fish-shell/src/function.cpp
Mahmoud Al-Qudsi 5a561bcfce Source : function without any C++ hacks
Thanks, @faho
2018-03-15 18:19:08 -05:00

367 lines
13 KiB
C++

// Functions for storing and retrieving function information. These functions also take care of
// autoloading functions in the $fish_function_path. Actual function evaluation is taken care of by
// the parser and to some degree the builtin handling library.
//
#include "config.h" // IWYU pragma: keep
// IWYU pragma: no_include <type_traits>
#include <dirent.h>
#include <pthread.h>
#include <stddef.h>
#include <wchar.h>
#include <algorithm>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "autoload.h"
#include "common.h"
#include "env.h"
#include "event.h"
#include "fallback.h" // IWYU pragma: keep
#include "function.h"
#include "intern.h"
#include "parser_keywords.h"
#include "reader.h"
#include "wutil.h" // IWYU pragma: keep
class function_info_t {
public:
/// Immutable properties of the function.
std::shared_ptr<const function_properties_t> props;
/// Function description. This may be changed after the function is created.
wcstring description;
/// File where this function was defined (intern'd string).
const wchar_t *const definition_file;
/// Mapping of all variables that were inherited from the function definition scope to their
/// values.
const std::map<wcstring, env_var_t> inherit_vars;
/// Flag for specifying that this function was automatically loaded.
const bool is_autoload;
/// Constructs relevant information from the function_data.
function_info_t(function_data_t data, const wchar_t *filename, bool autoload);
/// Used by function_copy.
function_info_t(const function_info_t &data, const wchar_t *filename, bool autoload);
};
/// Table containing all functions.
typedef std::unordered_map<wcstring, function_info_t> function_map_t;
static function_map_t loaded_functions;
/// Functions that shouldn't be autoloaded (anymore).
static std::unordered_set<wcstring> function_tombstones;
/// Lock for functions.
static std::recursive_mutex functions_lock;
static bool function_remove_ignore_autoload(const wcstring &name, bool tombstone = true);
/// Callback when an autoloaded function is removed.
void autoloaded_function_removed(const wcstring &cmd) {
function_remove_ignore_autoload(cmd, false);
}
// Function autoloader
static autoload_t function_autoloader(L"fish_function_path", autoloaded_function_removed);
/// Kludgy flag set by the load function in order to tell function_add that the function being
/// defined is autoloaded. There should be a better way to do this...
static bool is_autoload = false;
/// Make sure that if the specified function is a dynamically loaded function, it has been fully
/// loaded.
static int load(const wcstring &name) {
ASSERT_IS_MAIN_THREAD();
scoped_rlock locker(functions_lock);
bool was_autoload = is_autoload;
int res;
bool no_more_autoload = function_tombstones.count(name) > 0;
if (no_more_autoload) return 0;
function_map_t::iterator iter = loaded_functions.find(name);
if (iter != loaded_functions.end() && !iter->second.is_autoload) {
// We have a non-autoload version already.
return 0;
}
is_autoload = true;
res = function_autoloader.load(name, true);
is_autoload = was_autoload;
return res;
}
/// Insert a list of all dynamically loaded functions into the specified list.
static void autoload_names(std::unordered_set<wcstring> &names, int get_hidden) {
size_t i;
const auto path_var = env_get(L"fish_function_path");
if (path_var.missing_or_empty()) return;
wcstring_list_t path_list;
path_var->to_list(path_list);
for (i = 0; i < path_list.size(); i++) {
const wcstring &ndir_str = path_list.at(i);
const wchar_t *ndir = (wchar_t *)ndir_str.c_str();
DIR *dir = wopendir(ndir);
if (!dir) continue;
wcstring name;
while (wreaddir(dir, name)) {
const wchar_t *fn = name.c_str();
const wchar_t *suffix;
if (!get_hidden && fn[0] == L'_') continue;
suffix = wcsrchr(fn, L'.');
if (suffix && (wcscmp(suffix, L".fish") == 0)) {
wcstring name(fn, suffix - fn);
names.insert(name);
}
}
closedir(dir);
}
}
static std::map<wcstring, env_var_t> snapshot_vars(const wcstring_list_t &vars) {
std::map<wcstring, env_var_t> result;
for (const wcstring &name : vars) {
auto var = env_get(name);
if (var) result[name] = std::move(*var);
}
return result;
}
function_info_t::function_info_t(function_data_t data, const wchar_t *filename, bool autoload)
: props(std::make_shared<const function_properties_t>(std::move(data.props))),
description(std::move(data.description)),
definition_file(intern(filename)),
inherit_vars(snapshot_vars(data.inherit_vars)),
is_autoload(autoload) {}
function_info_t::function_info_t(const function_info_t &data, const wchar_t *filename,
bool autoload)
: props(data.props),
description(data.description),
definition_file(intern(filename)),
inherit_vars(data.inherit_vars),
is_autoload(autoload) {}
void function_add(const function_data_t &data, const parser_t &parser) {
UNUSED(parser);
ASSERT_IS_MAIN_THREAD();
CHECK(!data.name.empty(), ); //!OCLINT(multiple unary operator)
scoped_rlock locker(functions_lock);
// Remove the old function.
function_remove(data.name);
// Create and store a new function.
const wchar_t *filename = reader_current_filename();
const function_map_t::value_type new_pair(data.name,
function_info_t(data, filename, is_autoload));
loaded_functions.insert(new_pair);
// Add event handlers.
for (const event_t &event : data.events) {
event_add_handler(event);
}
}
std::shared_ptr<const function_properties_t> function_get_properties(const wcstring &name) {
if (parser_keywords_is_reserved(name)) return nullptr;
scoped_rlock locker(functions_lock);
auto where = loaded_functions.find(name);
if (where != loaded_functions.end()) {
return where->second.props;
}
return nullptr;
}
int function_exists(const wcstring &cmd) {
if (parser_keywords_is_reserved(cmd)) return 0;
scoped_rlock locker(functions_lock);
load(cmd);
return loaded_functions.find(cmd) != loaded_functions.end();
}
void function_load(const wcstring &cmd) {
if (!parser_keywords_is_reserved(cmd)) {
scoped_rlock locker(functions_lock);
load(cmd);
}
}
int function_exists_no_autoload(const wcstring &cmd, const env_vars_snapshot_t &vars) {
if (parser_keywords_is_reserved(cmd)) return 0;
scoped_rlock locker(functions_lock);
return loaded_functions.find(cmd) != loaded_functions.end() ||
function_autoloader.can_load(cmd, vars);
}
static bool function_remove_ignore_autoload(const wcstring &name, bool tombstone) {
// Note: the lock may be held at this point, but is recursive.
scoped_rlock locker(functions_lock);
function_map_t::iterator iter = loaded_functions.find(name);
// Not found. Not erasing.
if (iter == loaded_functions.end()) return false;
// Removing an auto-loaded function. Prevent it from being auto-reloaded.
if (iter->second.is_autoload && tombstone) function_tombstones.insert(name);
loaded_functions.erase(iter);
event_t ev(EVENT_ANY);
ev.function_name = name;
event_remove(ev);
return true;
}
void function_remove(const wcstring &name) {
if (function_remove_ignore_autoload(name)) function_autoloader.unload(name);
}
static const function_info_t *function_get(const wcstring &name) {
// The caller must lock the functions_lock before calling this; however our mutex is currently
// recursive, so trylock will never fail. We need a way to correctly check if a lock is locked
// (or better yet, make our lock non-recursive).
// ASSERT_IS_LOCKED(functions_lock);
function_map_t::iterator iter = loaded_functions.find(name);
if (iter == loaded_functions.end()) {
return NULL;
}
return &iter->second;
}
bool function_get_definition(const wcstring &name, wcstring *out_definition) {
scoped_rlock locker(functions_lock);
const function_info_t *func = function_get(name);
if (func && out_definition) {
out_definition->assign(func->props->body_node.get_source(func->props->parsed_source->src));
}
return func != NULL;
}
std::map<wcstring, env_var_t> function_get_inherit_vars(const wcstring &name) {
scoped_rlock locker(functions_lock);
const function_info_t *func = function_get(name);
return func ? func->inherit_vars : std::map<wcstring, env_var_t>();
}
bool function_get_desc(const wcstring &name, wcstring *out_desc) {
// Empty length string goes to NULL.
scoped_rlock locker(functions_lock);
const function_info_t *func = function_get(name);
if (out_desc && func && !func->description.empty()) {
out_desc->assign(_(func->description.c_str()));
return true;
}
return false;
}
void function_set_desc(const wcstring &name, const wcstring &desc) {
load(name);
scoped_rlock locker(functions_lock);
function_map_t::iterator iter = loaded_functions.find(name);
if (iter != loaded_functions.end()) {
iter->second.description = desc;
}
}
bool function_copy(const wcstring &name, const wcstring &new_name) {
bool result = false;
scoped_rlock locker(functions_lock);
function_map_t::const_iterator iter = loaded_functions.find(name);
if (iter != loaded_functions.end()) {
// This new instance of the function shouldn't be tied to the definition file of the
// original, so pass NULL filename, etc.
const function_map_t::value_type new_pair(new_name,
function_info_t(iter->second, NULL, false));
loaded_functions.insert(new_pair);
result = true;
}
return result;
}
wcstring_list_t function_get_names(int get_hidden) {
std::unordered_set<wcstring> names;
scoped_rlock locker(functions_lock);
autoload_names(names, get_hidden);
for (const auto &func : loaded_functions) {
const wcstring &name = func.first;
// Maybe skip hidden.
if (!get_hidden && (name.empty() || name.at(0) == L'_')) {
continue;
}
names.insert(name);
}
return wcstring_list_t(names.begin(), names.end());
}
const wchar_t *function_get_definition_file(const wcstring &name) {
scoped_rlock locker(functions_lock);
const function_info_t *func = function_get(name);
return func ? func->definition_file : NULL;
}
bool function_is_autoloaded(const wcstring &name) {
scoped_rlock locker(functions_lock);
const function_info_t *func = function_get(name);
return func->is_autoload;
}
int function_get_definition_lineno(const wcstring &name) {
scoped_rlock locker(functions_lock);
const function_info_t *func = function_get(name);
if (!func) return -1;
// return one plus the number of newlines at offsets less than the start of our function's statement (which includes the header).
// TODO: merge with line_offset_of_character_at_offset?
auto block_stat = func->props->body_node.try_get_parent<grammar::block_statement>();
assert(block_stat && "Function body is not part of block statement");
auto source_range = block_stat.source_range();
assert(source_range && "Function has no source range");
uint32_t func_start = source_range->start;
const wcstring &source = func->props->parsed_source->src;
assert(func_start <= source.size() && "function start out of bounds");
return 1 + std::count(source.begin(), source.begin() + func_start, L'\n');
}
void function_invalidate_path() { function_autoloader.invalidate(); }
// Setup the environment for the function. There are three components of the environment:
// 1. argv
// 2. named arguments
// 3. inherited variables
void function_prepare_environment(const wcstring &name, const wchar_t *const *argv,
const std::map<wcstring, env_var_t> &inherited_vars) {
env_set_argv(argv);
auto props = function_get_properties(name);
if (props && !props->named_arguments.empty()) {
const wchar_t *const *arg = argv;
for (const wcstring &named_arg : props->named_arguments) {
if (*arg) {
env_set_one(named_arg, ENV_LOCAL | ENV_USER, *arg);
arg++;
} else {
env_set_empty(named_arg, ENV_LOCAL | ENV_USER);
}
}
}
for (const auto &kv : inherited_vars) {
env_set(kv.first, ENV_LOCAL | ENV_USER, kv.second.as_list());
}
}