mirror of
https://github.com/superseriousbusiness/gotosocial
synced 2024-12-27 13:13:10 +00:00
463 lines
14 KiB
Go
463 lines
14 KiB
Go
|
// Copyright 2014 Google Inc. All rights reserved.
|
|||
|
//
|
|||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
// you may not use this file except in compliance with the License.
|
|||
|
// You may obtain a copy of the License at
|
|||
|
//
|
|||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
//
|
|||
|
// Unless required by applicable law or agreed to in writing, software
|
|||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
// See the License for the specific language governing permissions and
|
|||
|
// limitations under the License.
|
|||
|
|
|||
|
package s1
|
|||
|
|
|||
|
import (
|
|||
|
"math"
|
|||
|
"strconv"
|
|||
|
)
|
|||
|
|
|||
|
// An Interval represents a closed interval on a unit circle (also known
|
|||
|
// as a 1-dimensional sphere). It is capable of representing the empty
|
|||
|
// interval (containing no points), the full interval (containing all
|
|||
|
// points), and zero-length intervals (containing a single point).
|
|||
|
//
|
|||
|
// Points are represented by the angle they make with the positive x-axis in
|
|||
|
// the range [-π, π]. An interval is represented by its lower and upper
|
|||
|
// bounds (both inclusive, since the interval is closed). The lower bound may
|
|||
|
// be greater than the upper bound, in which case the interval is "inverted"
|
|||
|
// (i.e. it passes through the point (-1, 0)).
|
|||
|
//
|
|||
|
// The point (-1, 0) has two valid representations, π and -π. The
|
|||
|
// normalized representation of this point is π, so that endpoints
|
|||
|
// of normal intervals are in the range (-π, π]. We normalize the latter to
|
|||
|
// the former in IntervalFromEndpoints. However, we take advantage of the point
|
|||
|
// -π to construct two special intervals:
|
|||
|
// The full interval is [-π, π]
|
|||
|
// The empty interval is [π, -π].
|
|||
|
//
|
|||
|
// Treat the exported fields as read-only.
|
|||
|
type Interval struct {
|
|||
|
Lo, Hi float64
|
|||
|
}
|
|||
|
|
|||
|
// IntervalFromEndpoints constructs a new interval from endpoints.
|
|||
|
// Both arguments must be in the range [-π,π]. This function allows inverted intervals
|
|||
|
// to be created.
|
|||
|
func IntervalFromEndpoints(lo, hi float64) Interval {
|
|||
|
i := Interval{lo, hi}
|
|||
|
if lo == -math.Pi && hi != math.Pi {
|
|||
|
i.Lo = math.Pi
|
|||
|
}
|
|||
|
if hi == -math.Pi && lo != math.Pi {
|
|||
|
i.Hi = math.Pi
|
|||
|
}
|
|||
|
return i
|
|||
|
}
|
|||
|
|
|||
|
// IntervalFromPointPair returns the minimal interval containing the two given points.
|
|||
|
// Both arguments must be in [-π,π].
|
|||
|
func IntervalFromPointPair(a, b float64) Interval {
|
|||
|
if a == -math.Pi {
|
|||
|
a = math.Pi
|
|||
|
}
|
|||
|
if b == -math.Pi {
|
|||
|
b = math.Pi
|
|||
|
}
|
|||
|
if positiveDistance(a, b) <= math.Pi {
|
|||
|
return Interval{a, b}
|
|||
|
}
|
|||
|
return Interval{b, a}
|
|||
|
}
|
|||
|
|
|||
|
// EmptyInterval returns an empty interval.
|
|||
|
func EmptyInterval() Interval { return Interval{math.Pi, -math.Pi} }
|
|||
|
|
|||
|
// FullInterval returns a full interval.
|
|||
|
func FullInterval() Interval { return Interval{-math.Pi, math.Pi} }
|
|||
|
|
|||
|
// IsValid reports whether the interval is valid.
|
|||
|
func (i Interval) IsValid() bool {
|
|||
|
return (math.Abs(i.Lo) <= math.Pi && math.Abs(i.Hi) <= math.Pi &&
|
|||
|
!(i.Lo == -math.Pi && i.Hi != math.Pi) &&
|
|||
|
!(i.Hi == -math.Pi && i.Lo != math.Pi))
|
|||
|
}
|
|||
|
|
|||
|
// IsFull reports whether the interval is full.
|
|||
|
func (i Interval) IsFull() bool { return i.Lo == -math.Pi && i.Hi == math.Pi }
|
|||
|
|
|||
|
// IsEmpty reports whether the interval is empty.
|
|||
|
func (i Interval) IsEmpty() bool { return i.Lo == math.Pi && i.Hi == -math.Pi }
|
|||
|
|
|||
|
// IsInverted reports whether the interval is inverted; that is, whether Lo > Hi.
|
|||
|
func (i Interval) IsInverted() bool { return i.Lo > i.Hi }
|
|||
|
|
|||
|
// Invert returns the interval with endpoints swapped.
|
|||
|
func (i Interval) Invert() Interval {
|
|||
|
return Interval{i.Hi, i.Lo}
|
|||
|
}
|
|||
|
|
|||
|
// Center returns the midpoint of the interval.
|
|||
|
// It is undefined for full and empty intervals.
|
|||
|
func (i Interval) Center() float64 {
|
|||
|
c := 0.5 * (i.Lo + i.Hi)
|
|||
|
if !i.IsInverted() {
|
|||
|
return c
|
|||
|
}
|
|||
|
if c <= 0 {
|
|||
|
return c + math.Pi
|
|||
|
}
|
|||
|
return c - math.Pi
|
|||
|
}
|
|||
|
|
|||
|
// Length returns the length of the interval.
|
|||
|
// The length of an empty interval is negative.
|
|||
|
func (i Interval) Length() float64 {
|
|||
|
l := i.Hi - i.Lo
|
|||
|
if l >= 0 {
|
|||
|
return l
|
|||
|
}
|
|||
|
l += 2 * math.Pi
|
|||
|
if l > 0 {
|
|||
|
return l
|
|||
|
}
|
|||
|
return -1
|
|||
|
}
|
|||
|
|
|||
|
// Assumes p ∈ (-π,π].
|
|||
|
func (i Interval) fastContains(p float64) bool {
|
|||
|
if i.IsInverted() {
|
|||
|
return (p >= i.Lo || p <= i.Hi) && !i.IsEmpty()
|
|||
|
}
|
|||
|
return p >= i.Lo && p <= i.Hi
|
|||
|
}
|
|||
|
|
|||
|
// Contains returns true iff the interval contains p.
|
|||
|
// Assumes p ∈ [-π,π].
|
|||
|
func (i Interval) Contains(p float64) bool {
|
|||
|
if p == -math.Pi {
|
|||
|
p = math.Pi
|
|||
|
}
|
|||
|
return i.fastContains(p)
|
|||
|
}
|
|||
|
|
|||
|
// ContainsInterval returns true iff the interval contains oi.
|
|||
|
func (i Interval) ContainsInterval(oi Interval) bool {
|
|||
|
if i.IsInverted() {
|
|||
|
if oi.IsInverted() {
|
|||
|
return oi.Lo >= i.Lo && oi.Hi <= i.Hi
|
|||
|
}
|
|||
|
return (oi.Lo >= i.Lo || oi.Hi <= i.Hi) && !i.IsEmpty()
|
|||
|
}
|
|||
|
if oi.IsInverted() {
|
|||
|
return i.IsFull() || oi.IsEmpty()
|
|||
|
}
|
|||
|
return oi.Lo >= i.Lo && oi.Hi <= i.Hi
|
|||
|
}
|
|||
|
|
|||
|
// InteriorContains returns true iff the interior of the interval contains p.
|
|||
|
// Assumes p ∈ [-π,π].
|
|||
|
func (i Interval) InteriorContains(p float64) bool {
|
|||
|
if p == -math.Pi {
|
|||
|
p = math.Pi
|
|||
|
}
|
|||
|
if i.IsInverted() {
|
|||
|
return p > i.Lo || p < i.Hi
|
|||
|
}
|
|||
|
return (p > i.Lo && p < i.Hi) || i.IsFull()
|
|||
|
}
|
|||
|
|
|||
|
// InteriorContainsInterval returns true iff the interior of the interval contains oi.
|
|||
|
func (i Interval) InteriorContainsInterval(oi Interval) bool {
|
|||
|
if i.IsInverted() {
|
|||
|
if oi.IsInverted() {
|
|||
|
return (oi.Lo > i.Lo && oi.Hi < i.Hi) || oi.IsEmpty()
|
|||
|
}
|
|||
|
return oi.Lo > i.Lo || oi.Hi < i.Hi
|
|||
|
}
|
|||
|
if oi.IsInverted() {
|
|||
|
return i.IsFull() || oi.IsEmpty()
|
|||
|
}
|
|||
|
return (oi.Lo > i.Lo && oi.Hi < i.Hi) || i.IsFull()
|
|||
|
}
|
|||
|
|
|||
|
// Intersects returns true iff the interval contains any points in common with oi.
|
|||
|
func (i Interval) Intersects(oi Interval) bool {
|
|||
|
if i.IsEmpty() || oi.IsEmpty() {
|
|||
|
return false
|
|||
|
}
|
|||
|
if i.IsInverted() {
|
|||
|
return oi.IsInverted() || oi.Lo <= i.Hi || oi.Hi >= i.Lo
|
|||
|
}
|
|||
|
if oi.IsInverted() {
|
|||
|
return oi.Lo <= i.Hi || oi.Hi >= i.Lo
|
|||
|
}
|
|||
|
return oi.Lo <= i.Hi && oi.Hi >= i.Lo
|
|||
|
}
|
|||
|
|
|||
|
// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary.
|
|||
|
func (i Interval) InteriorIntersects(oi Interval) bool {
|
|||
|
if i.IsEmpty() || oi.IsEmpty() || i.Lo == i.Hi {
|
|||
|
return false
|
|||
|
}
|
|||
|
if i.IsInverted() {
|
|||
|
return oi.IsInverted() || oi.Lo < i.Hi || oi.Hi > i.Lo
|
|||
|
}
|
|||
|
if oi.IsInverted() {
|
|||
|
return oi.Lo < i.Hi || oi.Hi > i.Lo
|
|||
|
}
|
|||
|
return (oi.Lo < i.Hi && oi.Hi > i.Lo) || i.IsFull()
|
|||
|
}
|
|||
|
|
|||
|
// Compute distance from a to b in [0,2π], in a numerically stable way.
|
|||
|
func positiveDistance(a, b float64) float64 {
|
|||
|
d := b - a
|
|||
|
if d >= 0 {
|
|||
|
return d
|
|||
|
}
|
|||
|
return (b + math.Pi) - (a - math.Pi)
|
|||
|
}
|
|||
|
|
|||
|
// Union returns the smallest interval that contains both the interval and oi.
|
|||
|
func (i Interval) Union(oi Interval) Interval {
|
|||
|
if oi.IsEmpty() {
|
|||
|
return i
|
|||
|
}
|
|||
|
if i.fastContains(oi.Lo) {
|
|||
|
if i.fastContains(oi.Hi) {
|
|||
|
// Either oi ⊂ i, or i ∪ oi is the full interval.
|
|||
|
if i.ContainsInterval(oi) {
|
|||
|
return i
|
|||
|
}
|
|||
|
return FullInterval()
|
|||
|
}
|
|||
|
return Interval{i.Lo, oi.Hi}
|
|||
|
}
|
|||
|
if i.fastContains(oi.Hi) {
|
|||
|
return Interval{oi.Lo, i.Hi}
|
|||
|
}
|
|||
|
|
|||
|
// Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
|
|||
|
if i.IsEmpty() || oi.fastContains(i.Lo) {
|
|||
|
return oi
|
|||
|
}
|
|||
|
|
|||
|
// This is the only hard case where we need to find the closest pair of endpoints.
|
|||
|
if positiveDistance(oi.Hi, i.Lo) < positiveDistance(i.Hi, oi.Lo) {
|
|||
|
return Interval{oi.Lo, i.Hi}
|
|||
|
}
|
|||
|
return Interval{i.Lo, oi.Hi}
|
|||
|
}
|
|||
|
|
|||
|
// Intersection returns the smallest interval that contains the intersection of the interval and oi.
|
|||
|
func (i Interval) Intersection(oi Interval) Interval {
|
|||
|
if oi.IsEmpty() {
|
|||
|
return EmptyInterval()
|
|||
|
}
|
|||
|
if i.fastContains(oi.Lo) {
|
|||
|
if i.fastContains(oi.Hi) {
|
|||
|
// Either oi ⊂ i, or i and oi intersect twice. Neither are empty.
|
|||
|
// In the first case we want to return i (which is shorter than oi).
|
|||
|
// In the second case one of them is inverted, and the smallest interval
|
|||
|
// that covers the two disjoint pieces is the shorter of i and oi.
|
|||
|
// We thus want to pick the shorter of i and oi in both cases.
|
|||
|
if oi.Length() < i.Length() {
|
|||
|
return oi
|
|||
|
}
|
|||
|
return i
|
|||
|
}
|
|||
|
return Interval{oi.Lo, i.Hi}
|
|||
|
}
|
|||
|
if i.fastContains(oi.Hi) {
|
|||
|
return Interval{i.Lo, oi.Hi}
|
|||
|
}
|
|||
|
|
|||
|
// Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
|
|||
|
if oi.fastContains(i.Lo) {
|
|||
|
return i
|
|||
|
}
|
|||
|
return EmptyInterval()
|
|||
|
}
|
|||
|
|
|||
|
// AddPoint returns the interval expanded by the minimum amount necessary such
|
|||
|
// that it contains the given point "p" (an angle in the range [-π, π]).
|
|||
|
func (i Interval) AddPoint(p float64) Interval {
|
|||
|
if math.Abs(p) > math.Pi {
|
|||
|
return i
|
|||
|
}
|
|||
|
if p == -math.Pi {
|
|||
|
p = math.Pi
|
|||
|
}
|
|||
|
if i.fastContains(p) {
|
|||
|
return i
|
|||
|
}
|
|||
|
if i.IsEmpty() {
|
|||
|
return Interval{p, p}
|
|||
|
}
|
|||
|
if positiveDistance(p, i.Lo) < positiveDistance(i.Hi, p) {
|
|||
|
return Interval{p, i.Hi}
|
|||
|
}
|
|||
|
return Interval{i.Lo, p}
|
|||
|
}
|
|||
|
|
|||
|
// Define the maximum rounding error for arithmetic operations. Depending on the
|
|||
|
// platform the mantissa precision may be different than others, so we choose to
|
|||
|
// use specific values to be consistent across all.
|
|||
|
// The values come from the C++ implementation.
|
|||
|
var (
|
|||
|
// epsilon is a small number that represents a reasonable level of noise between two
|
|||
|
// values that can be considered to be equal.
|
|||
|
epsilon = 1e-15
|
|||
|
// dblEpsilon is a smaller number for values that require more precision.
|
|||
|
dblEpsilon = 2.220446049e-16
|
|||
|
)
|
|||
|
|
|||
|
// Expanded returns an interval that has been expanded on each side by margin.
|
|||
|
// If margin is negative, then the function shrinks the interval on
|
|||
|
// each side by margin instead. The resulting interval may be empty or
|
|||
|
// full. Any expansion (positive or negative) of a full interval remains
|
|||
|
// full, and any expansion of an empty interval remains empty.
|
|||
|
func (i Interval) Expanded(margin float64) Interval {
|
|||
|
if margin >= 0 {
|
|||
|
if i.IsEmpty() {
|
|||
|
return i
|
|||
|
}
|
|||
|
// Check whether this interval will be full after expansion, allowing
|
|||
|
// for a rounding error when computing each endpoint.
|
|||
|
if i.Length()+2*margin+2*dblEpsilon >= 2*math.Pi {
|
|||
|
return FullInterval()
|
|||
|
}
|
|||
|
} else {
|
|||
|
if i.IsFull() {
|
|||
|
return i
|
|||
|
}
|
|||
|
// Check whether this interval will be empty after expansion, allowing
|
|||
|
// for a rounding error when computing each endpoint.
|
|||
|
if i.Length()+2*margin-2*dblEpsilon <= 0 {
|
|||
|
return EmptyInterval()
|
|||
|
}
|
|||
|
}
|
|||
|
result := IntervalFromEndpoints(
|
|||
|
math.Remainder(i.Lo-margin, 2*math.Pi),
|
|||
|
math.Remainder(i.Hi+margin, 2*math.Pi),
|
|||
|
)
|
|||
|
if result.Lo <= -math.Pi {
|
|||
|
result.Lo = math.Pi
|
|||
|
}
|
|||
|
return result
|
|||
|
}
|
|||
|
|
|||
|
// ApproxEqual reports whether this interval can be transformed into the given
|
|||
|
// interval by moving each endpoint by at most ε, without the
|
|||
|
// endpoints crossing (which would invert the interval). Empty and full
|
|||
|
// intervals are considered to start at an arbitrary point on the unit circle,
|
|||
|
// so any interval with (length <= 2*ε) matches the empty interval, and
|
|||
|
// any interval with (length >= 2*π - 2*ε) matches the full interval.
|
|||
|
func (i Interval) ApproxEqual(other Interval) bool {
|
|||
|
// Full and empty intervals require special cases because the endpoints
|
|||
|
// are considered to be positioned arbitrarily.
|
|||
|
if i.IsEmpty() {
|
|||
|
return other.Length() <= 2*epsilon
|
|||
|
}
|
|||
|
if other.IsEmpty() {
|
|||
|
return i.Length() <= 2*epsilon
|
|||
|
}
|
|||
|
if i.IsFull() {
|
|||
|
return other.Length() >= 2*(math.Pi-epsilon)
|
|||
|
}
|
|||
|
if other.IsFull() {
|
|||
|
return i.Length() >= 2*(math.Pi-epsilon)
|
|||
|
}
|
|||
|
|
|||
|
// The purpose of the last test below is to verify that moving the endpoints
|
|||
|
// does not invert the interval, e.g. [-1e20, 1e20] vs. [1e20, -1e20].
|
|||
|
return (math.Abs(math.Remainder(other.Lo-i.Lo, 2*math.Pi)) <= epsilon &&
|
|||
|
math.Abs(math.Remainder(other.Hi-i.Hi, 2*math.Pi)) <= epsilon &&
|
|||
|
math.Abs(i.Length()-other.Length()) <= 2*epsilon)
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
func (i Interval) String() string {
|
|||
|
// like "[%.7f, %.7f]"
|
|||
|
return "[" + strconv.FormatFloat(i.Lo, 'f', 7, 64) + ", " + strconv.FormatFloat(i.Hi, 'f', 7, 64) + "]"
|
|||
|
}
|
|||
|
|
|||
|
// Complement returns the complement of the interior of the interval. An interval and
|
|||
|
// its complement have the same boundary but do not share any interior
|
|||
|
// values. The complement operator is not a bijection, since the complement
|
|||
|
// of a singleton interval (containing a single value) is the same as the
|
|||
|
// complement of an empty interval.
|
|||
|
func (i Interval) Complement() Interval {
|
|||
|
if i.Lo == i.Hi {
|
|||
|
// Singleton. The interval just contains a single point.
|
|||
|
return FullInterval()
|
|||
|
}
|
|||
|
// Handles empty and full.
|
|||
|
return Interval{i.Hi, i.Lo}
|
|||
|
}
|
|||
|
|
|||
|
// ComplementCenter returns the midpoint of the complement of the interval. For full and empty
|
|||
|
// intervals, the result is arbitrary. For a singleton interval (containing a
|
|||
|
// single point), the result is its antipodal point on S1.
|
|||
|
func (i Interval) ComplementCenter() float64 {
|
|||
|
if i.Lo != i.Hi {
|
|||
|
return i.Complement().Center()
|
|||
|
}
|
|||
|
// Singleton. The interval just contains a single point.
|
|||
|
if i.Hi <= 0 {
|
|||
|
return i.Hi + math.Pi
|
|||
|
}
|
|||
|
return i.Hi - math.Pi
|
|||
|
}
|
|||
|
|
|||
|
// DirectedHausdorffDistance returns the Hausdorff distance to the given interval.
|
|||
|
// For two intervals i and y, this distance is defined by
|
|||
|
// h(i, y) = max_{p in i} min_{q in y} d(p, q),
|
|||
|
// where d(.,.) is measured along S1.
|
|||
|
func (i Interval) DirectedHausdorffDistance(y Interval) Angle {
|
|||
|
if y.ContainsInterval(i) {
|
|||
|
return 0 // This includes the case i is empty.
|
|||
|
}
|
|||
|
if y.IsEmpty() {
|
|||
|
return Angle(math.Pi) // maximum possible distance on s1.
|
|||
|
}
|
|||
|
yComplementCenter := y.ComplementCenter()
|
|||
|
if i.Contains(yComplementCenter) {
|
|||
|
return Angle(positiveDistance(y.Hi, yComplementCenter))
|
|||
|
}
|
|||
|
|
|||
|
// The Hausdorff distance is realized by either two i.Hi endpoints or two
|
|||
|
// i.Lo endpoints, whichever is farther apart.
|
|||
|
hiHi := 0.0
|
|||
|
if IntervalFromEndpoints(y.Hi, yComplementCenter).Contains(i.Hi) {
|
|||
|
hiHi = positiveDistance(y.Hi, i.Hi)
|
|||
|
}
|
|||
|
|
|||
|
loLo := 0.0
|
|||
|
if IntervalFromEndpoints(yComplementCenter, y.Lo).Contains(i.Lo) {
|
|||
|
loLo = positiveDistance(i.Lo, y.Lo)
|
|||
|
}
|
|||
|
|
|||
|
return Angle(math.Max(hiHi, loLo))
|
|||
|
}
|
|||
|
|
|||
|
// Project returns the closest point in the interval to the given point p.
|
|||
|
// The interval must be non-empty.
|
|||
|
func (i Interval) Project(p float64) float64 {
|
|||
|
if p == -math.Pi {
|
|||
|
p = math.Pi
|
|||
|
}
|
|||
|
if i.fastContains(p) {
|
|||
|
return p
|
|||
|
}
|
|||
|
// Compute distance from p to each endpoint.
|
|||
|
dlo := positiveDistance(p, i.Lo)
|
|||
|
dhi := positiveDistance(i.Hi, p)
|
|||
|
if dlo < dhi {
|
|||
|
return i.Lo
|
|||
|
}
|
|||
|
return i.Hi
|
|||
|
}
|