fish-shell/src/wildcard.cpp
ridiculousfish 757c117591 Handle symlink loops in descend_unique_hierarchy
descend_unique_hierarchy is used for the cd autosuggestion: if a directory
contains exactly one subdirectory and no other entries, then propose that
as part of the cd autosuggestion.

This had a bug: if the subdirectory is a symlink to the parent, we would
chase that, going around the loop suggesting a longer path until we hit
PATH_MAX.

Fix this by using the new API which provides the inode "for free," and
track whether we've seen this inode before. This is technically too
conservative since the inode may be for a directory on a different device,
but devices are not available for free so this would incur a cost. In
practice encountering the same inode twice with different devices in a
unique hierarchy is unlikely, and should it happen the consequences are
merely cosmetic: we fail to suggest a longer path.
2022-10-02 18:56:46 -07:00

1038 lines
46 KiB
C++

// Fish needs it's own globbing implementation to support tab-expansion of globbed parameters. Also
// provides recursive wildcards using **.
#include "config.h" // IWYU pragma: keep
#include "wildcard.h"
#include <dirent.h>
#include <errno.h>
#include <stdint.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <cwchar>
#include <functional>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
#include "common.h"
#include "complete.h"
#include "enum_set.h"
#include "expand.h"
#include "fallback.h" // IWYU pragma: keep
#include "future_feature_flags.h"
#include "maybe.h"
#include "path.h"
#include "wcstringutil.h"
#include "wutil.h" // IWYU pragma: keep
/// Finds an internal (ANY_STRING, etc.) style wildcard, or wcstring::npos.
static size_t wildcard_find(const wchar_t *wc) {
for (size_t i = 0; wc[i] != L'\0'; i++) {
if (wc[i] == ANY_CHAR || wc[i] == ANY_STRING || wc[i] == ANY_STRING_RECURSIVE) {
return i;
}
}
return wcstring::npos;
}
bool wildcard_has_internal(const wchar_t *s, size_t len) {
for (size_t i = 0; i < len; i++) {
wchar_t c = s[i];
if (c == ANY_CHAR || c == ANY_STRING || c == ANY_STRING_RECURSIVE) {
return true;
}
}
return false;
}
// Note we want to handle embedded nulls (issue #1631).
bool wildcard_has(const wchar_t *str, size_t len) {
assert(str != nullptr);
const wchar_t *end = str + len;
bool qmark_is_wild = !feature_test(features_t::qmark_noglob);
// Fast check for * or ?; if none there is no wildcard.
// Note some strings contain * but no wildcards, e.g. if they are quoted.
if (std::find(str, end, L'*') == end && (!qmark_is_wild || std::find(str, end, L'?') == end)) {
return false;
}
wcstring unescaped;
unescape_string(str, len, &unescaped, UNESCAPE_SPECIAL);
return wildcard_has_internal(unescaped);
}
/// Check whether the string str matches the wildcard string wc.
///
/// \param str String to be matched.
/// \param wc The wildcard.
/// \param leading_dots_fail_to_match Whether files beginning with dots should not be matched
/// against wildcards.
bool wildcard_match(const wcstring &str, const wcstring &wc, bool leading_dots_fail_to_match) {
// Hackish fix for issue #270. Prevent wildcards from matching . or .., but we must still allow
// literal matches.
if (leading_dots_fail_to_match && (str == L"." || str == L"..")) {
// The string is '.' or '..' so the only possible match is an exact match.
return str == wc;
}
// Near Linear implementation as proposed here https://research.swtch.com/glob.
const wchar_t *const str_start = str.c_str();
const wchar_t *wc_x = wc.c_str();
const wchar_t *str_x = str_start;
const wchar_t *restart_wc_x = wc.c_str();
const wchar_t *restart_str_x = str_start;
bool restart_is_out_of_str = false;
for (; *wc_x != 0 || *str_x != 0;) {
bool is_first = (str_x == str_start);
if (*wc_x != 0) {
if (*wc_x == ANY_STRING || *wc_x == ANY_STRING_RECURSIVE) {
// Ignore hidden file
if (leading_dots_fail_to_match && is_first && str[0] == L'.') {
return false;
}
// Common case of * at the end. In that case we can early out since we know it will
// match.
if (wc_x[1] == L'\0') {
return true;
}
// Try to match at str_x.
// If that doesn't work out, restart at str_x+1 next.
restart_wc_x = wc_x;
restart_str_x = str_x + 1;
restart_is_out_of_str = (*str_x == 0);
wc_x++;
continue;
} else if (*wc_x == ANY_CHAR && *str_x != 0) {
if (is_first && *str_x == L'.') {
return false;
}
wc_x++;
str_x++;
continue;
} else if (*str_x != 0 && *str_x == *wc_x) { // ordinary character
wc_x++;
str_x++;
continue;
}
}
// Mismatch. Maybe restart.
if (restart_str_x != str.c_str() && !restart_is_out_of_str) {
wc_x = restart_wc_x;
str_x = restart_str_x;
continue;
}
return false;
}
// Matched all of pattern to all of name. Success.
return true;
}
// This does something horrible refactored from an even more horrible function.
static wcstring resolve_description(const wcstring &full_completion, wcstring *completion,
expand_flags_t expand_flags,
const description_func_t &desc_func) {
size_t complete_sep_loc = completion->find(PROG_COMPLETE_SEP);
if (complete_sep_loc != wcstring::npos) {
// This completion has an embedded description, do not use the generic description.
wcstring description = completion->substr(complete_sep_loc + 1);
completion->resize(complete_sep_loc);
return description;
}
if (desc_func && (expand_flags & expand_flag::gen_descriptions)) {
return desc_func(full_completion);
}
return wcstring{};
}
namespace {
// A transient parameter pack needed by wildcard_complete.
struct wc_complete_pack_t {
const wcstring &orig; // the original string, transient
const description_func_t &desc_func; // function for generating descriptions
expand_flags_t expand_flags;
wc_complete_pack_t(const wcstring &str, const description_func_t &df, expand_flags_t fl)
: orig(str), desc_func(df), expand_flags(fl) {}
};
} // namespace
// Weirdly specific and non-reusable helper function that makes its one call site much clearer.
static bool has_prefix_match(const completion_receiver_t *comps, size_t first) {
if (comps != nullptr) {
const size_t after_count = comps->size();
for (size_t j = first; j < after_count; j++) {
const auto &match = comps->at(j).match;
if (match.type <= string_fuzzy_match_t::contain_type_t::prefix &&
match.case_fold == string_fuzzy_match_t::case_fold_t::samecase) {
return true;
}
}
}
return false;
}
/// Matches the string against the wildcard, and if the wildcard is a possible completion of the
/// string, the remainder of the string is inserted into the out vector.
///
/// We ignore ANY_STRING_RECURSIVE here. The consequence is that you cannot tab complete **
/// wildcards. This is historic behavior.
static wildcard_result_t wildcard_complete_internal(const wchar_t *const str, size_t str_len,
const wchar_t *const wc, size_t wc_len,
const wc_complete_pack_t &params,
complete_flags_t flags,
completion_receiver_t *out,
bool is_first_call = false) {
assert(str != nullptr);
assert(wc != nullptr);
// Maybe early out for hidden files. We require that the wildcard match these exactly (i.e. a
// dot); ANY_STRING not allowed.
if (is_first_call && str[0] == L'.' && wc[0] != L'.') {
return wildcard_result_t::no_match;
}
// Locate the next wildcard character position, e.g. ANY_CHAR or ANY_STRING.
const size_t next_wc_char_pos = wildcard_find(wc);
// Maybe we have no more wildcards at all. This includes the empty string.
if (next_wc_char_pos == wcstring::npos) {
// Try matching.
maybe_t<string_fuzzy_match_t> match = string_fuzzy_match_string(wc, str);
if (!match) return wildcard_result_t::no_match;
// If we're not allowing fuzzy match, then we require a prefix match.
bool needs_prefix_match = !(params.expand_flags & expand_flag::fuzzy_match);
if (needs_prefix_match && !match->is_exact_or_prefix()) {
return wildcard_result_t::no_match;
}
// The match was successful. If the string is not requested we're done.
if (out == nullptr) {
return wildcard_result_t::match;
}
// Wildcard complete.
bool full_replacement =
match->requires_full_replacement() || (flags & COMPLETE_REPLACES_TOKEN);
// If we are not replacing the token, be careful to only store the part of the string after
// the wildcard.
assert(!full_replacement || wc_len <= str_len);
wcstring out_completion = full_replacement ? params.orig : str + wc_len;
wcstring out_desc = resolve_description(params.orig, &out_completion, params.expand_flags,
params.desc_func);
// Note: out_completion may be empty if the completion really is empty, e.g. tab-completing
// 'foo' when a file 'foo' exists.
complete_flags_t local_flags = flags | (full_replacement ? COMPLETE_REPLACES_TOKEN : 0);
if (!out->add(std::move(out_completion), std::move(out_desc), local_flags, *match)) {
return wildcard_result_t::overflow;
}
return wildcard_result_t::match;
} else if (next_wc_char_pos > 0) {
// The literal portion of a wildcard cannot be longer than the string itself,
// e.g. `abc*` can never match a string that is only two characters long.
if (next_wc_char_pos >= str_len) {
return wildcard_result_t::no_match;
}
// Here we have a non-wildcard prefix. Note that we don't do fuzzy matching for stuff before
// a wildcard, so just do case comparison and then recurse.
if (std::wcsncmp(str, wc, next_wc_char_pos) == 0) {
// Normal match.
return wildcard_complete_internal(str + next_wc_char_pos, str_len - next_wc_char_pos,
wc + next_wc_char_pos, wc_len - next_wc_char_pos,
params, flags, out);
}
if (wcsncasecmp(str, wc, next_wc_char_pos) == 0) {
// Case insensitive match.
return wildcard_complete_internal(str + next_wc_char_pos, str_len - next_wc_char_pos,
wc + next_wc_char_pos, wc_len - next_wc_char_pos,
params, flags | COMPLETE_REPLACES_TOKEN, out);
}
return wildcard_result_t::no_match;
}
// Our first character is a wildcard.
assert(next_wc_char_pos == 0);
switch (wc[0]) {
case ANY_CHAR: {
if (str[0] == L'\0') {
return wildcard_result_t::no_match;
}
return wildcard_complete_internal(str + 1, str_len - 1, wc + 1, wc_len - 1, params,
flags, out);
}
case ANY_STRING: {
// Hackish. If this is the last character of the wildcard, then just complete with
// the empty string. This fixes cases like "f*<tab>" -> "f*o".
if (wc[1] == L'\0') {
return wildcard_complete_internal(L"", 0, L"", 0, params, flags, out);
}
// Try all submatches. Issue #929: if the recursive call gives us a prefix match,
// just stop. This is sloppy - what we really want to do is say, once we've seen a
// match of a particular type, ignore all matches of that type further down the
// string, such that the wildcard produces the "minimal match.".
bool has_match = false;
for (size_t i = 0; str[i] != L'\0'; i++) {
const size_t before_count = out ? out->size() : 0;
auto submatch_res = wildcard_complete_internal(str + i, str_len - i, wc + 1,
wc_len - 1, params, flags, out);
switch (submatch_res) {
case wildcard_result_t::no_match:
break;
case wildcard_result_t::match:
has_match = true;
// If out is NULL, we don't care about the actual matches. If out is not
// NULL but we have a prefix match, stop there.
if (out == nullptr || has_prefix_match(out, before_count)) {
return wildcard_result_t::match;
}
break;
case wildcard_result_t::cancel:
case wildcard_result_t::overflow:
// Note early return.
return submatch_res;
}
}
return has_match ? wildcard_result_t::match : wildcard_result_t::no_match;
}
case ANY_STRING_RECURSIVE: {
// We don't even try with this one.
return wildcard_result_t::no_match;
}
default: {
DIE("unreachable code reached");
}
}
DIE("unreachable code reached");
}
wildcard_result_t wildcard_complete(const wcstring &str, const wchar_t *wc,
const std::function<wcstring(const wcstring &)> &desc_func,
completion_receiver_t *out, expand_flags_t expand_flags,
complete_flags_t flags) {
// Note out may be NULL.
assert(wc != nullptr);
wc_complete_pack_t params(str, desc_func, expand_flags);
return wildcard_complete_internal(str.c_str(), str.size(), wc, std::wcslen(wc), params, flags,
out, true /* first call */);
}
static int fast_waccess(const struct stat &stat_buf, uint8_t mode) {
// Cache the effective user id and group id of our own shell process. These can't change on us
// because we don't change them.
static const uid_t euid = geteuid();
static const gid_t egid = getegid();
// Cache a list of our group memberships.
static const std::vector<gid_t> groups = ([&]() {
std::vector<gid_t> groups;
while (true) {
int ngroups = getgroups(0, nullptr);
// It is not defined if getgroups(2) includes the effective group of the calling process
groups.reserve(ngroups + 1);
groups.resize(ngroups, 0);
if (getgroups(groups.size(), groups.data()) == -1) {
if (errno == EINVAL) {
// Race condition, ngroups has changed between the two getgroups() calls
continue;
}
wperror(L"getgroups");
}
break;
}
groups.push_back(egid);
std::sort(groups.begin(), groups.end());
return groups;
})();
bool have_suid = (stat_buf.st_mode & S_ISUID);
if (euid == stat_buf.st_uid || have_suid) {
// Check permissions granted to owner
if (((stat_buf.st_mode & S_IRWXU) >> 6) & mode) {
return 0;
}
}
bool have_sgid = (stat_buf.st_mode & S_ISGID);
auto binsearch = std::lower_bound(groups.begin(), groups.end(), stat_buf.st_gid);
bool have_group = binsearch != groups.end() && !(stat_buf.st_gid < *binsearch);
if (have_group || have_sgid) {
// Check permissions granted to group
if (((stat_buf.st_mode & S_IRWXG) >> 3) & mode) {
return 0;
}
}
if (euid != stat_buf.st_uid && !have_group) {
// Check permissions granted to other
if ((stat_buf.st_mode & S_IRWXO) & mode) {
return 0;
}
}
return -1;
}
/// Obtain a description string for the file specified by the filename.
///
/// The returned value is a string constant and should not be free'd.
///
/// \param filename The file for which to find a description string
/// \param lstat_res The result of calling lstat on the file
/// \param lbuf The struct buf output of calling lstat on the file
/// \param stat_res The result of calling stat on the file
/// \param buf The struct buf output of calling stat on the file
/// \param err The errno value after a failed stat call on the file.
static const wchar_t *file_get_desc(int lstat_res, const struct stat &lbuf, int stat_res,
const struct stat &buf, int err) {
if (lstat_res) {
return COMPLETE_FILE_DESC;
}
if (S_ISLNK(lbuf.st_mode)) {
if (!stat_res) {
if (S_ISDIR(buf.st_mode)) {
return COMPLETE_DIRECTORY_SYMLINK_DESC;
}
if (buf.st_mode & (S_IXUSR | S_IXGRP | S_IXOTH) && fast_waccess(buf, X_OK) == 0) {
return COMPLETE_EXEC_LINK_DESC;
}
return COMPLETE_SYMLINK_DESC;
}
if (err == ENOENT) return COMPLETE_BROKEN_SYMLINK_DESC;
if (err == ELOOP) return COMPLETE_LOOP_SYMLINK_DESC;
// On unknown errors we do nothing. The file will be given the default 'File'
// description or one based on the suffix.
} else if (S_ISCHR(buf.st_mode)) {
return COMPLETE_CHAR_DESC;
} else if (S_ISBLK(buf.st_mode)) {
return COMPLETE_BLOCK_DESC;
} else if (S_ISFIFO(buf.st_mode)) {
return COMPLETE_FIFO_DESC;
} else if (S_ISSOCK(buf.st_mode)) {
return COMPLETE_SOCKET_DESC;
} else if (S_ISDIR(buf.st_mode)) {
return COMPLETE_DIRECTORY_DESC;
} else if (buf.st_mode & (S_IXUSR | S_IXGRP | S_IXOTH) && fast_waccess(buf, X_OK) == 0) {
return COMPLETE_EXEC_DESC;
}
return COMPLETE_FILE_DESC;
}
/// Test if the given file is an executable (if executables_only) or directory (if
/// directories_only). If it matches, call wildcard_complete() with some description that we make
/// up. Note that the filename came from a readdir() call, so we know it exists.
static bool wildcard_test_flags_then_complete(const wcstring &filepath, const wcstring &filename,
const wchar_t *wc, expand_flags_t expand_flags,
completion_receiver_t *out, bool known_dir) {
const bool executables_only = expand_flags & expand_flag::executables_only;
const bool need_directory = expand_flags & expand_flag::directories_only;
// Fast path: If we need directories, and we already know it is one,
// and we don't need to do anything else, just return it.
// This is a common case for cd completions, and removes the `stat` entirely in case the system
// supports it.
if (known_dir && !executables_only && !(expand_flags & expand_flag::gen_descriptions)) {
return wildcard_complete(filename + L'/', wc, const_desc(L""), out, expand_flags,
COMPLETE_NO_SPACE) == wildcard_result_t::match;
}
// Check if it will match before stat().
if (wildcard_complete(filename, wc, {}, nullptr, expand_flags, 0) != wildcard_result_t::match) {
return false;
}
struct stat lstat_buf = {}, stat_buf = {};
int stat_res = -1;
int stat_errno = 0;
int lstat_res = lwstat(filepath, &lstat_buf);
if (lstat_res >= 0) {
if (S_ISLNK(lstat_buf.st_mode)) {
stat_res = wstat(filepath, &stat_buf);
if (stat_res < 0) {
// In order to differentiate between e.g. broken symlinks and symlink loops, we also
// need to know the error status of wstat.
stat_errno = errno;
}
} else {
stat_buf = lstat_buf;
stat_res = lstat_res;
}
}
const long long file_size = stat_res == 0 ? stat_buf.st_size : 0;
const bool is_directory = stat_res == 0 && S_ISDIR(stat_buf.st_mode);
const bool is_executable = stat_res == 0 && S_ISREG(stat_buf.st_mode);
if (need_directory && !is_directory) {
return false;
}
if (executables_only && (!is_executable || fast_waccess(stat_buf, X_OK) != 0)) {
return false;
}
if (executables_only && is_windows_subsystem_for_linux() &&
string_suffixes_string_case_insensitive(L".dll", filename)) {
return false;
}
// Compute the description.
wcstring desc;
if (expand_flags & expand_flag::gen_descriptions) {
desc = file_get_desc(lstat_res, lstat_buf, stat_res, stat_buf, stat_errno);
if (!is_directory && !is_executable && file_size >= 0) {
if (!desc.empty()) desc.append(L", ");
desc.append(format_size(file_size));
}
}
// Append a / if this is a directory. Note this requirement may be the only reason we have to
// call stat() in some cases.
auto desc_func = const_desc(desc);
if (is_directory) {
return wildcard_complete(filename + L'/', wc, desc_func, out, expand_flags,
COMPLETE_NO_SPACE) == wildcard_result_t::match;
}
return wildcard_complete(filename, wc, desc_func, out, expand_flags, 0) ==
wildcard_result_t::match;
}
namespace {
class wildcard_expander_t {
// A function to call to check cancellation.
cancel_checker_t cancel_checker;
// The working directory to resolve paths against
const wcstring working_directory;
// The set of items we have resolved, used to efficiently avoid duplication.
std::unordered_set<wcstring> completion_set;
// The set of file IDs we have visited, used to avoid symlink loops.
std::unordered_set<file_id_t> visited_files;
// Flags controlling expansion.
const expand_flags_t flags;
// Resolved items get inserted into here. This is transient of course.
completion_receiver_t *resolved_completions;
// Whether we have been interrupted.
bool did_interrupt{false};
// Whether we have overflowed.
bool did_overflow{false};
// Whether we have successfully added any completions.
bool did_add{false};
// Whether some parent expansion is fuzzy, and therefore completions always prepend their prefix
// This variable is a little suspicious - it should be passed along, not stored here
// If we ever try to do parallel wildcard expansion we'll have to remove this
bool has_fuzzy_ancestor{false};
/// We are a trailing slash - expand at the end.
void expand_trailing_slash(const wcstring &base_dir, const wcstring &prefix);
/// Given a directory base_dir, which is opened as base_dir_iter, expand an intermediate segment
/// of the wildcard. Treat ANY_STRING_RECURSIVE as ANY_STRING. wc_segment is the wildcard
/// segment for this directory, wc_remainder is the wildcard for subdirectories,
/// prefix is the prefix for completions.
void expand_intermediate_segment(const wcstring &base_dir, dir_iter_t &base_dir_iter,
const wcstring &wc_segment, const wchar_t *wc_remainder,
const wcstring &prefix);
/// Given a directory base_dir, which is opened as base_dir_fp, expand an intermediate literal
/// segment. Use a fuzzy matching algorithm.
void expand_literal_intermediate_segment_with_fuzz(const wcstring &base_dir,
dir_iter_t &base_dir_iter,
const wcstring &wc_segment,
const wchar_t *wc_remainder,
const wcstring &prefix);
/// Given a directory base_dir, which is opened as base_dir_iter, expand the last segment of the
/// wildcard. Treat ANY_STRING_RECURSIVE as ANY_STRING. wc is the wildcard segment to use for
/// matching, wc_remainder is the wildcard for subdirectories, prefix is the prefix for
/// completions.
void expand_last_segment(const wcstring &base_dir, dir_iter_t &base_dir_iter,
const wcstring &wc, const wcstring &prefix);
/// Indicate whether we should cancel wildcard expansion. This latches 'interrupt'.
bool interrupted_or_overflowed() {
did_interrupt = did_interrupt || cancel_checker();
return did_interrupt || did_overflow;
}
void add_expansion_result(wcstring &&result) {
// This function is only for the non-completions case.
assert(!(this->flags & expand_flag::for_completions));
if (this->completion_set.insert(result).second) {
if (!this->resolved_completions->add(std::move(result))) {
this->did_overflow = true;
}
}
}
// Given a start point as an absolute path, for any directory that has exactly one non-hidden
// entity in it which is itself a directory, return that. The result is a relative path. For
// example, if start_point is '/usr' we may return 'local/bin/'.
//
// The result does not have a leading slash, but does have a trailing slash if non-empty.
wcstring descend_unique_hierarchy(const wcstring &start_point) {
assert(!start_point.empty() && start_point.at(0) == L'/');
wcstring unique_hierarchy;
wcstring abs_unique_hierarchy = start_point;
// Ensure we don't fall into a symlink loop.
// Ideally we would compare both devices and inodes, but devices require a stat call, so we
// use inodes exclusively.
std::unordered_set<ino_t> visited_inodes;
for (;;) {
// We keep track of the single unique_entry entry. If we get more than one, it's not
// unique and we stop the descent.
wcstring unique_entry;
dir_iter_t dir(abs_unique_hierarchy);
if (!dir.valid()) {
break;
}
while (const auto *entry = dir.next()) {
if (entry->name.empty() || entry->name.at(0) == L'.') {
continue; // either hidden, or . and .. entries -- skip them
}
if (!visited_inodes.insert(entry->inode).second) {
// Either we've visited this inode already or there's multiple files;
// either way stop.
break;
} else if (entry->is_dir() && unique_entry.empty()) {
unique_entry = entry->name; // first candidate
} else {
// We either have two or more candidates, or the child is not a directory. We're
// done.
unique_entry.clear();
break;
}
}
// We stop if we got two or more entries; also stop if we got zero or were interrupted
if (unique_entry.empty() || interrupted_or_overflowed()) {
break;
}
// We have an entry in the unique hierarchy!
append_path_component(unique_hierarchy, unique_entry);
unique_hierarchy.push_back(L'/');
append_path_component(abs_unique_hierarchy, unique_entry);
abs_unique_hierarchy.push_back(L'/');
}
return unique_hierarchy;
}
void try_add_completion_result(const wcstring &filepath, const wcstring &filename,
const wcstring &wildcard, const wcstring &prefix,
bool known_dir) {
// This function is only for the completions case.
assert(this->flags & expand_flag::for_completions);
wcstring abs_path = this->working_directory;
append_path_component(abs_path, filepath);
// We must normalize the path to allow 'cd ..' to operate on logical paths.
if (flags & expand_flag::special_for_cd) abs_path = normalize_path(abs_path);
size_t before = this->resolved_completions->size();
if (wildcard_test_flags_then_complete(abs_path, filename, wildcard.c_str(), this->flags,
this->resolved_completions, known_dir)) {
// Hack. We added this completion result based on the last component of the wildcard.
// Prepend our prefix to each wildcard that replaces its token.
// Note that prepend_token_prefix is a no-op unless COMPLETE_REPLACES_TOKEN is set
size_t after = this->resolved_completions->size();
for (size_t i = before; i < after; i++) {
completion_t *c = &this->resolved_completions->at(i);
if (this->has_fuzzy_ancestor && !(c->flags & COMPLETE_REPLACES_TOKEN)) {
c->flags |= COMPLETE_REPLACES_TOKEN;
c->prepend_token_prefix(wildcard);
}
c->prepend_token_prefix(prefix);
}
// Implement special_for_cd_autosuggestion by descending the deepest unique
// hierarchy we can, and then appending any components to each new result.
// Only descend deepest unique for cd autosuggest and not for cd tab completion
// (issue #4402).
if (flags & expand_flag::special_for_cd_autosuggestion) {
wcstring unique_hierarchy = this->descend_unique_hierarchy(abs_path);
if (!unique_hierarchy.empty()) {
for (size_t i = before; i < after; i++) {
completion_t &c = this->resolved_completions->at(i);
c.completion.append(unique_hierarchy);
}
}
}
this->did_add = true;
}
}
// Helper to resolve using our prefix.
dir_iter_t open_dir(const wcstring &base_dir) const {
wcstring path = this->working_directory;
append_path_component(path, base_dir);
if (flags & expand_flag::special_for_cd) {
// cd operates on logical paths.
// for example, cd ../<tab> should complete "without resolving symlinks".
path = normalize_path(path);
}
return dir_iter_t(path);
}
public:
wildcard_expander_t(wcstring wd, expand_flags_t f, cancel_checker_t cancel_checker,
completion_receiver_t *r)
: cancel_checker(std::move(cancel_checker)),
working_directory(std::move(wd)),
flags(f),
resolved_completions(r) {
assert(resolved_completions != nullptr);
// Insert initial completions into our set to avoid duplicates.
for (const auto &resolved_completion : resolved_completions->get_list()) {
this->completion_set.insert(resolved_completion.completion);
}
}
// Do wildcard expansion. This is recursive.
void expand(const wcstring &base_dir, const wchar_t *wc, const wcstring &prefix);
wildcard_result_t status_code() const {
if (this->did_interrupt) {
return wildcard_result_t::cancel;
} else if (this->did_overflow) {
return wildcard_result_t::overflow;
}
return this->did_add ? wildcard_result_t::match : wildcard_result_t::no_match;
}
};
void wildcard_expander_t::expand_trailing_slash(const wcstring &base_dir, const wcstring &prefix) {
if (interrupted_or_overflowed()) {
return;
}
if (!(flags & expand_flag::for_completions)) {
// Trailing slash and not accepting incomplete, e.g. `echo /xyz/`. Insert this file if it
// exists.
if (waccess(base_dir, F_OK) == 0) {
this->add_expansion_result(wcstring{base_dir});
}
} else {
// Trailing slashes and accepting incomplete, e.g. `echo /xyz/<tab>`. Everything is added.
dir_iter_t dir = open_dir(base_dir);
if (dir.valid()) {
// wreaddir_resolving without the out argument is just wreaddir.
// So we can use the information in case we need it.
bool need_dir = flags & expand_flag::directories_only;
wcstring path = base_dir;
if (flags & expand_flag::special_for_cd) {
path = this->working_directory;
append_path_component(path, base_dir);
// cd operates on logical paths.
// for example, cd ../<tab> should complete "without resolving symlinks".
path = normalize_path(path);
}
while (const auto *entry = dir.next()) {
if (interrupted_or_overflowed()) {
break;
}
// Note that is_dir() may cause a stat() call.
bool known_dir = need_dir ? entry->is_dir() : false;
if (need_dir && !known_dir) continue;
if (!entry->name.empty() && entry->name.at(0) != L'.') {
this->try_add_completion_result(base_dir + entry->name, entry->name, L"",
prefix, known_dir);
}
}
}
}
}
void wildcard_expander_t::expand_intermediate_segment(const wcstring &base_dir,
dir_iter_t &base_dir_iter,
const wcstring &wc_segment,
const wchar_t *wc_remainder,
const wcstring &prefix) {
std::string narrow;
const dir_iter_t::entry_t *entry{};
while (!interrupted_or_overflowed() && (entry = base_dir_iter.next())) {
// Note that it's critical we ignore leading dots here, else we may descend into . and ..
if (!wildcard_match(entry->name, wc_segment, true)) {
// Doesn't match the wildcard for this segment, skip it.
continue;
}
if (!entry->is_dir()) {
continue;
}
auto statbuf = entry->stat();
if (!statbuf) {
continue;
}
const file_id_t file_id = file_id_t::from_stat(*statbuf);
if (!this->visited_files.insert(file_id).second) {
// Symlink loop! This directory was already visited, so skip it.
continue;
}
// We made it through. Perform normal wildcard expansion on this new directory, starting at
// our tail_wc, which includes the ANY_STRING_RECURSIVE guy.
wcstring full_path = base_dir + entry->name;
full_path.push_back(L'/');
this->expand(full_path, wc_remainder, prefix + wc_segment + L'/');
// Now remove the visited file. This is for #2414: only directories "beneath" us should be
// considered visited.
this->visited_files.erase(file_id);
}
}
void wildcard_expander_t::expand_literal_intermediate_segment_with_fuzz(const wcstring &base_dir,
dir_iter_t &base_dir_iter,
const wcstring &wc_segment,
const wchar_t *wc_remainder,
const wcstring &prefix) {
// Mark that we are fuzzy for the duration of this function
const scoped_push<bool> scoped_fuzzy(&this->has_fuzzy_ancestor, true);
const dir_iter_t::entry_t *entry{};
while (!interrupted_or_overflowed() && (entry = base_dir_iter.next())) {
// Don't bother with . and ..
if (entry->name == L"." || entry->name == L"..") {
continue;
}
const auto match = string_fuzzy_match_string(wc_segment, entry->name);
if (!match || match->is_samecase_exact()) continue;
// Note is_dir() may trigger a stat call.
if (!entry->is_dir()) continue;
// Determine the effective prefix for our children.
// Normally this would be the wildcard segment, but here we know our segment doesn't have
// wildcards ("literal") and we are doing fuzzy expansion, which means we replace the
// segment with files found through fuzzy matching.
const wcstring child_prefix = prefix + entry->name + L'/';
wcstring new_full_path = base_dir + entry->name;
new_full_path.push_back(L'/');
// Ok, this directory matches. Recurse to it. Then mark each resulting completion as fuzzy.
const size_t before = this->resolved_completions->size();
this->expand(new_full_path, wc_remainder, child_prefix);
const size_t after = this->resolved_completions->size();
assert(before <= after);
for (size_t i = before; i < after; i++) {
completion_t *c = &this->resolved_completions->at(i);
// Mark the completion as replacing.
if (!(c->flags & COMPLETE_REPLACES_TOKEN)) {
c->flags |= COMPLETE_REPLACES_TOKEN;
c->prepend_token_prefix(child_prefix);
}
// And every match must be made at least as fuzzy as ours.
// TODO: justify this, tests do not exercise it yet.
if (match->rank() > c->match.rank()) {
// Our match is fuzzier.
c->match = *match;
}
}
}
}
void wildcard_expander_t::expand_last_segment(const wcstring &base_dir, dir_iter_t &base_dir_iter,
const wcstring &wc, const wcstring &prefix) {
bool is_dir = false;
bool need_dir = flags & expand_flag::directories_only;
const dir_iter_t::entry_t *entry{};
while (!interrupted_or_overflowed() && (entry = base_dir_iter.next())) {
if (need_dir && !entry->is_dir()) continue;
if (flags & expand_flag::for_completions) {
this->try_add_completion_result(base_dir + entry->name, entry->name, wc, prefix,
is_dir);
} else {
// Normal wildcard expansion, not for completions.
if (wildcard_match(entry->name, wc, true /* skip files with leading dots */)) {
this->add_expansion_result(base_dir + entry->name);
}
}
}
}
/// The real implementation of wildcard expansion is in this function. Other functions are just
/// wrappers around this one.
///
/// This function traverses the relevant directory tree looking for matches, and recurses when
/// needed to handle wildcards spanning multiple components and recursive wildcards.
///
/// Args:
/// base_dir: the "working directory" against which the wildcard is to be resolved
/// wc: the wildcard string itself, e.g. foo*bar/baz (where * is actually ANY_CHAR)
/// effective_prefix: the string that should be prepended for completions that replace their token.
/// This is usually the same thing as the original wildcard, but for fuzzy matching, we
/// expand intermediate segments. effective_prefix is always either empty, or ends with a slash
void wildcard_expander_t::expand(const wcstring &base_dir, const wchar_t *wc,
const wcstring &effective_prefix) {
assert(wc != nullptr);
if (interrupted_or_overflowed()) {
return;
}
// Get the current segment and compute interesting properties about it.
const wchar_t *const next_slash = std::wcschr(wc, L'/');
const bool is_last_segment = (next_slash == nullptr);
const size_t wc_segment_len = next_slash ? next_slash - wc : std::wcslen(wc);
const wcstring wc_segment = wcstring(wc, wc_segment_len);
const bool segment_has_wildcards = wildcard_has_internal(wc_segment); // e.g. ANY_STRING.
const wchar_t *const wc_remainder = next_slash ? next_slash + 1 : nullptr;
if (wc_segment.empty()) {
// Handle empty segment.
assert(!segment_has_wildcards); //!OCLINT(multiple unary operator)
if (is_last_segment) {
this->expand_trailing_slash(base_dir, effective_prefix);
} else {
// Multiple adjacent slashes in the wildcard. Just skip them.
this->expand(base_dir, wc_remainder, effective_prefix + L'/');
}
} else if (!segment_has_wildcards && !is_last_segment) {
// Literal intermediate match. Note that we may not be able to actually read the directory
// (issue #2099).
assert(next_slash != nullptr);
// Absolute path of the intermediate directory
const wcstring intermediate_dirpath = base_dir + wc_segment + L'/';
// This just trumps everything.
size_t before = this->resolved_completions->size();
this->expand(intermediate_dirpath, wc_remainder, effective_prefix + wc_segment + L'/');
// Maybe try a fuzzy match (#94) if nothing was found with the literal match. Respect
// EXPAND_NO_DIRECTORY_ABBREVIATIONS (issue #2413).
// Don't do fuzzy matches if the literal segment was valid (#3211)
bool allow_fuzzy = this->flags.get(expand_flag::fuzzy_match) &&
!this->flags.get(expand_flag::no_fuzzy_directories);
if (allow_fuzzy && this->resolved_completions->size() == before &&
waccess(intermediate_dirpath, F_OK) != 0) {
assert(this->flags & expand_flag::for_completions);
dir_iter_t base_dir_iter = open_dir(base_dir);
if (base_dir_iter.valid()) {
this->expand_literal_intermediate_segment_with_fuzz(
base_dir, base_dir_iter, wc_segment, wc_remainder, effective_prefix);
}
}
} else {
assert(!wc_segment.empty() && (segment_has_wildcards || is_last_segment));
if (!is_last_segment && wc_segment == wcstring{ANY_STRING_RECURSIVE}) {
// Hack for #7222. This is an intermediate wc segment that is exactly **. The
// tail matches in subdirectories as normal, but also the current directory.
// That is, '**/bar' may match 'bar' and 'foo/bar'.
// Implement this by matching the wildcard tail only, in this directory.
// Note if the segment is not exactly ANY_STRING_RECURSIVE then the segment may only
// match subdirectories.
this->expand(base_dir, wc_remainder, effective_prefix);
if (interrupted_or_overflowed()) {
return;
}
}
dir_iter_t dir = open_dir(base_dir);
if (dir.valid()) {
if (is_last_segment) {
// Last wildcard segment, nonempty wildcard.
this->expand_last_segment(base_dir, dir, wc_segment, effective_prefix);
} else {
// Not the last segment, nonempty wildcard.
assert(next_slash != nullptr);
this->expand_intermediate_segment(base_dir, dir, wc_segment, wc_remainder,
effective_prefix + wc_segment + L'/');
}
size_t asr_idx = wc_segment.find(ANY_STRING_RECURSIVE);
if (asr_idx != wcstring::npos) {
// Apply the recursive **.
// Construct a "head + any" wildcard for matching stuff in this directory, and an
// "any + tail" wildcard for matching stuff in subdirectories. Note that the
// ANY_STRING_RECURSIVE character is present in both the head and the tail.
const wcstring head_any(wc_segment, 0, asr_idx + 1);
const wchar_t *any_tail = wc + asr_idx;
assert(head_any.at(head_any.size() - 1) == ANY_STRING_RECURSIVE);
assert(any_tail[0] == ANY_STRING_RECURSIVE);
dir.rewind();
this->expand_intermediate_segment(base_dir, dir, head_any, any_tail,
effective_prefix);
}
}
}
}
} // namespace
wildcard_result_t wildcard_expand_string(const wcstring &wc, const wcstring &working_directory,
expand_flags_t flags,
const cancel_checker_t &cancel_checker,
completion_receiver_t *output) {
assert(output != nullptr);
// Fuzzy matching only if we're doing completions.
assert(flags.get(expand_flag::for_completions) || !flags.get(expand_flag::fuzzy_match));
// expand_flag::special_for_cd requires expand_flag::directories_only and
// expand_flag::for_completions and !expand_flag::gen_descriptions.
assert(!(flags.get(expand_flag::special_for_cd)) ||
((flags.get(expand_flag::directories_only)) &&
(flags.get(expand_flag::for_completions)) &&
(!flags.get(expand_flag::gen_descriptions))));
// Hackish fix for issue #1631. We are about to call c_str(), which will produce a string
// truncated at any embedded nulls. We could fix this by passing around the size, etc. However
// embedded nulls are never allowed in a filename, so we just check for them and return 0 (no
// matches) if there is an embedded null.
if (wc.find(L'\0') != wcstring::npos) {
return wildcard_result_t::no_match;
}
// We do not support tab-completing recursive (**) wildcards. This is historic behavior.
// Do not descend any directories if there is a ** wildcard.
if (flags.get(expand_flag::for_completions) &&
wc.find(ANY_STRING_RECURSIVE) != wcstring::npos) {
return wildcard_result_t::no_match;
}
// Compute the prefix and base dir. The prefix is what we prepend for filesystem operations
// (i.e. the working directory), the base_dir is the part of the wildcard consumed thus far,
// which we also have to append. The difference is that the base_dir is returned as part of the
// expansion, and the prefix is not.
//
// Check for a leading slash. If we find one, we have an absolute path: the prefix is empty, the
// base dir is /, and the wildcard is the remainder. If we don't find one, the prefix is the
// working directory, the base dir is empty.
wcstring prefix, base_dir, effective_wc;
if (string_prefixes_string(L"/", wc)) {
base_dir = L"/";
effective_wc = wc.substr(1);
} else {
prefix = working_directory;
effective_wc = wc;
}
wildcard_expander_t expander(prefix, flags, cancel_checker, output);
expander.expand(base_dir, effective_wc.c_str(), base_dir);
return expander.status_code();
}