mirror of
https://github.com/superseriousbusiness/gotosocial
synced 2025-01-10 03:38:51 +00:00
1527 lines
54 KiB
Go
1527 lines
54 KiB
Go
|
// Copyright 2016 Google Inc. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package s2
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
"sort"
|
||
|
"sync"
|
||
|
"sync/atomic"
|
||
|
|
||
|
"github.com/golang/geo/r1"
|
||
|
"github.com/golang/geo/r2"
|
||
|
)
|
||
|
|
||
|
// CellRelation describes the possible relationships between a target cell
|
||
|
// and the cells of the ShapeIndex. If the target is an index cell or is
|
||
|
// contained by an index cell, it is Indexed. If the target is subdivided
|
||
|
// into one or more index cells, it is Subdivided. Otherwise it is Disjoint.
|
||
|
type CellRelation int
|
||
|
|
||
|
// The possible CellRelations for a ShapeIndex.
|
||
|
const (
|
||
|
Indexed CellRelation = iota
|
||
|
Subdivided
|
||
|
Disjoint
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
// cellPadding defines the total error when clipping an edge which comes
|
||
|
// from two sources:
|
||
|
// (1) Clipping the original spherical edge to a cube face (the face edge).
|
||
|
// The maximum error in this step is faceClipErrorUVCoord.
|
||
|
// (2) Clipping the face edge to the u- or v-coordinate of a cell boundary.
|
||
|
// The maximum error in this step is edgeClipErrorUVCoord.
|
||
|
// Finally, since we encounter the same errors when clipping query edges, we
|
||
|
// double the total error so that we only need to pad edges during indexing
|
||
|
// and not at query time.
|
||
|
cellPadding = 2.0 * (faceClipErrorUVCoord + edgeClipErrorUVCoord)
|
||
|
|
||
|
// cellSizeToLongEdgeRatio defines the cell size relative to the length of an
|
||
|
// edge at which it is first considered to be long. Long edges do not
|
||
|
// contribute toward the decision to subdivide a cell further. For example,
|
||
|
// a value of 2.0 means that the cell must be at least twice the size of the
|
||
|
// edge in order for that edge to be counted. There are two reasons for not
|
||
|
// counting long edges: (1) such edges typically need to be propagated to
|
||
|
// several children, which increases time and memory costs without much benefit,
|
||
|
// and (2) in pathological cases, many long edges close together could force
|
||
|
// subdivision to continue all the way to the leaf cell level.
|
||
|
cellSizeToLongEdgeRatio = 1.0
|
||
|
)
|
||
|
|
||
|
// clippedShape represents the part of a shape that intersects a Cell.
|
||
|
// It consists of the set of edge IDs that intersect that cell and a boolean
|
||
|
// indicating whether the center of the cell is inside the shape (for shapes
|
||
|
// that have an interior).
|
||
|
//
|
||
|
// Note that the edges themselves are not clipped; we always use the original
|
||
|
// edges for intersection tests so that the results will be the same as the
|
||
|
// original shape.
|
||
|
type clippedShape struct {
|
||
|
// shapeID is the index of the shape this clipped shape is a part of.
|
||
|
shapeID int32
|
||
|
|
||
|
// containsCenter indicates if the center of the CellID this shape has been
|
||
|
// clipped to falls inside this shape. This is false for shapes that do not
|
||
|
// have an interior.
|
||
|
containsCenter bool
|
||
|
|
||
|
// edges is the ordered set of ShapeIndex original edge IDs. Edges
|
||
|
// are stored in increasing order of edge ID.
|
||
|
edges []int
|
||
|
}
|
||
|
|
||
|
// newClippedShape returns a new clipped shape for the given shapeID and number of expected edges.
|
||
|
func newClippedShape(id int32, numEdges int) *clippedShape {
|
||
|
return &clippedShape{
|
||
|
shapeID: id,
|
||
|
edges: make([]int, numEdges),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// numEdges returns the number of edges that intersect the CellID of the Cell this was clipped to.
|
||
|
func (c *clippedShape) numEdges() int {
|
||
|
return len(c.edges)
|
||
|
}
|
||
|
|
||
|
// containsEdge reports if this clipped shape contains the given edge ID.
|
||
|
func (c *clippedShape) containsEdge(id int) bool {
|
||
|
// Linear search is fast because the number of edges per shape is typically
|
||
|
// very small (less than 10).
|
||
|
for _, e := range c.edges {
|
||
|
if e == id {
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// ShapeIndexCell stores the index contents for a particular CellID.
|
||
|
type ShapeIndexCell struct {
|
||
|
shapes []*clippedShape
|
||
|
}
|
||
|
|
||
|
// NewShapeIndexCell creates a new cell that is sized to hold the given number of shapes.
|
||
|
func NewShapeIndexCell(numShapes int) *ShapeIndexCell {
|
||
|
return &ShapeIndexCell{
|
||
|
shapes: make([]*clippedShape, numShapes),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// numEdges reports the total number of edges in all clipped shapes in this cell.
|
||
|
func (s *ShapeIndexCell) numEdges() int {
|
||
|
var e int
|
||
|
for _, cs := range s.shapes {
|
||
|
e += cs.numEdges()
|
||
|
}
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
// add adds the given clipped shape to this index cell.
|
||
|
func (s *ShapeIndexCell) add(c *clippedShape) {
|
||
|
// C++ uses a set, so it's ordered and unique. We don't currently catch
|
||
|
// the case when a duplicate value is added.
|
||
|
s.shapes = append(s.shapes, c)
|
||
|
}
|
||
|
|
||
|
// findByShapeID returns the clipped shape that contains the given shapeID,
|
||
|
// or nil if none of the clipped shapes contain it.
|
||
|
func (s *ShapeIndexCell) findByShapeID(shapeID int32) *clippedShape {
|
||
|
// Linear search is fine because the number of shapes per cell is typically
|
||
|
// very small (most often 1), and is large only for pathological inputs
|
||
|
// (e.g. very deeply nested loops).
|
||
|
for _, clipped := range s.shapes {
|
||
|
if clipped.shapeID == shapeID {
|
||
|
return clipped
|
||
|
}
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// faceEdge and clippedEdge store temporary edge data while the index is being
|
||
|
// updated.
|
||
|
//
|
||
|
// While it would be possible to combine all the edge information into one
|
||
|
// structure, there are two good reasons for separating it:
|
||
|
//
|
||
|
// - Memory usage. Separating the two means that we only need to
|
||
|
// store one copy of the per-face data no matter how many times an edge is
|
||
|
// subdivided, and it also lets us delay computing bounding boxes until
|
||
|
// they are needed for processing each face (when the dataset spans
|
||
|
// multiple faces).
|
||
|
//
|
||
|
// - Performance. UpdateEdges is significantly faster on large polygons when
|
||
|
// the data is separated, because it often only needs to access the data in
|
||
|
// clippedEdge and this data is cached more successfully.
|
||
|
|
||
|
// faceEdge represents an edge that has been projected onto a given face,
|
||
|
type faceEdge struct {
|
||
|
shapeID int32 // The ID of shape that this edge belongs to
|
||
|
edgeID int // Edge ID within that shape
|
||
|
maxLevel int // Not desirable to subdivide this edge beyond this level
|
||
|
hasInterior bool // Belongs to a shape that has a dimension of 2
|
||
|
a, b r2.Point // The edge endpoints, clipped to a given face
|
||
|
edge Edge // The original edge.
|
||
|
}
|
||
|
|
||
|
// clippedEdge represents the portion of that edge that has been clipped to a given Cell.
|
||
|
type clippedEdge struct {
|
||
|
faceEdge *faceEdge // The original unclipped edge
|
||
|
bound r2.Rect // Bounding box for the clipped portion
|
||
|
}
|
||
|
|
||
|
// ShapeIndexIteratorPos defines the set of possible iterator starting positions. By
|
||
|
// default iterators are unpositioned, since this avoids an extra seek in this
|
||
|
// situation where one of the seek methods (such as Locate) is immediately called.
|
||
|
type ShapeIndexIteratorPos int
|
||
|
|
||
|
const (
|
||
|
// IteratorBegin specifies the iterator should be positioned at the beginning of the index.
|
||
|
IteratorBegin ShapeIndexIteratorPos = iota
|
||
|
// IteratorEnd specifies the iterator should be positioned at the end of the index.
|
||
|
IteratorEnd
|
||
|
)
|
||
|
|
||
|
// ShapeIndexIterator is an iterator that provides low-level access to
|
||
|
// the cells of the index. Cells are returned in increasing order of CellID.
|
||
|
//
|
||
|
// for it := index.Iterator(); !it.Done(); it.Next() {
|
||
|
// fmt.Print(it.CellID())
|
||
|
// }
|
||
|
//
|
||
|
type ShapeIndexIterator struct {
|
||
|
index *ShapeIndex
|
||
|
position int
|
||
|
id CellID
|
||
|
cell *ShapeIndexCell
|
||
|
}
|
||
|
|
||
|
// NewShapeIndexIterator creates a new iterator for the given index. If a starting
|
||
|
// position is specified, the iterator is positioned at the given spot.
|
||
|
func NewShapeIndexIterator(index *ShapeIndex, pos ...ShapeIndexIteratorPos) *ShapeIndexIterator {
|
||
|
s := &ShapeIndexIterator{
|
||
|
index: index,
|
||
|
}
|
||
|
|
||
|
if len(pos) > 0 {
|
||
|
if len(pos) > 1 {
|
||
|
panic("too many ShapeIndexIteratorPos arguments")
|
||
|
}
|
||
|
switch pos[0] {
|
||
|
case IteratorBegin:
|
||
|
s.Begin()
|
||
|
case IteratorEnd:
|
||
|
s.End()
|
||
|
default:
|
||
|
panic("unknown ShapeIndexIteratorPos value")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return s
|
||
|
}
|
||
|
|
||
|
func (s *ShapeIndexIterator) clone() *ShapeIndexIterator {
|
||
|
return &ShapeIndexIterator{
|
||
|
index: s.index,
|
||
|
position: s.position,
|
||
|
id: s.id,
|
||
|
cell: s.cell,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// CellID returns the CellID of the current index cell.
|
||
|
// If s.Done() is true, a value larger than any valid CellID is returned.
|
||
|
func (s *ShapeIndexIterator) CellID() CellID {
|
||
|
return s.id
|
||
|
}
|
||
|
|
||
|
// IndexCell returns the current index cell.
|
||
|
func (s *ShapeIndexIterator) IndexCell() *ShapeIndexCell {
|
||
|
// TODO(roberts): C++ has this call a virtual method to allow subclasses
|
||
|
// of ShapeIndexIterator to do other work before returning the cell. Do
|
||
|
// we need such a thing?
|
||
|
return s.cell
|
||
|
}
|
||
|
|
||
|
// Center returns the Point at the center of the current position of the iterator.
|
||
|
func (s *ShapeIndexIterator) Center() Point {
|
||
|
return s.CellID().Point()
|
||
|
}
|
||
|
|
||
|
// Begin positions the iterator at the beginning of the index.
|
||
|
func (s *ShapeIndexIterator) Begin() {
|
||
|
if !s.index.IsFresh() {
|
||
|
s.index.maybeApplyUpdates()
|
||
|
}
|
||
|
s.position = 0
|
||
|
s.refresh()
|
||
|
}
|
||
|
|
||
|
// Next positions the iterator at the next index cell.
|
||
|
func (s *ShapeIndexIterator) Next() {
|
||
|
s.position++
|
||
|
s.refresh()
|
||
|
}
|
||
|
|
||
|
// Prev advances the iterator to the previous cell in the index and returns true to
|
||
|
// indicate it was not yet at the beginning of the index. If the iterator is at the
|
||
|
// first cell the call does nothing and returns false.
|
||
|
func (s *ShapeIndexIterator) Prev() bool {
|
||
|
if s.position <= 0 {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
s.position--
|
||
|
s.refresh()
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// End positions the iterator at the end of the index.
|
||
|
func (s *ShapeIndexIterator) End() {
|
||
|
s.position = len(s.index.cells)
|
||
|
s.refresh()
|
||
|
}
|
||
|
|
||
|
// Done reports if the iterator is positioned at or after the last index cell.
|
||
|
func (s *ShapeIndexIterator) Done() bool {
|
||
|
return s.id == SentinelCellID
|
||
|
}
|
||
|
|
||
|
// refresh updates the stored internal iterator values.
|
||
|
func (s *ShapeIndexIterator) refresh() {
|
||
|
if s.position < len(s.index.cells) {
|
||
|
s.id = s.index.cells[s.position]
|
||
|
s.cell = s.index.cellMap[s.CellID()]
|
||
|
} else {
|
||
|
s.id = SentinelCellID
|
||
|
s.cell = nil
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// seek positions the iterator at the first cell whose ID >= target, or at the
|
||
|
// end of the index if no such cell exists.
|
||
|
func (s *ShapeIndexIterator) seek(target CellID) {
|
||
|
s.position = sort.Search(len(s.index.cells), func(i int) bool {
|
||
|
return s.index.cells[i] >= target
|
||
|
})
|
||
|
s.refresh()
|
||
|
}
|
||
|
|
||
|
// LocatePoint positions the iterator at the cell that contains the given Point.
|
||
|
// If no such cell exists, the iterator position is unspecified, and false is returned.
|
||
|
// The cell at the matched position is guaranteed to contain all edges that might
|
||
|
// intersect the line segment between target and the cell's center.
|
||
|
func (s *ShapeIndexIterator) LocatePoint(p Point) bool {
|
||
|
// Let I = cellMap.LowerBound(T), where T is the leaf cell containing
|
||
|
// point P. Then if T is contained by an index cell, then the
|
||
|
// containing cell is either I or I'. We test for containment by comparing
|
||
|
// the ranges of leaf cells spanned by T, I, and I'.
|
||
|
target := cellIDFromPoint(p)
|
||
|
s.seek(target)
|
||
|
if !s.Done() && s.CellID().RangeMin() <= target {
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
if s.Prev() && s.CellID().RangeMax() >= target {
|
||
|
return true
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// LocateCellID attempts to position the iterator at the first matching index cell
|
||
|
// in the index that has some relation to the given CellID. Let T be the target CellID.
|
||
|
// If T is contained by (or equal to) some index cell I, then the iterator is positioned
|
||
|
// at I and returns Indexed. Otherwise if T contains one or more (smaller) index cells,
|
||
|
// then the iterator is positioned at the first such cell I and return Subdivided.
|
||
|
// Otherwise Disjoint is returned and the iterator position is undefined.
|
||
|
func (s *ShapeIndexIterator) LocateCellID(target CellID) CellRelation {
|
||
|
// Let T be the target, let I = cellMap.LowerBound(T.RangeMin()), and
|
||
|
// let I' be the predecessor of I. If T contains any index cells, then T
|
||
|
// contains I. Similarly, if T is contained by an index cell, then the
|
||
|
// containing cell is either I or I'. We test for containment by comparing
|
||
|
// the ranges of leaf cells spanned by T, I, and I'.
|
||
|
s.seek(target.RangeMin())
|
||
|
if !s.Done() {
|
||
|
if s.CellID() >= target && s.CellID().RangeMin() <= target {
|
||
|
return Indexed
|
||
|
}
|
||
|
if s.CellID() <= target.RangeMax() {
|
||
|
return Subdivided
|
||
|
}
|
||
|
}
|
||
|
if s.Prev() && s.CellID().RangeMax() >= target {
|
||
|
return Indexed
|
||
|
}
|
||
|
return Disjoint
|
||
|
}
|
||
|
|
||
|
// tracker keeps track of which shapes in a given set contain a particular point
|
||
|
// (the focus). It provides an efficient way to move the focus from one point
|
||
|
// to another and incrementally update the set of shapes which contain it. We use
|
||
|
// this to compute which shapes contain the center of every CellID in the index,
|
||
|
// by advancing the focus from one cell center to the next.
|
||
|
//
|
||
|
// Initially the focus is at the start of the CellID space-filling curve. We then
|
||
|
// visit all the cells that are being added to the ShapeIndex in increasing order
|
||
|
// of CellID. For each cell, we draw two edges: one from the entry vertex to the
|
||
|
// center, and another from the center to the exit vertex (where entry and exit
|
||
|
// refer to the points where the space-filling curve enters and exits the cell).
|
||
|
// By counting edge crossings we can incrementally compute which shapes contain
|
||
|
// the cell center. Note that the same set of shapes will always contain the exit
|
||
|
// point of one cell and the entry point of the next cell in the index, because
|
||
|
// either (a) these two points are actually the same, or (b) the intervening
|
||
|
// cells in CellID order are all empty, and therefore there are no edge crossings
|
||
|
// if we follow this path from one cell to the other.
|
||
|
//
|
||
|
// In C++, this is S2ShapeIndex::InteriorTracker.
|
||
|
type tracker struct {
|
||
|
isActive bool
|
||
|
a Point
|
||
|
b Point
|
||
|
nextCellID CellID
|
||
|
crosser *EdgeCrosser
|
||
|
shapeIDs []int32
|
||
|
|
||
|
// Shape ids saved by saveAndClearStateBefore. The state is never saved
|
||
|
// recursively so we don't need to worry about maintaining a stack.
|
||
|
savedIDs []int32
|
||
|
}
|
||
|
|
||
|
// newTracker returns a new tracker with the appropriate defaults.
|
||
|
func newTracker() *tracker {
|
||
|
// As shapes are added, we compute which ones contain the start of the
|
||
|
// CellID space-filling curve by drawing an edge from OriginPoint to this
|
||
|
// point and counting how many shape edges cross this edge.
|
||
|
t := &tracker{
|
||
|
isActive: false,
|
||
|
b: trackerOrigin(),
|
||
|
nextCellID: CellIDFromFace(0).ChildBeginAtLevel(maxLevel),
|
||
|
}
|
||
|
t.drawTo(Point{faceUVToXYZ(0, -1, -1).Normalize()}) // CellID curve start
|
||
|
|
||
|
return t
|
||
|
}
|
||
|
|
||
|
// trackerOrigin returns the initial focus point when the tracker is created
|
||
|
// (corresponding to the start of the CellID space-filling curve).
|
||
|
func trackerOrigin() Point {
|
||
|
// The start of the S2CellId space-filling curve.
|
||
|
return Point{faceUVToXYZ(0, -1, -1).Normalize()}
|
||
|
}
|
||
|
|
||
|
// focus returns the current focus point of the tracker.
|
||
|
func (t *tracker) focus() Point { return t.b }
|
||
|
|
||
|
// addShape adds a shape whose interior should be tracked. containsOrigin indicates
|
||
|
// whether the current focus point is inside the shape. Alternatively, if
|
||
|
// the focus point is in the process of being moved (via moveTo/drawTo), you
|
||
|
// can also specify containsOrigin at the old focus point and call testEdge
|
||
|
// for every edge of the shape that might cross the current drawTo line.
|
||
|
// This updates the state to correspond to the new focus point.
|
||
|
//
|
||
|
// This requires shape.HasInterior
|
||
|
func (t *tracker) addShape(shapeID int32, containsFocus bool) {
|
||
|
t.isActive = true
|
||
|
if containsFocus {
|
||
|
t.toggleShape(shapeID)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// moveTo moves the focus of the tracker to the given point. This method should
|
||
|
// only be used when it is known that there are no edge crossings between the old
|
||
|
// and new focus locations; otherwise use drawTo.
|
||
|
func (t *tracker) moveTo(b Point) { t.b = b }
|
||
|
|
||
|
// drawTo moves the focus of the tracker to the given point. After this method is
|
||
|
// called, testEdge should be called with all edges that may cross the line
|
||
|
// segment between the old and new focus locations.
|
||
|
func (t *tracker) drawTo(b Point) {
|
||
|
t.a = t.b
|
||
|
t.b = b
|
||
|
// TODO: the edge crosser may need an in-place Init method if this gets expensive
|
||
|
t.crosser = NewEdgeCrosser(t.a, t.b)
|
||
|
}
|
||
|
|
||
|
// testEdge checks if the given edge crosses the current edge, and if so, then
|
||
|
// toggle the state of the given shapeID.
|
||
|
// This requires shape to have an interior.
|
||
|
func (t *tracker) testEdge(shapeID int32, edge Edge) {
|
||
|
if t.crosser.EdgeOrVertexCrossing(edge.V0, edge.V1) {
|
||
|
t.toggleShape(shapeID)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// setNextCellID is used to indicate that the last argument to moveTo or drawTo
|
||
|
// was the entry vertex of the given CellID, i.e. the tracker is positioned at the
|
||
|
// start of this cell. By using this method together with atCellID, the caller
|
||
|
// can avoid calling moveTo in cases where the exit vertex of the previous cell
|
||
|
// is the same as the entry vertex of the current cell.
|
||
|
func (t *tracker) setNextCellID(nextCellID CellID) {
|
||
|
t.nextCellID = nextCellID.RangeMin()
|
||
|
}
|
||
|
|
||
|
// atCellID reports if the focus is already at the entry vertex of the given
|
||
|
// CellID (provided that the caller calls setNextCellID as each cell is processed).
|
||
|
func (t *tracker) atCellID(cellid CellID) bool {
|
||
|
return cellid.RangeMin() == t.nextCellID
|
||
|
}
|
||
|
|
||
|
// toggleShape adds or removes the given shapeID from the set of IDs it is tracking.
|
||
|
func (t *tracker) toggleShape(shapeID int32) {
|
||
|
// Most shapeIDs slices are small, so special case the common steps.
|
||
|
|
||
|
// If there is nothing here, add it.
|
||
|
if len(t.shapeIDs) == 0 {
|
||
|
t.shapeIDs = append(t.shapeIDs, shapeID)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// If it's the first element, drop it from the slice.
|
||
|
if t.shapeIDs[0] == shapeID {
|
||
|
t.shapeIDs = t.shapeIDs[1:]
|
||
|
return
|
||
|
}
|
||
|
|
||
|
for i, s := range t.shapeIDs {
|
||
|
if s < shapeID {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// If it's in the set, cut it out.
|
||
|
if s == shapeID {
|
||
|
copy(t.shapeIDs[i:], t.shapeIDs[i+1:]) // overwrite the ith element
|
||
|
t.shapeIDs = t.shapeIDs[:len(t.shapeIDs)-1]
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// We've got to a point in the slice where we should be inserted.
|
||
|
// (the given shapeID is now less than the current positions id.)
|
||
|
t.shapeIDs = append(t.shapeIDs[0:i],
|
||
|
append([]int32{shapeID}, t.shapeIDs[i:len(t.shapeIDs)]...)...)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// We got to the end and didn't find it, so add it to the list.
|
||
|
t.shapeIDs = append(t.shapeIDs, shapeID)
|
||
|
}
|
||
|
|
||
|
// saveAndClearStateBefore makes an internal copy of the state for shape ids below
|
||
|
// the given limit, and then clear the state for those shapes. This is used during
|
||
|
// incremental updates to track the state of added and removed shapes separately.
|
||
|
func (t *tracker) saveAndClearStateBefore(limitShapeID int32) {
|
||
|
limit := t.lowerBound(limitShapeID)
|
||
|
t.savedIDs = append([]int32(nil), t.shapeIDs[:limit]...)
|
||
|
t.shapeIDs = t.shapeIDs[limit:]
|
||
|
}
|
||
|
|
||
|
// restoreStateBefore restores the state previously saved by saveAndClearStateBefore.
|
||
|
// This only affects the state for shapeIDs below "limitShapeID".
|
||
|
func (t *tracker) restoreStateBefore(limitShapeID int32) {
|
||
|
limit := t.lowerBound(limitShapeID)
|
||
|
t.shapeIDs = append(append([]int32(nil), t.savedIDs...), t.shapeIDs[limit:]...)
|
||
|
t.savedIDs = nil
|
||
|
}
|
||
|
|
||
|
// lowerBound returns the shapeID of the first entry x where x >= shapeID.
|
||
|
func (t *tracker) lowerBound(shapeID int32) int32 {
|
||
|
panic("not implemented")
|
||
|
}
|
||
|
|
||
|
// removedShape represents a set of edges from the given shape that is queued for removal.
|
||
|
type removedShape struct {
|
||
|
shapeID int32
|
||
|
hasInterior bool
|
||
|
containsTrackerOrigin bool
|
||
|
edges []Edge
|
||
|
}
|
||
|
|
||
|
// There are three basic states the index can be in.
|
||
|
const (
|
||
|
stale int32 = iota // There are pending updates.
|
||
|
updating // Updates are currently being applied.
|
||
|
fresh // There are no pending updates.
|
||
|
)
|
||
|
|
||
|
// ShapeIndex indexes a set of Shapes, where a Shape is some collection of edges
|
||
|
// that optionally defines an interior. It can be used to represent a set of
|
||
|
// points, a set of polylines, or a set of polygons. For Shapes that have
|
||
|
// interiors, the index makes it very fast to determine which Shape(s) contain
|
||
|
// a given point or region.
|
||
|
//
|
||
|
// The index can be updated incrementally by adding or removing shapes. It is
|
||
|
// designed to handle up to hundreds of millions of edges. All data structures
|
||
|
// are designed to be small, so the index is compact; generally it is smaller
|
||
|
// than the underlying data being indexed. The index is also fast to construct.
|
||
|
//
|
||
|
// Polygon, Loop, and Polyline implement Shape which allows these objects to
|
||
|
// be indexed easily. You can find useful query methods in CrossingEdgeQuery
|
||
|
// and ClosestEdgeQuery (Not yet implemented in Go).
|
||
|
//
|
||
|
// Example showing how to build an index of Polylines:
|
||
|
//
|
||
|
// index := NewShapeIndex()
|
||
|
// for _, polyline := range polylines {
|
||
|
// index.Add(polyline);
|
||
|
// }
|
||
|
// // Now you can use a CrossingEdgeQuery or ClosestEdgeQuery here.
|
||
|
//
|
||
|
type ShapeIndex struct {
|
||
|
// shapes is a map of shape ID to shape.
|
||
|
shapes map[int32]Shape
|
||
|
|
||
|
// The maximum number of edges per cell.
|
||
|
// TODO(roberts): Update the comments when the usage of this is implemented.
|
||
|
maxEdgesPerCell int
|
||
|
|
||
|
// nextID tracks the next ID to hand out. IDs are not reused when shapes
|
||
|
// are removed from the index.
|
||
|
nextID int32
|
||
|
|
||
|
// cellMap is a map from CellID to the set of clipped shapes that intersect that
|
||
|
// cell. The cell IDs cover a set of non-overlapping regions on the sphere.
|
||
|
// In C++, this is a BTree, so the cells are ordered naturally by the data structure.
|
||
|
cellMap map[CellID]*ShapeIndexCell
|
||
|
// Track the ordered list of cell IDs.
|
||
|
cells []CellID
|
||
|
|
||
|
// The current status of the index; accessed atomically.
|
||
|
status int32
|
||
|
|
||
|
// Additions and removals are queued and processed on the first subsequent
|
||
|
// query. There are several reasons to do this:
|
||
|
//
|
||
|
// - It is significantly more efficient to process updates in batches if
|
||
|
// the amount of entities added grows.
|
||
|
// - Often the index will never be queried, in which case we can save both
|
||
|
// the time and memory required to build it. Examples:
|
||
|
// + Loops that are created simply to pass to an Polygon. (We don't
|
||
|
// need the Loop index, because Polygon builds its own index.)
|
||
|
// + Applications that load a database of geometry and then query only
|
||
|
// a small fraction of it.
|
||
|
//
|
||
|
// The main drawback is that we need to go to some extra work to ensure that
|
||
|
// some methods are still thread-safe. Note that the goal is *not* to
|
||
|
// make this thread-safe in general, but simply to hide the fact that
|
||
|
// we defer some of the indexing work until query time.
|
||
|
//
|
||
|
// This mutex protects all of following fields in the index.
|
||
|
mu sync.RWMutex
|
||
|
|
||
|
// pendingAdditionsPos is the index of the first entry that has not been processed
|
||
|
// via applyUpdatesInternal.
|
||
|
pendingAdditionsPos int32
|
||
|
|
||
|
// The set of shapes that have been queued for removal but not processed yet by
|
||
|
// applyUpdatesInternal.
|
||
|
pendingRemovals []*removedShape
|
||
|
}
|
||
|
|
||
|
// NewShapeIndex creates a new ShapeIndex.
|
||
|
func NewShapeIndex() *ShapeIndex {
|
||
|
return &ShapeIndex{
|
||
|
maxEdgesPerCell: 10,
|
||
|
shapes: make(map[int32]Shape),
|
||
|
cellMap: make(map[CellID]*ShapeIndexCell),
|
||
|
cells: nil,
|
||
|
status: fresh,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Iterator returns an iterator for this index.
|
||
|
func (s *ShapeIndex) Iterator() *ShapeIndexIterator {
|
||
|
s.maybeApplyUpdates()
|
||
|
return NewShapeIndexIterator(s, IteratorBegin)
|
||
|
}
|
||
|
|
||
|
// Begin positions the iterator at the first cell in the index.
|
||
|
func (s *ShapeIndex) Begin() *ShapeIndexIterator {
|
||
|
s.maybeApplyUpdates()
|
||
|
return NewShapeIndexIterator(s, IteratorBegin)
|
||
|
}
|
||
|
|
||
|
// End positions the iterator at the last cell in the index.
|
||
|
func (s *ShapeIndex) End() *ShapeIndexIterator {
|
||
|
// TODO(roberts): It's possible that updates could happen to the index between
|
||
|
// the time this is called and the time the iterators position is used and this
|
||
|
// will be invalid or not the end. For now, things will be undefined if this
|
||
|
// happens. See about referencing the IsFresh to guard for this in the future.
|
||
|
s.maybeApplyUpdates()
|
||
|
return NewShapeIndexIterator(s, IteratorEnd)
|
||
|
}
|
||
|
|
||
|
// Len reports the number of Shapes in this index.
|
||
|
func (s *ShapeIndex) Len() int {
|
||
|
return len(s.shapes)
|
||
|
}
|
||
|
|
||
|
// Reset resets the index to its original state.
|
||
|
func (s *ShapeIndex) Reset() {
|
||
|
s.shapes = make(map[int32]Shape)
|
||
|
s.nextID = 0
|
||
|
s.cellMap = make(map[CellID]*ShapeIndexCell)
|
||
|
s.cells = nil
|
||
|
atomic.StoreInt32(&s.status, fresh)
|
||
|
}
|
||
|
|
||
|
// NumEdges returns the number of edges in this index.
|
||
|
func (s *ShapeIndex) NumEdges() int {
|
||
|
numEdges := 0
|
||
|
for _, shape := range s.shapes {
|
||
|
numEdges += shape.NumEdges()
|
||
|
}
|
||
|
return numEdges
|
||
|
}
|
||
|
|
||
|
// NumEdgesUpTo returns the number of edges in the given index, up to the given
|
||
|
// limit. If the limit is encountered, the current running total is returned,
|
||
|
// which may be more than the limit.
|
||
|
func (s *ShapeIndex) NumEdgesUpTo(limit int) int {
|
||
|
var numEdges int
|
||
|
// We choose to iterate over the shapes in order to match the counting
|
||
|
// up behavior in C++ and for test compatibility instead of using a
|
||
|
// more idiomatic range over the shape map.
|
||
|
for i := int32(0); i <= s.nextID; i++ {
|
||
|
s := s.Shape(i)
|
||
|
if s == nil {
|
||
|
continue
|
||
|
}
|
||
|
numEdges += s.NumEdges()
|
||
|
if numEdges >= limit {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return numEdges
|
||
|
}
|
||
|
|
||
|
// Shape returns the shape with the given ID, or nil if the shape has been removed from the index.
|
||
|
func (s *ShapeIndex) Shape(id int32) Shape { return s.shapes[id] }
|
||
|
|
||
|
// idForShape returns the id of the given shape in this index, or -1 if it is
|
||
|
// not in the index.
|
||
|
//
|
||
|
// TODO(roberts): Need to figure out an appropriate way to expose this on a Shape.
|
||
|
// C++ allows a given S2 type (Loop, Polygon, etc) to be part of multiple indexes.
|
||
|
// By having each type extend S2Shape which has an id element, they all inherit their
|
||
|
// own id field rather than having to track it themselves.
|
||
|
func (s *ShapeIndex) idForShape(shape Shape) int32 {
|
||
|
for k, v := range s.shapes {
|
||
|
if v == shape {
|
||
|
return k
|
||
|
}
|
||
|
}
|
||
|
return -1
|
||
|
}
|
||
|
|
||
|
// Add adds the given shape to the index and returns the assigned ID..
|
||
|
func (s *ShapeIndex) Add(shape Shape) int32 {
|
||
|
s.shapes[s.nextID] = shape
|
||
|
s.nextID++
|
||
|
atomic.StoreInt32(&s.status, stale)
|
||
|
return s.nextID - 1
|
||
|
}
|
||
|
|
||
|
// Remove removes the given shape from the index.
|
||
|
func (s *ShapeIndex) Remove(shape Shape) {
|
||
|
// The index updates itself lazily because it is much more efficient to
|
||
|
// process additions and removals in batches.
|
||
|
id := s.idForShape(shape)
|
||
|
|
||
|
// If the shape wasn't found, it's already been removed or was not in the index.
|
||
|
if s.shapes[id] == nil {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Remove the shape from the shapes map.
|
||
|
delete(s.shapes, id)
|
||
|
|
||
|
// We are removing a shape that has not yet been added to the index,
|
||
|
// so there is nothing else to do.
|
||
|
if id >= s.pendingAdditionsPos {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
numEdges := shape.NumEdges()
|
||
|
removed := &removedShape{
|
||
|
shapeID: id,
|
||
|
hasInterior: shape.Dimension() == 2,
|
||
|
containsTrackerOrigin: shape.ReferencePoint().Contained,
|
||
|
edges: make([]Edge, numEdges),
|
||
|
}
|
||
|
|
||
|
for e := 0; e < numEdges; e++ {
|
||
|
removed.edges[e] = shape.Edge(e)
|
||
|
}
|
||
|
|
||
|
s.pendingRemovals = append(s.pendingRemovals, removed)
|
||
|
atomic.StoreInt32(&s.status, stale)
|
||
|
}
|
||
|
|
||
|
// Build triggers the update of the index. Calls to Add and Release are normally
|
||
|
// queued and processed on the first subsequent query. This has many advantages,
|
||
|
// the most important of which is that sometimes there *is* no subsequent
|
||
|
// query, which lets us avoid building the index completely.
|
||
|
//
|
||
|
// This method forces any pending updates to be applied immediately.
|
||
|
func (s *ShapeIndex) Build() {
|
||
|
s.maybeApplyUpdates()
|
||
|
}
|
||
|
|
||
|
// IsFresh reports if there are no pending updates that need to be applied.
|
||
|
// This can be useful to avoid building the index unnecessarily, or for
|
||
|
// choosing between two different algorithms depending on whether the index
|
||
|
// is available.
|
||
|
//
|
||
|
// The returned index status may be slightly out of date if the index was
|
||
|
// built in a different thread. This is fine for the intended use (as an
|
||
|
// efficiency hint), but it should not be used by internal methods.
|
||
|
func (s *ShapeIndex) IsFresh() bool {
|
||
|
return atomic.LoadInt32(&s.status) == fresh
|
||
|
}
|
||
|
|
||
|
// isFirstUpdate reports if this is the first update to the index.
|
||
|
func (s *ShapeIndex) isFirstUpdate() bool {
|
||
|
// Note that it is not sufficient to check whether cellMap is empty, since
|
||
|
// entries are added to it during the update process.
|
||
|
return s.pendingAdditionsPos == 0
|
||
|
}
|
||
|
|
||
|
// isShapeBeingRemoved reports if the shape with the given ID is currently slated for removal.
|
||
|
func (s *ShapeIndex) isShapeBeingRemoved(shapeID int32) bool {
|
||
|
// All shape ids being removed fall below the index position of shapes being added.
|
||
|
return shapeID < s.pendingAdditionsPos
|
||
|
}
|
||
|
|
||
|
// maybeApplyUpdates checks if the index pieces have changed, and if so, applies pending updates.
|
||
|
func (s *ShapeIndex) maybeApplyUpdates() {
|
||
|
// TODO(roberts): To avoid acquiring and releasing the mutex on every
|
||
|
// query, we should use atomic operations when testing whether the status
|
||
|
// is fresh and when updating the status to be fresh. This guarantees
|
||
|
// that any thread that sees a status of fresh will also see the
|
||
|
// corresponding index updates.
|
||
|
if atomic.LoadInt32(&s.status) != fresh {
|
||
|
s.mu.Lock()
|
||
|
s.applyUpdatesInternal()
|
||
|
atomic.StoreInt32(&s.status, fresh)
|
||
|
s.mu.Unlock()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// applyUpdatesInternal does the actual work of updating the index by applying all
|
||
|
// pending additions and removals. It does *not* update the indexes status.
|
||
|
func (s *ShapeIndex) applyUpdatesInternal() {
|
||
|
// TODO(roberts): Building the index can use up to 20x as much memory per
|
||
|
// edge as the final index memory size. If this causes issues, add in
|
||
|
// batched updating to limit the amount of items per batch to a
|
||
|
// configurable memory footprint overhead.
|
||
|
t := newTracker()
|
||
|
|
||
|
// allEdges maps a Face to a collection of faceEdges.
|
||
|
allEdges := make([][]faceEdge, 6)
|
||
|
|
||
|
for _, p := range s.pendingRemovals {
|
||
|
s.removeShapeInternal(p, allEdges, t)
|
||
|
}
|
||
|
|
||
|
for id := s.pendingAdditionsPos; id < int32(len(s.shapes)); id++ {
|
||
|
s.addShapeInternal(id, allEdges, t)
|
||
|
}
|
||
|
|
||
|
for face := 0; face < 6; face++ {
|
||
|
s.updateFaceEdges(face, allEdges[face], t)
|
||
|
}
|
||
|
|
||
|
s.pendingRemovals = s.pendingRemovals[:0]
|
||
|
s.pendingAdditionsPos = int32(len(s.shapes))
|
||
|
// It is the caller's responsibility to update the index status.
|
||
|
}
|
||
|
|
||
|
// addShapeInternal clips all edges of the given shape to the six cube faces,
|
||
|
// adds the clipped edges to the set of allEdges, and starts tracking its
|
||
|
// interior if necessary.
|
||
|
func (s *ShapeIndex) addShapeInternal(shapeID int32, allEdges [][]faceEdge, t *tracker) {
|
||
|
shape, ok := s.shapes[shapeID]
|
||
|
if !ok {
|
||
|
// This shape has already been removed.
|
||
|
return
|
||
|
}
|
||
|
|
||
|
faceEdge := faceEdge{
|
||
|
shapeID: shapeID,
|
||
|
hasInterior: shape.Dimension() == 2,
|
||
|
}
|
||
|
|
||
|
if faceEdge.hasInterior {
|
||
|
t.addShape(shapeID, containsBruteForce(shape, t.focus()))
|
||
|
}
|
||
|
|
||
|
numEdges := shape.NumEdges()
|
||
|
for e := 0; e < numEdges; e++ {
|
||
|
edge := shape.Edge(e)
|
||
|
|
||
|
faceEdge.edgeID = e
|
||
|
faceEdge.edge = edge
|
||
|
faceEdge.maxLevel = maxLevelForEdge(edge)
|
||
|
s.addFaceEdge(faceEdge, allEdges)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// addFaceEdge adds the given faceEdge into the collection of all edges.
|
||
|
func (s *ShapeIndex) addFaceEdge(fe faceEdge, allEdges [][]faceEdge) {
|
||
|
aFace := face(fe.edge.V0.Vector)
|
||
|
// See if both endpoints are on the same face, and are far enough from
|
||
|
// the edge of the face that they don't intersect any (padded) adjacent face.
|
||
|
if aFace == face(fe.edge.V1.Vector) {
|
||
|
x, y := validFaceXYZToUV(aFace, fe.edge.V0.Vector)
|
||
|
fe.a = r2.Point{x, y}
|
||
|
x, y = validFaceXYZToUV(aFace, fe.edge.V1.Vector)
|
||
|
fe.b = r2.Point{x, y}
|
||
|
|
||
|
maxUV := 1 - cellPadding
|
||
|
if math.Abs(fe.a.X) <= maxUV && math.Abs(fe.a.Y) <= maxUV &&
|
||
|
math.Abs(fe.b.X) <= maxUV && math.Abs(fe.b.Y) <= maxUV {
|
||
|
allEdges[aFace] = append(allEdges[aFace], fe)
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Otherwise, we simply clip the edge to all six faces.
|
||
|
for face := 0; face < 6; face++ {
|
||
|
if aClip, bClip, intersects := ClipToPaddedFace(fe.edge.V0, fe.edge.V1, face, cellPadding); intersects {
|
||
|
fe.a = aClip
|
||
|
fe.b = bClip
|
||
|
allEdges[face] = append(allEdges[face], fe)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// updateFaceEdges adds or removes the various edges from the index.
|
||
|
// An edge is added if shapes[id] is not nil, and removed otherwise.
|
||
|
func (s *ShapeIndex) updateFaceEdges(face int, faceEdges []faceEdge, t *tracker) {
|
||
|
numEdges := len(faceEdges)
|
||
|
if numEdges == 0 && len(t.shapeIDs) == 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Create the initial clippedEdge for each faceEdge. Additional clipped
|
||
|
// edges are created when edges are split between child cells. We create
|
||
|
// two arrays, one containing the edge data and another containing pointers
|
||
|
// to those edges, so that during the recursion we only need to copy
|
||
|
// pointers in order to propagate an edge to the correct child.
|
||
|
clippedEdges := make([]*clippedEdge, numEdges)
|
||
|
bound := r2.EmptyRect()
|
||
|
for e := 0; e < numEdges; e++ {
|
||
|
clipped := &clippedEdge{
|
||
|
faceEdge: &faceEdges[e],
|
||
|
}
|
||
|
clipped.bound = r2.RectFromPoints(faceEdges[e].a, faceEdges[e].b)
|
||
|
clippedEdges[e] = clipped
|
||
|
bound = bound.AddRect(clipped.bound)
|
||
|
}
|
||
|
|
||
|
// Construct the initial face cell containing all the edges, and then update
|
||
|
// all the edges in the index recursively.
|
||
|
faceID := CellIDFromFace(face)
|
||
|
pcell := PaddedCellFromCellID(faceID, cellPadding)
|
||
|
|
||
|
disjointFromIndex := s.isFirstUpdate()
|
||
|
if numEdges > 0 {
|
||
|
shrunkID := s.shrinkToFit(pcell, bound)
|
||
|
if shrunkID != pcell.id {
|
||
|
// All the edges are contained by some descendant of the face cell. We
|
||
|
// can save a lot of work by starting directly with that cell, but if we
|
||
|
// are in the interior of at least one shape then we need to create
|
||
|
// index entries for the cells we are skipping over.
|
||
|
s.skipCellRange(faceID.RangeMin(), shrunkID.RangeMin(), t, disjointFromIndex)
|
||
|
pcell = PaddedCellFromCellID(shrunkID, cellPadding)
|
||
|
s.updateEdges(pcell, clippedEdges, t, disjointFromIndex)
|
||
|
s.skipCellRange(shrunkID.RangeMax().Next(), faceID.RangeMax().Next(), t, disjointFromIndex)
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Otherwise (no edges, or no shrinking is possible), subdivide normally.
|
||
|
s.updateEdges(pcell, clippedEdges, t, disjointFromIndex)
|
||
|
}
|
||
|
|
||
|
// shrinkToFit shrinks the PaddedCell to fit within the given bounds.
|
||
|
func (s *ShapeIndex) shrinkToFit(pcell *PaddedCell, bound r2.Rect) CellID {
|
||
|
shrunkID := pcell.ShrinkToFit(bound)
|
||
|
|
||
|
if !s.isFirstUpdate() && shrunkID != pcell.CellID() {
|
||
|
// Don't shrink any smaller than the existing index cells, since we need
|
||
|
// to combine the new edges with those cells.
|
||
|
iter := s.Iterator()
|
||
|
if iter.LocateCellID(shrunkID) == Indexed {
|
||
|
shrunkID = iter.CellID()
|
||
|
}
|
||
|
}
|
||
|
return shrunkID
|
||
|
}
|
||
|
|
||
|
// skipCellRange skips over the cells in the given range, creating index cells if we are
|
||
|
// currently in the interior of at least one shape.
|
||
|
func (s *ShapeIndex) skipCellRange(begin, end CellID, t *tracker, disjointFromIndex bool) {
|
||
|
// If we aren't in the interior of a shape, then skipping over cells is easy.
|
||
|
if len(t.shapeIDs) == 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Otherwise generate the list of cell ids that we need to visit, and create
|
||
|
// an index entry for each one.
|
||
|
skipped := CellUnionFromRange(begin, end)
|
||
|
for _, cell := range skipped {
|
||
|
var clippedEdges []*clippedEdge
|
||
|
s.updateEdges(PaddedCellFromCellID(cell, cellPadding), clippedEdges, t, disjointFromIndex)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// updateEdges adds or removes the given edges whose bounding boxes intersect a
|
||
|
// given cell. disjointFromIndex is an optimization hint indicating that cellMap
|
||
|
// does not contain any entries that overlap the given cell.
|
||
|
func (s *ShapeIndex) updateEdges(pcell *PaddedCell, edges []*clippedEdge, t *tracker, disjointFromIndex bool) {
|
||
|
// This function is recursive with a maximum recursion depth of 30 (maxLevel).
|
||
|
|
||
|
// Incremental updates are handled as follows. All edges being added or
|
||
|
// removed are combined together in edges, and all shapes with interiors
|
||
|
// are tracked using tracker. We subdivide recursively as usual until we
|
||
|
// encounter an existing index cell. At this point we absorb the index
|
||
|
// cell as follows:
|
||
|
//
|
||
|
// - Edges and shapes that are being removed are deleted from edges and
|
||
|
// tracker.
|
||
|
// - All remaining edges and shapes from the index cell are added to
|
||
|
// edges and tracker.
|
||
|
// - Continue subdividing recursively, creating new index cells as needed.
|
||
|
// - When the recursion gets back to the cell that was absorbed, we
|
||
|
// restore edges and tracker to their previous state.
|
||
|
//
|
||
|
// Note that the only reason that we include removed shapes in the recursive
|
||
|
// subdivision process is so that we can find all of the index cells that
|
||
|
// contain those shapes efficiently, without maintaining an explicit list of
|
||
|
// index cells for each shape (which would be expensive in terms of memory).
|
||
|
indexCellAbsorbed := false
|
||
|
if !disjointFromIndex {
|
||
|
// There may be existing index cells contained inside pcell. If we
|
||
|
// encounter such a cell, we need to combine the edges being updated with
|
||
|
// the existing cell contents by absorbing the cell.
|
||
|
iter := s.Iterator()
|
||
|
r := iter.LocateCellID(pcell.id)
|
||
|
if r == Disjoint {
|
||
|
disjointFromIndex = true
|
||
|
} else if r == Indexed {
|
||
|
// Absorb the index cell by transferring its contents to edges and
|
||
|
// deleting it. We also start tracking the interior of any new shapes.
|
||
|
s.absorbIndexCell(pcell, iter, edges, t)
|
||
|
indexCellAbsorbed = true
|
||
|
disjointFromIndex = true
|
||
|
} else {
|
||
|
// DCHECK_EQ(SUBDIVIDED, r)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If there are existing index cells below us, then we need to keep
|
||
|
// subdividing so that we can merge with those cells. Otherwise,
|
||
|
// makeIndexCell checks if the number of edges is small enough, and creates
|
||
|
// an index cell if possible (returning true when it does so).
|
||
|
if !disjointFromIndex || !s.makeIndexCell(pcell, edges, t) {
|
||
|
// TODO(roberts): If it turns out to have memory problems when there
|
||
|
// are 10M+ edges in the index, look into pre-allocating space so we
|
||
|
// are not always appending.
|
||
|
childEdges := [2][2][]*clippedEdge{} // [i][j]
|
||
|
|
||
|
// Compute the middle of the padded cell, defined as the rectangle in
|
||
|
// (u,v)-space that belongs to all four (padded) children. By comparing
|
||
|
// against the four boundaries of middle we can determine which children
|
||
|
// each edge needs to be propagated to.
|
||
|
middle := pcell.Middle()
|
||
|
|
||
|
// Build up a vector edges to be passed to each child cell. The (i,j)
|
||
|
// directions are left (i=0), right (i=1), lower (j=0), and upper (j=1).
|
||
|
// Note that the vast majority of edges are propagated to a single child.
|
||
|
for _, edge := range edges {
|
||
|
if edge.bound.X.Hi <= middle.X.Lo {
|
||
|
// Edge is entirely contained in the two left children.
|
||
|
a, b := s.clipVAxis(edge, middle.Y)
|
||
|
if a != nil {
|
||
|
childEdges[0][0] = append(childEdges[0][0], a)
|
||
|
}
|
||
|
if b != nil {
|
||
|
childEdges[0][1] = append(childEdges[0][1], b)
|
||
|
}
|
||
|
} else if edge.bound.X.Lo >= middle.X.Hi {
|
||
|
// Edge is entirely contained in the two right children.
|
||
|
a, b := s.clipVAxis(edge, middle.Y)
|
||
|
if a != nil {
|
||
|
childEdges[1][0] = append(childEdges[1][0], a)
|
||
|
}
|
||
|
if b != nil {
|
||
|
childEdges[1][1] = append(childEdges[1][1], b)
|
||
|
}
|
||
|
} else if edge.bound.Y.Hi <= middle.Y.Lo {
|
||
|
// Edge is entirely contained in the two lower children.
|
||
|
if a := s.clipUBound(edge, 1, middle.X.Hi); a != nil {
|
||
|
childEdges[0][0] = append(childEdges[0][0], a)
|
||
|
}
|
||
|
if b := s.clipUBound(edge, 0, middle.X.Lo); b != nil {
|
||
|
childEdges[1][0] = append(childEdges[1][0], b)
|
||
|
}
|
||
|
} else if edge.bound.Y.Lo >= middle.Y.Hi {
|
||
|
// Edge is entirely contained in the two upper children.
|
||
|
if a := s.clipUBound(edge, 1, middle.X.Hi); a != nil {
|
||
|
childEdges[0][1] = append(childEdges[0][1], a)
|
||
|
}
|
||
|
if b := s.clipUBound(edge, 0, middle.X.Lo); b != nil {
|
||
|
childEdges[1][1] = append(childEdges[1][1], b)
|
||
|
}
|
||
|
} else {
|
||
|
// The edge bound spans all four children. The edge
|
||
|
// itself intersects either three or four padded children.
|
||
|
left := s.clipUBound(edge, 1, middle.X.Hi)
|
||
|
a, b := s.clipVAxis(left, middle.Y)
|
||
|
if a != nil {
|
||
|
childEdges[0][0] = append(childEdges[0][0], a)
|
||
|
}
|
||
|
if b != nil {
|
||
|
childEdges[0][1] = append(childEdges[0][1], b)
|
||
|
}
|
||
|
right := s.clipUBound(edge, 0, middle.X.Lo)
|
||
|
a, b = s.clipVAxis(right, middle.Y)
|
||
|
if a != nil {
|
||
|
childEdges[1][0] = append(childEdges[1][0], a)
|
||
|
}
|
||
|
if b != nil {
|
||
|
childEdges[1][1] = append(childEdges[1][1], b)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Now recursively update the edges in each child. We call the children in
|
||
|
// increasing order of CellID so that when the index is first constructed,
|
||
|
// all insertions into cellMap are at the end (which is much faster).
|
||
|
for pos := 0; pos < 4; pos++ {
|
||
|
i, j := pcell.ChildIJ(pos)
|
||
|
if len(childEdges[i][j]) > 0 || len(t.shapeIDs) > 0 {
|
||
|
s.updateEdges(PaddedCellFromParentIJ(pcell, i, j), childEdges[i][j],
|
||
|
t, disjointFromIndex)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if indexCellAbsorbed {
|
||
|
// Restore the state for any edges being removed that we are tracking.
|
||
|
t.restoreStateBefore(s.pendingAdditionsPos)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// makeIndexCell builds an indexCell from the given padded cell and set of edges and adds
|
||
|
// it to the index. If the cell or edges are empty, no cell is added.
|
||
|
func (s *ShapeIndex) makeIndexCell(p *PaddedCell, edges []*clippedEdge, t *tracker) bool {
|
||
|
// If the cell is empty, no index cell is needed. (In most cases this
|
||
|
// situation is detected before we get to this point, but this can happen
|
||
|
// when all shapes in a cell are removed.)
|
||
|
if len(edges) == 0 && len(t.shapeIDs) == 0 {
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// Count the number of edges that have not reached their maximum level yet.
|
||
|
// Return false if there are too many such edges.
|
||
|
count := 0
|
||
|
for _, ce := range edges {
|
||
|
if p.Level() < ce.faceEdge.maxLevel {
|
||
|
count++
|
||
|
}
|
||
|
|
||
|
if count > s.maxEdgesPerCell {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Possible optimization: Continue subdividing as long as exactly one child
|
||
|
// of the padded cell intersects the given edges. This can be done by finding
|
||
|
// the bounding box of all the edges and calling ShrinkToFit:
|
||
|
//
|
||
|
// cellID = p.ShrinkToFit(RectBound(edges));
|
||
|
//
|
||
|
// Currently this is not beneficial; it slows down construction by 4-25%
|
||
|
// (mainly computing the union of the bounding rectangles) and also slows
|
||
|
// down queries (since more recursive clipping is required to get down to
|
||
|
// the level of a spatial index cell). But it may be worth trying again
|
||
|
// once containsCenter is computed and all algorithms are modified to
|
||
|
// take advantage of it.
|
||
|
|
||
|
// We update the InteriorTracker as follows. For every Cell in the index
|
||
|
// we construct two edges: one edge from entry vertex of the cell to its
|
||
|
// center, and one from the cell center to its exit vertex. Here entry
|
||
|
// and exit refer the CellID ordering, i.e. the order in which points
|
||
|
// are encountered along the 2 space-filling curve. The exit vertex then
|
||
|
// becomes the entry vertex for the next cell in the index, unless there are
|
||
|
// one or more empty intervening cells, in which case the InteriorTracker
|
||
|
// state is unchanged because the intervening cells have no edges.
|
||
|
|
||
|
// Shift the InteriorTracker focus point to the center of the current cell.
|
||
|
if t.isActive && len(edges) != 0 {
|
||
|
if !t.atCellID(p.id) {
|
||
|
t.moveTo(p.EntryVertex())
|
||
|
}
|
||
|
t.drawTo(p.Center())
|
||
|
s.testAllEdges(edges, t)
|
||
|
}
|
||
|
|
||
|
// Allocate and fill a new index cell. To get the total number of shapes we
|
||
|
// need to merge the shapes associated with the intersecting edges together
|
||
|
// with the shapes that happen to contain the cell center.
|
||
|
cshapeIDs := t.shapeIDs
|
||
|
numShapes := s.countShapes(edges, cshapeIDs)
|
||
|
cell := NewShapeIndexCell(numShapes)
|
||
|
|
||
|
// To fill the index cell we merge the two sources of shapes: edge shapes
|
||
|
// (those that have at least one edge that intersects this cell), and
|
||
|
// containing shapes (those that contain the cell center). We keep track
|
||
|
// of the index of the next intersecting edge and the next containing shape
|
||
|
// as we go along. Both sets of shape ids are already sorted.
|
||
|
eNext := 0
|
||
|
cNextIdx := 0
|
||
|
for i := 0; i < numShapes; i++ {
|
||
|
var clipped *clippedShape
|
||
|
// advance to next value base + i
|
||
|
eshapeID := int32(s.Len())
|
||
|
cshapeID := eshapeID // Sentinels
|
||
|
|
||
|
if eNext != len(edges) {
|
||
|
eshapeID = edges[eNext].faceEdge.shapeID
|
||
|
}
|
||
|
if cNextIdx < len(cshapeIDs) {
|
||
|
cshapeID = cshapeIDs[cNextIdx]
|
||
|
}
|
||
|
eBegin := eNext
|
||
|
if cshapeID < eshapeID {
|
||
|
// The entire cell is in the shape interior.
|
||
|
clipped = newClippedShape(cshapeID, 0)
|
||
|
clipped.containsCenter = true
|
||
|
cNextIdx++
|
||
|
} else {
|
||
|
// Count the number of edges for this shape and allocate space for them.
|
||
|
for eNext < len(edges) && edges[eNext].faceEdge.shapeID == eshapeID {
|
||
|
eNext++
|
||
|
}
|
||
|
clipped = newClippedShape(eshapeID, eNext-eBegin)
|
||
|
for e := eBegin; e < eNext; e++ {
|
||
|
clipped.edges[e-eBegin] = edges[e].faceEdge.edgeID
|
||
|
}
|
||
|
if cshapeID == eshapeID {
|
||
|
clipped.containsCenter = true
|
||
|
cNextIdx++
|
||
|
}
|
||
|
}
|
||
|
cell.shapes[i] = clipped
|
||
|
}
|
||
|
|
||
|
// Add this cell to the map.
|
||
|
s.cellMap[p.id] = cell
|
||
|
s.cells = append(s.cells, p.id)
|
||
|
|
||
|
// Shift the tracker focus point to the exit vertex of this cell.
|
||
|
if t.isActive && len(edges) != 0 {
|
||
|
t.drawTo(p.ExitVertex())
|
||
|
s.testAllEdges(edges, t)
|
||
|
t.setNextCellID(p.id.Next())
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// updateBound updates the specified endpoint of the given clipped edge and returns the
|
||
|
// resulting clipped edge.
|
||
|
func (s *ShapeIndex) updateBound(edge *clippedEdge, uEnd int, u float64, vEnd int, v float64) *clippedEdge {
|
||
|
c := &clippedEdge{faceEdge: edge.faceEdge}
|
||
|
if uEnd == 0 {
|
||
|
c.bound.X.Lo = u
|
||
|
c.bound.X.Hi = edge.bound.X.Hi
|
||
|
} else {
|
||
|
c.bound.X.Lo = edge.bound.X.Lo
|
||
|
c.bound.X.Hi = u
|
||
|
}
|
||
|
|
||
|
if vEnd == 0 {
|
||
|
c.bound.Y.Lo = v
|
||
|
c.bound.Y.Hi = edge.bound.Y.Hi
|
||
|
} else {
|
||
|
c.bound.Y.Lo = edge.bound.Y.Lo
|
||
|
c.bound.Y.Hi = v
|
||
|
}
|
||
|
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
// clipUBound clips the given endpoint (lo=0, hi=1) of the u-axis so that
|
||
|
// it does not extend past the given value of the given edge.
|
||
|
func (s *ShapeIndex) clipUBound(edge *clippedEdge, uEnd int, u float64) *clippedEdge {
|
||
|
// First check whether the edge actually requires any clipping. (Sometimes
|
||
|
// this method is called when clipping is not necessary, e.g. when one edge
|
||
|
// endpoint is in the overlap area between two padded child cells.)
|
||
|
if uEnd == 0 {
|
||
|
if edge.bound.X.Lo >= u {
|
||
|
return edge
|
||
|
}
|
||
|
} else {
|
||
|
if edge.bound.X.Hi <= u {
|
||
|
return edge
|
||
|
}
|
||
|
}
|
||
|
// We interpolate the new v-value from the endpoints of the original edge.
|
||
|
// This has two advantages: (1) we don't need to store the clipped endpoints
|
||
|
// at all, just their bounding box; and (2) it avoids the accumulation of
|
||
|
// roundoff errors due to repeated interpolations. The result needs to be
|
||
|
// clamped to ensure that it is in the appropriate range.
|
||
|
e := edge.faceEdge
|
||
|
v := edge.bound.Y.ClampPoint(interpolateFloat64(u, e.a.X, e.b.X, e.a.Y, e.b.Y))
|
||
|
|
||
|
// Determine which endpoint of the v-axis bound to update. If the edge
|
||
|
// slope is positive we update the same endpoint, otherwise we update the
|
||
|
// opposite endpoint.
|
||
|
var vEnd int
|
||
|
positiveSlope := (e.a.X > e.b.X) == (e.a.Y > e.b.Y)
|
||
|
if (uEnd == 1) == positiveSlope {
|
||
|
vEnd = 1
|
||
|
}
|
||
|
return s.updateBound(edge, uEnd, u, vEnd, v)
|
||
|
}
|
||
|
|
||
|
// clipVBound clips the given endpoint (lo=0, hi=1) of the v-axis so that
|
||
|
// it does not extend past the given value of the given edge.
|
||
|
func (s *ShapeIndex) clipVBound(edge *clippedEdge, vEnd int, v float64) *clippedEdge {
|
||
|
if vEnd == 0 {
|
||
|
if edge.bound.Y.Lo >= v {
|
||
|
return edge
|
||
|
}
|
||
|
} else {
|
||
|
if edge.bound.Y.Hi <= v {
|
||
|
return edge
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// We interpolate the new v-value from the endpoints of the original edge.
|
||
|
// This has two advantages: (1) we don't need to store the clipped endpoints
|
||
|
// at all, just their bounding box; and (2) it avoids the accumulation of
|
||
|
// roundoff errors due to repeated interpolations. The result needs to be
|
||
|
// clamped to ensure that it is in the appropriate range.
|
||
|
e := edge.faceEdge
|
||
|
u := edge.bound.X.ClampPoint(interpolateFloat64(v, e.a.Y, e.b.Y, e.a.X, e.b.X))
|
||
|
|
||
|
// Determine which endpoint of the v-axis bound to update. If the edge
|
||
|
// slope is positive we update the same endpoint, otherwise we update the
|
||
|
// opposite endpoint.
|
||
|
var uEnd int
|
||
|
positiveSlope := (e.a.X > e.b.X) == (e.a.Y > e.b.Y)
|
||
|
if (vEnd == 1) == positiveSlope {
|
||
|
uEnd = 1
|
||
|
}
|
||
|
return s.updateBound(edge, uEnd, u, vEnd, v)
|
||
|
}
|
||
|
|
||
|
// cliupVAxis returns the given edge clipped to within the boundaries of the middle
|
||
|
// interval along the v-axis, and adds the result to its children.
|
||
|
func (s *ShapeIndex) clipVAxis(edge *clippedEdge, middle r1.Interval) (a, b *clippedEdge) {
|
||
|
if edge.bound.Y.Hi <= middle.Lo {
|
||
|
// Edge is entirely contained in the lower child.
|
||
|
return edge, nil
|
||
|
} else if edge.bound.Y.Lo >= middle.Hi {
|
||
|
// Edge is entirely contained in the upper child.
|
||
|
return nil, edge
|
||
|
}
|
||
|
// The edge bound spans both children.
|
||
|
return s.clipVBound(edge, 1, middle.Hi), s.clipVBound(edge, 0, middle.Lo)
|
||
|
}
|
||
|
|
||
|
// absorbIndexCell absorbs an index cell by transferring its contents to edges
|
||
|
// and/or "tracker", and then delete this cell from the index. If edges includes
|
||
|
// any edges that are being removed, this method also updates their
|
||
|
// InteriorTracker state to correspond to the exit vertex of this cell.
|
||
|
func (s *ShapeIndex) absorbIndexCell(p *PaddedCell, iter *ShapeIndexIterator, edges []*clippedEdge, t *tracker) {
|
||
|
// When we absorb a cell, we erase all the edges that are being removed.
|
||
|
// However when we are finished with this cell, we want to restore the state
|
||
|
// of those edges (since that is how we find all the index cells that need
|
||
|
// to be updated). The edges themselves are restored automatically when
|
||
|
// UpdateEdges returns from its recursive call, but the InteriorTracker
|
||
|
// state needs to be restored explicitly.
|
||
|
//
|
||
|
// Here we first update the InteriorTracker state for removed edges to
|
||
|
// correspond to the exit vertex of this cell, and then save the
|
||
|
// InteriorTracker state. This state will be restored by UpdateEdges when
|
||
|
// it is finished processing the contents of this cell.
|
||
|
if t.isActive && len(edges) != 0 && s.isShapeBeingRemoved(edges[0].faceEdge.shapeID) {
|
||
|
// We probably need to update the tracker. ("Probably" because
|
||
|
// it's possible that all shapes being removed do not have interiors.)
|
||
|
if !t.atCellID(p.id) {
|
||
|
t.moveTo(p.EntryVertex())
|
||
|
}
|
||
|
t.drawTo(p.ExitVertex())
|
||
|
t.setNextCellID(p.id.Next())
|
||
|
for _, edge := range edges {
|
||
|
fe := edge.faceEdge
|
||
|
if !s.isShapeBeingRemoved(fe.shapeID) {
|
||
|
break // All shapes being removed come first.
|
||
|
}
|
||
|
if fe.hasInterior {
|
||
|
t.testEdge(fe.shapeID, fe.edge)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Save the state of the edges being removed, so that it can be restored
|
||
|
// when we are finished processing this cell and its children. We don't
|
||
|
// need to save the state of the edges being added because they aren't being
|
||
|
// removed from "edges" and will therefore be updated normally as we visit
|
||
|
// this cell and its children.
|
||
|
t.saveAndClearStateBefore(s.pendingAdditionsPos)
|
||
|
|
||
|
// Create a faceEdge for each edge in this cell that isn't being removed.
|
||
|
var faceEdges []*faceEdge
|
||
|
trackerMoved := false
|
||
|
|
||
|
cell := iter.IndexCell()
|
||
|
for _, clipped := range cell.shapes {
|
||
|
shapeID := clipped.shapeID
|
||
|
shape := s.Shape(shapeID)
|
||
|
if shape == nil {
|
||
|
continue // This shape is being removed.
|
||
|
}
|
||
|
|
||
|
numClipped := clipped.numEdges()
|
||
|
|
||
|
// If this shape has an interior, start tracking whether we are inside the
|
||
|
// shape. updateEdges wants to know whether the entry vertex of this
|
||
|
// cell is inside the shape, but we only know whether the center of the
|
||
|
// cell is inside the shape, so we need to test all the edges against the
|
||
|
// line segment from the cell center to the entry vertex.
|
||
|
edge := &faceEdge{
|
||
|
shapeID: shapeID,
|
||
|
hasInterior: shape.Dimension() == 2,
|
||
|
}
|
||
|
|
||
|
if edge.hasInterior {
|
||
|
t.addShape(shapeID, clipped.containsCenter)
|
||
|
// There might not be any edges in this entire cell (i.e., it might be
|
||
|
// in the interior of all shapes), so we delay updating the tracker
|
||
|
// until we see the first edge.
|
||
|
if !trackerMoved && numClipped > 0 {
|
||
|
t.moveTo(p.Center())
|
||
|
t.drawTo(p.EntryVertex())
|
||
|
t.setNextCellID(p.id)
|
||
|
trackerMoved = true
|
||
|
}
|
||
|
}
|
||
|
for i := 0; i < numClipped; i++ {
|
||
|
edgeID := clipped.edges[i]
|
||
|
edge.edgeID = edgeID
|
||
|
edge.edge = shape.Edge(edgeID)
|
||
|
edge.maxLevel = maxLevelForEdge(edge.edge)
|
||
|
if edge.hasInterior {
|
||
|
t.testEdge(shapeID, edge.edge)
|
||
|
}
|
||
|
var ok bool
|
||
|
edge.a, edge.b, ok = ClipToPaddedFace(edge.edge.V0, edge.edge.V1, p.id.Face(), cellPadding)
|
||
|
if !ok {
|
||
|
panic("invariant failure in ShapeIndex")
|
||
|
}
|
||
|
faceEdges = append(faceEdges, edge)
|
||
|
}
|
||
|
}
|
||
|
// Now create a clippedEdge for each faceEdge, and put them in "new_edges".
|
||
|
var newEdges []*clippedEdge
|
||
|
for _, faceEdge := range faceEdges {
|
||
|
clipped := &clippedEdge{
|
||
|
faceEdge: faceEdge,
|
||
|
bound: clippedEdgeBound(faceEdge.a, faceEdge.b, p.bound),
|
||
|
}
|
||
|
newEdges = append(newEdges, clipped)
|
||
|
}
|
||
|
|
||
|
// Discard any edges from "edges" that are being removed, and append the
|
||
|
// remainder to "newEdges" (This keeps the edges sorted by shape id.)
|
||
|
for i, clipped := range edges {
|
||
|
if !s.isShapeBeingRemoved(clipped.faceEdge.shapeID) {
|
||
|
newEdges = append(newEdges, edges[i:]...)
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Update the edge list and delete this cell from the index.
|
||
|
edges, newEdges = newEdges, edges
|
||
|
delete(s.cellMap, p.id)
|
||
|
// TODO(roberts): delete from s.Cells
|
||
|
}
|
||
|
|
||
|
// testAllEdges calls the trackers testEdge on all edges from shapes that have interiors.
|
||
|
func (s *ShapeIndex) testAllEdges(edges []*clippedEdge, t *tracker) {
|
||
|
for _, edge := range edges {
|
||
|
if edge.faceEdge.hasInterior {
|
||
|
t.testEdge(edge.faceEdge.shapeID, edge.faceEdge.edge)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// countShapes reports the number of distinct shapes that are either associated with the
|
||
|
// given edges, or that are currently stored in the InteriorTracker.
|
||
|
func (s *ShapeIndex) countShapes(edges []*clippedEdge, shapeIDs []int32) int {
|
||
|
count := 0
|
||
|
lastShapeID := int32(-1)
|
||
|
|
||
|
// next clipped shape id in the shapeIDs list.
|
||
|
clippedNext := int32(0)
|
||
|
// index of the current element in the shapeIDs list.
|
||
|
shapeIDidx := 0
|
||
|
for _, edge := range edges {
|
||
|
if edge.faceEdge.shapeID == lastShapeID {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
count++
|
||
|
lastShapeID = edge.faceEdge.shapeID
|
||
|
|
||
|
// Skip over any containing shapes up to and including this one,
|
||
|
// updating count as appropriate.
|
||
|
for ; shapeIDidx < len(shapeIDs); shapeIDidx++ {
|
||
|
clippedNext = shapeIDs[shapeIDidx]
|
||
|
if clippedNext > lastShapeID {
|
||
|
break
|
||
|
}
|
||
|
if clippedNext < lastShapeID {
|
||
|
count++
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Count any remaining containing shapes.
|
||
|
count += len(shapeIDs) - shapeIDidx
|
||
|
return count
|
||
|
}
|
||
|
|
||
|
// maxLevelForEdge reports the maximum level for a given edge.
|
||
|
func maxLevelForEdge(edge Edge) int {
|
||
|
// Compute the maximum cell size for which this edge is considered long.
|
||
|
// The calculation does not need to be perfectly accurate, so we use Norm
|
||
|
// rather than Angle for speed.
|
||
|
cellSize := edge.V0.Sub(edge.V1.Vector).Norm() * cellSizeToLongEdgeRatio
|
||
|
// Now return the first level encountered during subdivision where the
|
||
|
// average cell size is at most cellSize.
|
||
|
return AvgEdgeMetric.MinLevel(cellSize)
|
||
|
}
|
||
|
|
||
|
// removeShapeInternal does the actual work for removing a given shape from the index.
|
||
|
func (s *ShapeIndex) removeShapeInternal(removed *removedShape, allEdges [][]faceEdge, t *tracker) {
|
||
|
// TODO(roberts): finish the implementation of this.
|
||
|
}
|