOVD R6, 72(RSP)
MOVD R9, 96(RSP)
// nextEmit := 0
MOVD R6, R10
// s := 1
ADD $1, R7, R7
// nextHash := hash(load32(src, s), shift)
MOVW 0(R7), R11
MULW R16, R11, R11
LSRW R5, R11, R11
outer:
// for { etc }
// skip := 32
MOVD $32, R12
// nextS := s
MOVD R7, R13
// candidate := 0
MOVD $0, R15
inner0:
// for { etc }
// s := nextS
MOVD R13, R7
// bytesBetweenHashLookups := skip >> 5
MOVD R12, R14
LSR $5, R14, R14
// nextS = s + bytesBetweenHashLookups
ADD R14, R13, R13
// skip += bytesBetweenHashLookups
ADD R14, R12, R12
// if nextS > sLimit { goto emitRemainder }
MOVD R13, R3
SUB R6, R3, R3
CMP R9, R3
BHI emitRemainder
// candidate = int(table[nextHash])
MOVHU 0(R17)(R11<<1), R15
// table[nextHash] = uint16(s)
MOVD R7, R3
SUB R6, R3, R3
MOVH R3, 0(R17)(R11<<1)
// nextHash = hash(load32(src, nextS), shift)
MOVW 0(R13), R11
MULW R16, R11
LSRW R5, R11, R11
// if load32(src, s) != load32(src, candidate) { continue } break
MOVW 0(R7), R3
MOVW (R6)(R15*1), R4
CMPW R4, R3
BNE inner0
fourByteMatch:
// As per the encode_other.go code:
//
// A 4-byte match has been found. We'll later see etc.
// !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
// on inputMargin in encode.go.
MOVD R7, R3
SUB R10, R3, R3
CMP $16, R3
BLE emitLiteralFastPath
// ----------------------------------------
// Begin inline of the emitLiteral call.
//
// d += emitLiteral(dst[d:], src[nextEmit:s])
MOVW R3, R4
SUBW $1, R4, R4
MOVW $60, R2
CMPW R2, R4
BLT inlineEmitLiteralOneByte
MOVW $256, R2
CMPW R2, R4
BLT inlineEmitLiteralTwoBytes
inlineEmitLiteralThreeBytes:
MOVD $0xf4, R1
MOVB R1, 0(R8)
MOVW R4, 1(R8)
ADD $3, R8, R8
B inlineEmitLiteralMemmove
inlineEmitLiteralTwoBytes:
MOVD $0xf0, R1
MOVB R1, 0(R8)
MOVB R4, 1(R8)
ADD $2, R8, R8
B inlineEmitLiteralMemmove
inlineEmitLiteralOneByte:
LSLW $2, R4, R4
MOVB R4, 0(R8)
ADD $1, R8, R8
inlineEmitLiteralMemmove:
// Spill local variables (registers) onto the stack; call; unspill.
//
// copy(dst[i:], lit)
//
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
// R8, R10 and R3 as arguments.
MOVD R8, 8(RSP)
MOVD R10, 16(RSP)
MOVD R3, 24(RSP)
// Finish the "d +=" part of "d += emitLiteral(etc)".
ADD R3, R8, R8
MOVD R7, 80(RSP)
MOVD R8, 88(RSP)
MOVD R15, 120(RSP)
CALL runtime·memmove(SB)
MOVD 64(RSP), R5
MOVD 72(RSP), R6
MOVD 80(RSP), R7
MOVD 88(RSP), R8
MOVD 96(RSP), R9
MOVD 120(RSP), R15
ADD $128, RSP, R17
MOVW $0xa7bd, R16
MOVKW $(0x1e35<<16), R16
B inner1
inlineEmitLiteralEnd:
// End inline of the emitLiteral call.
// ----------------------------------------
emitLiteralFastPath:
// !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
MOVB R3, R4
SUBW $1, R4, R4
AND $0xff, R4, R4
LSLW $2, R4, R4
MOVB R4, (R8)
ADD $1, R8, R8
// !!! Implement the copy from lit to dst as a 16-byte load and store.
// (Encode's documentation says that dst and src must not overlap.)
//
// This always copies 16 bytes, instead of only len(lit) bytes, but that's
// OK. Subsequent iterations will fix up the overrun.
//
// Note that on arm64, it is legal and cheap to issue unaligned 8-byte or
// 16-byte loads and stores. This technique probably wouldn't be as
// effective on architectures that are fussier about alignment.
LDP 0(R10), (R0, R1)
STP (R0, R1), 0(R8)
ADD R3, R8, R8
inner1:
// for { etc }
// base := s
MOVD R7, R12
// !!! offset := base - candidate
MOVD R12, R11
SUB R15, R11, R11
SUB R6, R11, R11
// ----------------------------------------
// Begin inline of the extendMatch call.
//
// s = extendMatch(src, candidate+4, s+4)
// !!! R14 = &src[len(src)]
MOVD src_len+32(FP), R14
ADD R6, R14, R14
// !!! R13 = &src[len(src) - 8]
MOVD R14, R13
SUB $8, R13, R13
// !!! R15 = &src[candidate + 4]
ADD $4, R15, R15
ADD R6, R15, R15
// !!! s += 4
ADD $4, R7, R7
inlineExtendMatchCmp8:
// As long as we are 8 or more bytes before the end of src, we can load and
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
CMP R13, R7
BHI inlineExtendMatchCmp1
MOVD (R15), R3
MOVD (R7), R4
CMP R4, R3
BNE inlineExtendMatchBSF
ADD $8, R15, R15
ADD $8, R7, R7
B inlineExtendMatchCmp8
inlineExtendMatchBSF:
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
// the index of the first byte that differs.
// RBIT reverses the bit order, then CLZ counts the leading zeros, the
// combination of which finds the least significant bit which is set.
// The arm64 architecture is little-endian, and the shift by 3 converts
// a bit index to a byte index.
EOR R3, R4, R4
RBIT R4, R4
CLZ R4, R4
ADD R4>>3, R7, R7
B inlineExtendMatchEnd
inlineExtendMatchCmp1:
// In src's tail, compare 1 byte at a time.
CMP R7, R14
BLS inlineExtendMatchEnd
MOVB (R15), R3
MOVB (R7), R4
CMP R4, R3
BNE inlineExtendMatchEnd
ADD $1, R15, R15
ADD $1, R7, R7
B inlineExtendMatchCmp1
inlineExtendMatchEnd:
// End inline of the extendMatch call.
// ----------------------------------------
// ----------------------------------------
// Begin inline of the emitCopy call.
//
// d += emitCopy(dst[d:], base-candidate, s-base)
// !!! length := s - base
MOVD R7, R3
SUB R12, R3, R3
inlineEmitCopyLoop0:
// for length >= 68 { etc }
MOVW $68, R2
CMPW R2, R3
BLT inlineEmitCopyStep1
// Emit a length 64 copy, encoded as 3 bytes.
MOVD $0xfe, R1
MOVB R1, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
SUBW $64, R3, R3
B inlineEmitCopyLoop0
inlineEmitCopyStep1:
// if length > 64 { etc }
MOVW $64, R2
CMPW R2, R3
BLE inlineEmitCopyStep2
// Emit a length 60 copy, encoded as 3 bytes.
MOVD $0xee, R1
MOVB R1, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
SUBW $60, R3, R3
inlineEmitCopyStep2:
// if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 }
MOVW $12, R2
CMPW R2, R3
BGE inlineEmitCopyStep3
MOVW $2048, R2
CMPW R2, R11
BGE inlineEmitCopyStep3
// Emit the remaining copy, encoded as 2 bytes.
MOVB R11, 1(R8)
LSRW $8, R11, R11
LSLW $5, R11, R11
SUBW $4, R3, R3
AND $0xff, R3, R3
LSLW $2, R3, R3
ORRW R3, R11, R11
ORRW $1, R11, R11
MOVB R11, 0(R8)
ADD $2, R8, R8
B inlineEmitCopyEnd
inlineEmitCopyStep3:
// Emit the remaining copy, encoded as 3 bytes.
SUBW $1, R3, R3
LSLW $2, R3, R3
ORRW $2, R3, R3
MOVB R3, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
inlineEmitCopyEnd:
// End inline of the emitCopy call.
// ----------------------------------------
// nextEmit = s
MOVD R7, R10
// if s >= sLimit { goto emitRemainder }
MOVD R7, R3
SUB R6, R3, R3
CMP R3, R9
BLS emitRemainder
// As per the encode_other.go code:
//
// We could immediately etc.
// x := load64(src, s-1)
MOVD -1(R7), R14
// prevHash := hash(uint32(x>>0), shift)
MOVW R14, R11
MULW R16, R11, R11
LSRW R5, R11, R11
// table[prevHash] = uint16(s-1)
MOVD R7, R3
SUB R6, R3, R3
SUB $1, R3, R3
MOVHU R3, 0(R17)(R11<<1)
// currHash := hash(uint32(x>>8), shift)
LSR $8, R14, R14
MOVW R14, R11
MULW R16, R11, R11
LSRW R5, R11, R11
// candidate = int(table[currHash])
MOVHU 0(R17)(R11<<1), R15
// table[currHash] = uint16(s)
ADD $1, R3, R3
MOVHU R3, 0(R17)(R11<<1)
// if uint32(x>>8) == load32(src, candidate) { continue }
MOVW (R6)(R15*1), R4
CMPW R4, R14
BEQ inner1
// nextHash = hash(uint32(x>>16), shift)
LSR $8, R14, R14
MOVW R14, R11
MULW R16, R11, R11
LSRW R5, R11, R11
// s++
ADD $1, R7, R7
// break out of the inner1 for loop, i.e. continue the outer loop.
B outer
emitRemainder:
// if nextEmit < len(src) { etc }
MOVD src_len+32(FP), R3
ADD R6, R3, R3
CMP R3, R10
BEQ encodeBlockEnd
// d += emitLiteral(dst[d:], src[nextEmit:])
//
// Push args.
MOVD R8, 8(RSP)
MOVD $0, 16(RSP) // Unnecessary, as the callee ignores it, but conservative.
MOVD $0, 24(RSP) // Unnecessary, as the callee ignores it, but conservative.
MOVD R10, 32(RSP)
SUB R10, R3, R3
MOVD R3, 40(RSP)
MOVD R3, 48(RSP) // Unnecessary, as the callee ignores it, but conservative.
// Spill local variables (registers) onto the stack; call; unspill.
MOVD R8, 88(RSP)
CALL ·emitLiteral(SB)
MOVD 88(RSP), R8
// Finish the "d +=" part of "d += emitLiteral(etc)".
MOVD 56(RSP), R1
ADD R1, R8, R8
encodeBlockEnd:
MOVD dst_base+0(FP), R3
SUB R3, R8, R8
MOVD R8, d+48(FP)
RET

30
vendor/github.com/golang/snappy/encode_asm.go generated vendored Normal file
View file

@ -0,0 +1,30 @@
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
// +build amd64 arm64
package snappy
// emitLiteral has the same semantics as in encode_other.go.
//
//go:noescape
func emitLiteral(dst, lit []byte) int
// emitCopy has the same semantics as in encode_other.go.
//
//go:noescape
func emitCopy(dst []byte, offset, length int) int
// extendMatch has the same semantics as in encode_other.go.
//
//go:noescape
func extendMatch(src []byte, i, j int) int
// encodeBlock has the same semantics as in encode_other.go.
//
//go:noescape
func encodeBlock(dst, src []byte) (d int)

238
vendor/github.com/golang/snappy/encode_other.go generated vendored Normal file
View file

@ -0,0 +1,238 @@
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!arm64 appengine !gc noasm
package snappy
func load32(b []byte, i int) uint32 {
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load64(b []byte, i int) uint64 {
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
// emitLiteral writes a literal chunk and returns the number of bytes written.
//
// It assumes that:
// dst is long enough to hold the encoded bytes
// 1 <= len(lit) && len(lit) <= 65536
func emitLiteral(dst, lit []byte) int {
i, n := 0, uint(len(lit)-1)
switch {
case n < 60:
dst[0] = uint8(n)<<2 | tagLiteral
i = 1
case n < 1<<8:
dst[0] = 60<<2 | tagLiteral
dst[1] = uint8(n)
i = 2
default:
dst[0] = 61<<2 | tagLiteral
dst[1] = uint8(n)
dst[2] = uint8(n >> 8)
i = 3
}
return i + copy(dst[i:], lit)
}
// emitCopy writes a copy chunk and returns the number of bytes written.
//
// It assumes that:
// dst is long enough to hold the encoded bytes
// 1 <= offset && offset <= 65535
// 4 <= length && length <= 65535
func emitCopy(dst []byte, offset, length int) int {
i := 0
// The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
// threshold for this loop is a little higher (at 68 = 64 + 4), and the
// length emitted down below is is a little lower (at 60 = 64 - 4), because
// it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
// by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
// a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
// 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
// tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
// encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
for length >= 68 {
// Emit a length 64 copy, encoded as 3 bytes.
dst[i+0] = 63<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
i += 3
length -= 64
}
if length > 64 {
// Emit a length 60 copy, encoded as 3 bytes.
dst[i+0] = 59<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
i += 3
length -= 60
}
if length >= 12 || offset >= 2048 {
// Emit the remaining copy, encoded as 3 bytes.
dst[i+0] = uint8(length-1)<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
return i + 3
}
// Emit the remaining copy, encoded as 2 bytes.
dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
dst[i+1] = uint8(offset)
return i + 2
}
// extendMatch returns the largest k such that k <= len(src) and that
// src[i:i+k-j] and src[j:k] have the same contents.
//
// It assumes that:
// 0 <= i && i < j && j <= len(src)
func extendMatch(src []byte, i, j int) int {
for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 {
}
return j
}
func hash(u, shift uint32) uint32 {
return (u * 0x1e35a7bd) >> shift
}
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
// len(dst) >= MaxEncodedLen(len(src)) &&
// minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
func encodeBlock(dst, src []byte) (d int) {
// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
// The table element type is uint16, as s < sLimit and sLimit < len(src)
// and len(src) <= maxBlockSize and maxBlockSize == 65536.
const (
maxTableSize = 1 << 14
// tableMask is redundant, but helps the compiler eliminate bounds
// checks.
tableMask = maxTableSize - 1
)
shift := uint32(32 - 8)
for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
shift--
}
// In Go, all array elements are zero-initialized, so there is no advantage
// to a smaller tableSize per se. However, it matches the C++ algorithm,
// and in the asm versions of this code, we can get away with zeroing only
// the first tableSize elements.
var table [maxTableSize]uint16
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
nextHash := hash(load32(src, s), shift)
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := 32
nextS := s
candidate := 0
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidate = int(table[nextHash&tableMask])
table[nextHash&tableMask] = uint16(s)
nextHash = hash(load32(src, nextS), shift)
if load32(src, s) == load32(src, candidate) {
break
}
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
d += emitLiteral(dst[d:], src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
base := s
// Extend the 4-byte match as long as possible.
//
// This is an inlined version of:
// s = extendMatch(src, candidate+4, s+4)
s += 4
for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
}
d += emitCopy(dst[d:], base-candidate, s-base)
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load64(src, s-1)
prevHash := hash(uint32(x>>0), shift)
table[prevHash&tableMask] = uint16(s - 1)
currHash := hash(uint32(x>>8), shift)
candidate = int(table[currHash&tableMask])
table[currHash&tableMask] = uint16(s)
if uint32(x>>8) != load32(src, candidate) {
nextHash = hash(uint32(x>>16), shift)
s++
break
}
}
}
emitRemainder:
if nextEmit < len(src) {
d += emitLiteral(dst[d:], src[nextEmit:])
}
return d
}

98
vendor/github.com/golang/snappy/snappy.go generated vendored Normal file
View file

@ -0,0 +1,98 @@
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package snappy implements the Snappy compression format. It aims for very
// high speeds and reasonable compression.
//
// There are actually two Snappy formats: block and stream. They are related,
// but different: trying to decompress block-compressed data as a Snappy stream
// will fail, and vice versa. The block format is the Decode and Encode
// functions and the stream format is the Reader and Writer types.
//
// The block format, the more common case, is used when the complete size (the
// number of bytes) of the original data is known upfront, at the time
// compression starts. The stream format, also known as the framing format, is
// for when that isn't always true.
//
// The canonical, C++ implementation is at https://github.com/google/snappy and
// it only implements the block format.
package snappy // import "github.com/golang/snappy"
import (
"hash/crc32"
)
/*
Each encoded block begins with the varint-encoded length of the decoded data,
followed by a sequence of chunks. Chunks begin and end on byte boundaries. The
first byte of each chunk is broken into its 2 least and 6 most significant bits
called l and m: l ranges in [0, 4) and m ranges in [0, 64). l is the chunk tag.
Zero means a literal tag. All other values mean a copy tag.
For literal tags:
- If m < 60, the next 1 + m bytes are literal bytes.
- Otherwise, let n be the little-endian unsigned integer denoted by the next
m - 59 bytes. The next 1 + n bytes after that are literal bytes.
For copy tags, length bytes are copied from offset bytes ago, in the style of
Lempel-Ziv compression algorithms. In particular:
- For l == 1, the offset ranges in [0, 1<<11) and the length in [4, 12).
The length is 4 + the low 3 bits of m. The high 3 bits of m form bits 8-10
of the offset. The next byte is bits 0-7 of the offset.
- For l == 2, the offset ranges in [0, 1<<16) and the length in [1, 65).
The length is 1 + m. The offset is the little-endian unsigned integer
denoted by the next 2 bytes.
- For l == 3, this tag is a legacy format that is no longer issued by most
encoders. Nonetheless, the offset ranges in [0, 1<<32) and the length in
[1, 65). The length is 1 + m. The offset is the little-endian unsigned
integer denoted by the next 4 bytes.
*/
const (
tagLiteral = 0x00
tagCopy1 = 0x01
tagCopy2 = 0x02
tagCopy4 = 0x03
)
const (
checksumSize = 4
chunkHeaderSize = 4
magicChunk = "\xff\x06\x00\x00" + magicBody
magicBody = "sNaPpY"
// maxBlockSize is the maximum size of the input to encodeBlock. It is not
// part of the wire format per se, but some parts of the encoder assume
// that an offset fits into a uint16.
//
// Also, for the framing format (Writer type instead of Encode function),
// https://github.com/google/snappy/blob/master/framing_format.txt says
// that "the uncompressed data in a chunk must be no longer than 65536
// bytes".
maxBlockSize = 65536
// maxEncodedLenOfMaxBlockSize equals MaxEncodedLen(maxBlockSize), but is
// hard coded to be a const instead of a variable, so that obufLen can also
// be a const. Their equivalence is confirmed by
// TestMaxEncodedLenOfMaxBlockSize.
maxEncodedLenOfMaxBlockSize = 76490
obufHeaderLen = len(magicChunk) + checksumSize + chunkHeaderSize
obufLen = obufHeaderLen + maxEncodedLenOfMaxBlockSize
)
const (
chunkTypeCompressedData = 0x00
chunkTypeUncompressedData = 0x01
chunkTypePadding = 0xfe
chunkTypeStreamIdentifier = 0xff
)
var crcTable = crc32.MakeTable(crc32.Castagnoli)
// crc implements the checksum specified in section 3 of
// https://github.com/google/snappy/blob/master/framing_format.txt
func crc(b []byte) uint32 {
c := crc32.Update(0, crcTable, b)
return uint32(c>>15|c<<17) + 0xa282ead8
}

29
vendor/modules.txt vendored
View file

@ -1,3 +1,29 @@
# git.iim.gay/grufwub/fastpath v0.2.2
## explicit; go 1.14
git.iim.gay/grufwub/fastpath
# git.iim.gay/grufwub/go-bufpool v0.2.1
## explicit; go 1.16
git.iim.gay/grufwub/go-bufpool
# git.iim.gay/grufwub/go-bytes v0.7.0
## explicit; go 1.16
git.iim.gay/grufwub/go-bytes
# git.iim.gay/grufwub/go-errors v0.2.3
## explicit; go 1.15
git.iim.gay/grufwub/go-errors
# git.iim.gay/grufwub/go-hashenc v0.3.0
## explicit; go 1.16
git.iim.gay/grufwub/go-hashenc
# git.iim.gay/grufwub/go-mutexes v0.5.0
## explicit; go 1.16
git.iim.gay/grufwub/go-mutexes
# git.iim.gay/grufwub/go-nowish v0.3.4
## explicit; go 1.16
git.iim.gay/grufwub/go-nowish
# git.iim.gay/grufwub/go-store v0.4.1
## explicit; go 1.16
git.iim.gay/grufwub/go-store/kv
git.iim.gay/grufwub/go-store/storage
git.iim.gay/grufwub/go-store/util
# github.com/ReneKroon/ttlcache v1.7.0
## explicit; go 1.14
github.com/ReneKroon/ttlcache
@ -285,6 +311,9 @@ github.com/golang/geo/s2
# github.com/golang/protobuf v1.5.2
## explicit; go 1.9
github.com/golang/protobuf/proto
# github.com/golang/snappy v0.0.3
## explicit
github.com/golang/snappy
# github.com/google/uuid v1.3.0
## explicit
github.com/google/uuid