fish-shell/src/common.cpp
ridiculousfish ed51e2baac Prevent hanging when restoring the foreground process group at exit
When fish starts, it notices which pgroup owns the tty, and then it
restores that pgroup's tty ownership when it exits. However if fish does
not own the tty, then (on Mac at least) the tcsetpgrp call triggers a
SIGSTOP and fish will hang while trying to exit.

The first change is to ignore SIGTTOU instead of defaulting it. This
prevents the hang; however it risks re-introducing #7060.

The second change somewhat mitigates the risk of the first: only do the
restore if the initial pgroup is different than fish's pgroup. This
prevents some useless calls which might potentially steal the tty from
another process (e.g. in #7060).
2021-04-05 17:44:14 -07:00

1997 lines
72 KiB
C++

// Various functions, mostly string utilities, that are used by most parts of fish.
#include "config.h"
#ifdef HAVE_BACKTRACE_SYMBOLS
#include <cxxabi.h>
#endif
#include <ctype.h>
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <paths.h>
#include <pthread.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <termios.h>
#include <unistd.h>
#include <wctype.h>
#include <cstring>
#include <cwchar>
#ifdef HAVE_EXECINFO_H
#include <execinfo.h>
#endif
#ifdef __linux__
// Includes for WSL detection
#include <sys/utsname.h>
#endif
#include <algorithm>
#include <atomic>
#include <memory> // IWYU pragma: keep
#include <type_traits>
#include "common.h"
#include "env.h"
#include "expand.h"
#include "fallback.h" // IWYU pragma: keep
#include "flog.h"
#include "future_feature_flags.h"
#include "global_safety.h"
#include "iothread.h"
#include "parser.h"
#include "proc.h"
#include "signal.h"
#include "termsize.h"
#include "wcstringutil.h"
#include "wildcard.h"
#include "wutil.h" // IWYU pragma: keep
// Keep after "common.h"
#ifdef __BSD__
#include <sys/sysctl.h>
#elif defined(__APPLE__)
#include <mach-o/dyld.h>
#endif
struct termios shell_modes;
const wcstring g_empty_string{};
/// This allows us to notice when we've forked.
static relaxed_atomic_bool_t is_forked_proc{false};
/// This allows us to bypass the main thread checks
static relaxed_atomic_bool_t thread_asserts_cfg_for_testing{false};
static relaxed_atomic_t<wchar_t> ellipsis_char;
wchar_t get_ellipsis_char() { return ellipsis_char; }
static relaxed_atomic_t<const wchar_t *> ellipsis_str;
const wchar_t *get_ellipsis_str() { return ellipsis_str; }
static relaxed_atomic_t<const wchar_t *> omitted_newline_str;
const wchar_t *get_omitted_newline_str() { return omitted_newline_str; }
static relaxed_atomic_t<int> omitted_newline_width;
int get_omitted_newline_width() { return omitted_newline_width; }
static relaxed_atomic_t<wchar_t> obfuscation_read_char;
wchar_t get_obfuscation_read_char() { return obfuscation_read_char; }
bool g_profiling_active = false;
const wchar_t *program_name;
std::atomic<int> debug_level{1}; // default maximum debug output level (errors and warnings)
/// Be able to restore the term's foreground process group.
/// This is set during startup and not modified after.
static relaxed_atomic_t<pid_t> initial_fg_process_group{-1};
static void debug_shared(wchar_t msg_level, const wcstring &msg);
#if defined(OS_IS_CYGWIN) || defined(WSL)
// MS Windows tty devices do not currently have either a read or write timestamp. Those
// respective fields of `struct stat` are always the current time. Which means we can't
// use them. So we assume no external program has written to the terminal behind our
// back. This makes multiline promptusable. See issue #2859 and
// https://github.com/Microsoft/BashOnWindows/issues/545
const bool has_working_tty_timestamps = false;
#else
const bool has_working_tty_timestamps = true;
#endif
/// Convert a character to its integer equivalent if it is a valid character for the requested base.
/// Return the integer value if it is valid else -1.
long convert_digit(wchar_t d, int base) {
long res = -1;
if ((d <= L'9') && (d >= L'0')) {
res = d - L'0';
} else if ((d <= L'z') && (d >= L'a')) {
res = d + 10 - L'a';
} else if ((d <= L'Z') && (d >= L'A')) {
res = d + 10 - L'A';
}
if (res >= base) {
res = -1;
}
return res;
}
/// Test whether the char is a valid hex digit as used by the `escape_string_*()` functions.
static bool is_hex_digit(int c) { return std::strchr("0123456789ABCDEF", c) != nullptr; }
/// This is a specialization of `convert_digit()` that only handles base 16 and only uppercase.
static long convert_hex_digit(wchar_t d) {
if ((d <= L'9') && (d >= L'0')) {
return d - L'0';
} else if ((d <= L'Z') && (d >= L'A')) {
return 10 + d - L'A';
}
return -1;
}
bool is_windows_subsystem_for_linux() {
#if defined(WSL)
return true;
#elif not defined(__linux__)
return false;
#else
// We are purposely not using std::call_once as it may invoke locking, which is an unnecessary
// overhead since there's no actual race condition here - even if multiple threads call this
// routine simultaneously the first time around, we just end up needlessly querying uname(2) one
// more time.
static bool wsl_state = [] {
utsname info;
uname(&info);
// Sample utsname.release under WSL, testing for something like `4.4.0-17763-Microsoft`
if (std::strstr(info.release, "Microsoft") != nullptr) {
const char *dash = std::strchr(info.release, '-');
if (dash == nullptr || strtod(dash + 1, nullptr) < 17763) {
// #5298, #5661: There are acknowledged, published, and (later) fixed issues with
// job control under early WSL releases that prevent fish from running correctly,
// with unexpected failures when piping. Fish 3.0 nightly builds worked around this
// issue with some needlessly complicated code that was later stripped from the
// fish 3.0 release, so we just bail. Note that fish 2.0 was also broken, but we
// just didn't warn about it.
// #6038 & 5101bde: It's been requested that there be some sort of way to disable
// this check: if the environment variable FISH_NO_WSL_CHECK is present, this test
// is bypassed. We intentionally do not include this in the error message because
// it'll only allow fish to run but not to actually work. Here be dragons!
if (getenv("FISH_NO_WSL_CHECK") == nullptr) {
FLOGF(error,
"This version of WSL has known bugs that prevent fish from working."
"Please upgrade to Windows 10 1809 (17763) or higher to use fish!");
}
}
return true;
} else {
return false;
}
}();
// Subsequent calls to this function may take place after fork() and before exec() in
// postfork.cpp. Make sure we never dynamically allocate any memory in the fast path!
return wsl_state;
#endif
}
#ifdef HAVE_BACKTRACE_SYMBOLS
// This function produces a stack backtrace with demangled function & method names. It is based on
// https://gist.github.com/fmela/591333 but adapted to the style of the fish project.
[[gnu::noinline]] static wcstring_list_t demangled_backtrace(int max_frames, int skip_levels) {
void *callstack[128];
const int n_max_frames = sizeof(callstack) / sizeof(callstack[0]);
int n_frames = backtrace(callstack, n_max_frames);
char **symbols = backtrace_symbols(callstack, n_frames);
wchar_t text[1024];
wcstring_list_t backtrace_text;
if (skip_levels + max_frames < n_frames) n_frames = skip_levels + max_frames;
for (int i = skip_levels; i < n_frames; i++) {
Dl_info info;
if (dladdr(callstack[i], &info) && info.dli_sname) {
char *demangled = nullptr;
int status = -1;
if (info.dli_sname[0] == '_')
demangled = abi::__cxa_demangle(info.dli_sname, nullptr, nullptr, &status);
swprintf(text, sizeof(text) / sizeof(wchar_t), L"%-3d %s + %td", i - skip_levels,
status == 0 ? demangled
: info.dli_sname == nullptr ? symbols[i]
: info.dli_sname,
static_cast<char *>(callstack[i]) - static_cast<const char *>(info.dli_saddr));
free(demangled);
} else {
swprintf(text, sizeof(text) / sizeof(wchar_t), L"%-3d %s", i - skip_levels, symbols[i]);
}
backtrace_text.push_back(text);
}
free(symbols);
return backtrace_text;
}
[[gnu::noinline]] void show_stackframe(const wchar_t msg_level, int frame_count, int skip_levels) {
if (frame_count < 1) return;
wcstring_list_t bt = demangled_backtrace(frame_count, skip_levels + 2);
debug_shared(msg_level, L"Backtrace:\n" + join_strings(bt, L'\n') + L'\n');
}
#else // HAVE_BACKTRACE_SYMBOLS
[[gnu::noinline]] void show_stackframe(const wchar_t msg_level, int, int) {
debug_shared(msg_level, L"Sorry, but your system does not support backtraces");
}
#endif // HAVE_BACKTRACE_SYMBOLS
/// \return the smallest pointer in the range [start, start + len] which is aligned to Align.
/// If there is no such pointer, return \p start + len.
/// alignment must be a power of 2 and in range [1, 64].
/// This is intended to return the end point of the "unaligned prefix" of a vectorized loop.
template <size_t Align>
inline const char *align_start(const char *start, size_t len) {
static_assert(Align >= 1 && Align <= 64, "Alignment must be in range [1, 64]");
static_assert((Align & (Align - 1)) == 0, "Alignment must be power of 2");
uintptr_t startu = reinterpret_cast<uintptr_t>(start);
// How much do we have to add to start to make it 0 mod Align?
// To compute 17 up-aligned by 8, compute its skew 17 % 8, yielding 1,
// and then we will add 8 - 1. Of course if we align 16 with the same idea, we will
// add 8 instead of 0, so then mod the summand by Align again.
// Note all of these mods are optimized to masks.
uintptr_t add_which_aligns = Align - (startu % Align);
add_which_aligns %= Align;
// Add that much but not more than len. If we add 'add_which_aligns' we may overflow the
// pointer.
return start + std::min(static_cast<size_t>(add_which_aligns), len);
}
/// \return the largest pointer in the range [start, start + len] which is aligned to Align.
/// If there is no such pointer, return \p start.
/// This is intended to be the start point of the "unaligned suffix" of a vectorized loop.
template <size_t Align>
inline const char *align_end(const char *start, size_t len) {
static_assert(Align >= 1 && Align <= 64, "Alignment must be in range [1, 64]");
static_assert((Align & (Align - 1)) == 0, "Alignment must be power of 2");
// How much do we have to subtract to align it? Its value, mod Align.
uintptr_t endu = reinterpret_cast<uintptr_t>(start + len);
uintptr_t sub_which_aligns = endu % Align;
return start + len - std::min(static_cast<size_t>(sub_which_aligns), len);
}
/// \return the count of initial characters in \p in which are ASCII.
static size_t count_ascii_prefix(const char *in, size_t in_len) {
// We'll use aligned reads of this type.
using WordType = uint32_t;
const char *aligned_start = align_start<alignof(WordType)>(in, in_len);
const char *aligned_end = align_end<alignof(WordType)>(in, in_len);
// Consume the unaligned prefix.
for (const char *cursor = in; cursor < aligned_start; cursor++) {
if (cursor[0] & 0x80) return &cursor[0] - in;
}
// Consume the aligned middle.
for (const char *cursor = aligned_start; cursor < aligned_end; cursor += sizeof(WordType)) {
if (*reinterpret_cast<const WordType *>(cursor) & 0x80808080) {
if (cursor[0] & 0x80) return &cursor[0] - in;
if (cursor[1] & 0x80) return &cursor[1] - in;
if (cursor[2] & 0x80) return &cursor[2] - in;
return &cursor[3] - in;
}
}
// Consume the unaligned suffix.
for (const char *cursor = aligned_end; cursor < in + in_len; cursor++) {
if (cursor[0] & 0x80) return &cursor[0] - in;
}
return in_len;
}
/// Converts the narrow character string \c in into its wide equivalent, and return it.
///
/// The string may contain embedded nulls.
///
/// This function encodes illegal character sequences in a reversible way using the private use
/// area.
static wcstring str2wcs_internal(const char *in, const size_t in_len) {
if (in_len == 0) return wcstring();
assert(in != nullptr);
wcstring result;
result.reserve(in_len);
// In the unlikely event that MB_CUR_MAX is 1, then we are just going to append.
if (MB_CUR_MAX == 1) {
size_t in_pos = 0;
while (in_pos < in_len) {
result.push_back(static_cast<unsigned char>(in[in_pos]));
in_pos++;
}
return result;
}
size_t in_pos = 0;
mbstate_t state = {};
while (in_pos < in_len) {
// Append any initial sequence of ascii characters.
// Note we do not support character sets which are not supersets of ASCII.
size_t ascii_prefix_length = count_ascii_prefix(&in[in_pos], in_len - in_pos);
result.insert(result.end(), &in[in_pos], &in[in_pos + ascii_prefix_length]);
in_pos += ascii_prefix_length;
assert(in_pos <= in_len && "Position overflowed length");
if (in_pos == in_len) break;
// We have found a non-ASCII character.
bool use_encode_direct = false;
size_t ret = 0;
wchar_t wc = 0;
if (false) {
#if defined(HAVE_BROKEN_MBRTOWC_UTF8)
} else if ((in[in_pos] & 0xF8) == 0xF8) {
// Protect against broken std::mbrtowc() implementations which attempt to encode UTF-8
// sequences longer than four bytes (e.g., OS X Snow Leopard).
use_encode_direct = true;
#endif
} else if (sizeof(wchar_t) == 2 && //!OCLINT(constant if expression)
(in[in_pos] & 0xF8) == 0xF0) {
// Assume we are in a UTF-16 environment (e.g., Cygwin) using a UTF-8 encoding.
// The bits set check will be true for a four byte UTF-8 sequence that requires
// two UTF-16 chars. Something that doesn't work with our simple use of std::mbrtowc().
use_encode_direct = true;
} else {
ret = std::mbrtowc(&wc, &in[in_pos], in_len - in_pos, &state);
// Determine whether to encode this character with our crazy scheme.
if (wc >= ENCODE_DIRECT_BASE && wc < ENCODE_DIRECT_BASE + 256) {
use_encode_direct = true;
} else if (wc == INTERNAL_SEPARATOR) {
use_encode_direct = true;
} else if (ret == static_cast<size_t>(-2)) {
// Incomplete sequence.
use_encode_direct = true;
} else if (ret == static_cast<size_t>(-1)) {
// Invalid data.
use_encode_direct = true;
} else if (ret > in_len - in_pos) {
// Other error codes? Terrifying, should never happen.
use_encode_direct = true;
} else if (sizeof(wchar_t) == 2 && wc >= 0xD800 && //!OCLINT(constant if expression)
wc <= 0xDFFF) {
// If we get a surrogate pair char on a UTF-16 system (e.g., Cygwin) then
// it's guaranteed the UTF-8 decoding is wrong so use direct encoding.
use_encode_direct = true;
}
}
if (use_encode_direct) {
wc = ENCODE_DIRECT_BASE + static_cast<unsigned char>(in[in_pos]);
result.push_back(wc);
in_pos++;
std::memset(&state, 0, sizeof state);
} else if (ret == 0) { // embedded null byte!
result.push_back(L'\0');
in_pos++;
std::memset(&state, 0, sizeof state);
} else { // normal case
result.push_back(wc);
in_pos += ret;
}
}
return result;
}
wcstring str2wcstring(const char *in, size_t len) { return str2wcs_internal(in, len); }
wcstring str2wcstring(const char *in) { return str2wcs_internal(in, std::strlen(in)); }
wcstring str2wcstring(const std::string &in) {
// Handles embedded nulls!
return str2wcs_internal(in.data(), in.size());
}
wcstring str2wcstring(const std::string &in, size_t len) {
// Handles embedded nulls!
return str2wcs_internal(in.data(), len);
}
std::string wcs2string(const wcstring &input) { return wcs2string(input.data(), input.size()); }
std::string wcs2string(const wchar_t *in, size_t len) {
if (len == 0) return std::string{};
std::string result;
wcs2string_appending(in, len, &result);
return result;
}
void wcs2string_appending(const wchar_t *in, size_t len, std::string *receiver) {
assert(receiver && "Null receiver");
receiver->reserve(receiver->size() + len);
wcs2string_callback(in, len, [&](const char *buff, size_t bufflen) {
receiver->append(buff, bufflen);
return true;
});
}
/// Test if the character can be encoded using the current locale.
static bool can_be_encoded(wchar_t wc) {
char converted[MB_LEN_MAX];
mbstate_t state = {};
return std::wcrtomb(converted, wc, &state) != static_cast<size_t>(-1);
}
wcstring format_string(const wchar_t *format, ...) {
va_list va;
va_start(va, format);
wcstring result = vformat_string(format, va);
va_end(va);
return result;
}
void append_formatv(wcstring &target, const wchar_t *format, va_list va_orig) {
const int saved_err = errno;
// As far as I know, there is no way to check if a vswprintf-call failed because of a badly
// formated string option or because the supplied destination string was to small. In GLIBC,
// errno seems to be set to EINVAL either way.
//
// Because of this, on failure we try to increase the buffer size until the free space is
// larger than max_size, at which point it will conclude that the error was probably due to a
// badly formated string option, and return an error. Make sure to null terminate string before
// that, though.
const size_t max_size = (128 * 1024 * 1024);
wchar_t static_buff[256];
size_t size = 0;
wchar_t *buff = nullptr;
int status = -1;
while (status < 0) {
// Reallocate if necessary.
if (size == 0) {
buff = static_buff;
size = sizeof static_buff;
} else {
size *= 2;
if (size >= max_size) {
buff[0] = '\0';
break;
}
buff = static_cast<wchar_t *>(realloc((buff == static_buff ? nullptr : buff), size));
assert(buff != nullptr);
}
// Try printing.
va_list va;
va_copy(va, va_orig);
status = std::vswprintf(buff, size / sizeof(wchar_t), format, va);
va_end(va);
}
target.append(buff);
if (buff != static_buff) {
free(buff);
}
errno = saved_err;
}
wcstring vformat_string(const wchar_t *format, va_list va_orig) {
wcstring result;
append_formatv(result, format, va_orig);
return result;
}
void append_format(wcstring &str, const wchar_t *format, ...) {
va_list va;
va_start(va, format);
append_formatv(str, format, va);
va_end(va);
}
wchar_t *quote_end(const wchar_t *pos) {
wchar_t c = *pos;
while (true) {
pos++;
if (!*pos) return nullptr;
if (*pos == L'\\') {
pos++;
if (!*pos) return nullptr;
} else {
if (*pos == c) {
return const_cast<wchar_t *>(pos);
}
}
}
return nullptr;
}
void fish_setlocale() {
// Use various Unicode symbols if they can be encoded using the current locale, else a simple
// ASCII char alternative. All of the can_be_encoded() invocations should return the same
// true/false value since the code points are in the BMP but we're going to be paranoid. This
// is also technically wrong if we're not in a Unicode locale but we expect (or hope)
// can_be_encoded() will return false in that case.
if (can_be_encoded(L'\u2026')) {
ellipsis_char = L'\u2026';
ellipsis_str = L"\u2026";
} else {
ellipsis_char = L'$'; // "horizontal ellipsis"
ellipsis_str = L"...";
}
if (is_windows_subsystem_for_linux()) {
// neither of \u23CE and \u25CF can be displayed in the default fonts on Windows, though
// they can be *encoded* just fine. Use alternative glyphs.
omitted_newline_str = L"\u00b6"; // "pilcrow"
omitted_newline_width = 1;
obfuscation_read_char = L'\u2022'; // "bullet"
} else if (is_console_session()) {
omitted_newline_str = L"^J";
omitted_newline_width = 2;
obfuscation_read_char = L'*';
} else {
if (can_be_encoded(L'\u23CE')) {
omitted_newline_str = L"\u23CE"; // "return symbol" (⏎)
omitted_newline_width = 1;
} else {
omitted_newline_str = L"^J";
omitted_newline_width = 2;
}
obfuscation_read_char = can_be_encoded(L'\u25CF') ? L'\u25CF' : L'#'; // "black circle"
}
}
long read_blocked(int fd, void *buf, size_t count) {
ssize_t res;
do {
res = read(fd, buf, count);
} while (res < 0 && errno == EINTR);
return res;
}
/// Loop a write request while failure is non-critical. Return -1 and set errno in case of critical
/// error.
ssize_t write_loop(int fd, const char *buff, size_t count) {
size_t out_cum = 0;
while (out_cum < count) {
ssize_t out = write(fd, &buff[out_cum], count - out_cum);
if (out < 0) {
if (errno != EAGAIN && errno != EINTR) {
return -1;
}
} else {
out_cum += static_cast<size_t>(out);
}
}
return static_cast<ssize_t>(out_cum);
}
ssize_t read_loop(int fd, void *buff, size_t count) {
ssize_t result;
do {
result = read(fd, buff, count);
} while (result < 0 && (errno == EAGAIN || errno == EINTR));
return result;
}
/// Hack to not print error messages in the tests. Do not call this from functions in this module
/// like `debug()`. It is only intended to suppress diagnostic noise from testing things like the
/// fish parser where we expect a lot of diagnostic messages due to testing error conditions.
bool should_suppress_stderr_for_tests() {
return program_name && !std::wcscmp(program_name, TESTS_PROGRAM_NAME);
}
static void debug_shared(const wchar_t level, const wcstring &msg) {
pid_t current_pid;
if (!is_forked_child()) {
std::fwprintf(stderr, L"<%lc> %ls: %ls\n", level, program_name, msg.c_str());
} else {
current_pid = getpid();
std::fwprintf(stderr, L"<%lc> %ls: %d: %ls\n", level, program_name, current_pid,
msg.c_str());
}
}
void debug_safe(int level, const char *msg, const char *param1, const char *param2,
const char *param3, const char *param4, const char *param5, const char *param6,
const char *param7, const char *param8, const char *param9, const char *param10,
const char *param11, const char *param12) {
const char *const params[] = {param1, param2, param3, param4, param5, param6,
param7, param8, param9, param10, param11, param12};
if (!msg) return;
// Can't call fwprintf, that may allocate memory Just call write() over and over.
if (level > debug_level) return;
int errno_old = errno;
size_t param_idx = 0;
const char *cursor = msg;
while (*cursor != '\0') {
const char *end = std::strchr(cursor, '%');
if (end == nullptr) end = cursor + std::strlen(cursor);
ignore_result(write(STDERR_FILENO, cursor, end - cursor));
if (end[0] == '%' && end[1] == 's') {
// Handle a format string.
assert(param_idx < sizeof params / sizeof *params);
const char *format = params[param_idx++];
if (!format) format = "(null)";
ignore_result(write(STDERR_FILENO, format, std::strlen(format)));
cursor = end + 2;
} else if (end[0] == '\0') {
// Must be at the end of the string.
cursor = end;
} else {
// Some other format specifier, just skip it.
cursor = end + 1;
}
}
// We always append a newline.
ignore_result(write(STDERR_FILENO, "\n", 1));
errno = errno_old;
}
// Careful to not negate LLONG_MIN.
static unsigned long long absolute_value(long long x) {
if (x >= 0) return static_cast<unsigned long long>(x);
x = -(x + 1);
return static_cast<unsigned long long>(x) + 1;
}
template <typename CharT>
void format_safe_impl(CharT *buff, size_t size, unsigned long long val) {
size_t idx = 0;
if (val == 0) {
buff[idx++] = '0';
} else {
// Generate the string backwards, then reverse it.
while (val != 0) {
buff[idx++] = (val % 10) + '0';
val /= 10;
}
std::reverse(buff, buff + idx);
}
buff[idx++] = '\0';
assert(idx <= size && "Buffer overflowed");
}
void format_long_safe(char buff[64], long val) {
unsigned long long uval = absolute_value(val);
if (val >= 0) {
format_safe_impl(buff, 64, uval);
} else {
buff[0] = '-';
format_safe_impl(buff + 1, 63, uval);
}
}
void format_long_safe(wchar_t buff[64], long val) {
unsigned long long uval = absolute_value(val);
if (val >= 0) {
format_safe_impl(buff, 64, uval);
} else {
buff[0] = '-';
format_safe_impl(buff + 1, 63, uval);
}
}
void format_ullong_safe(wchar_t buff[64], unsigned long long val) {
return format_safe_impl(buff, 64, val);
}
void narrow_string_safe(char buff[64], const wchar_t *s) {
size_t idx = 0;
for (size_t widx = 0; s[widx] != L'\0'; widx++) {
wchar_t c = s[widx];
if (c <= 127) {
buff[idx++] = char(c);
if (idx + 1 == 64) {
break;
}
}
}
buff[idx] = '\0';
}
wcstring reformat_for_screen(const wcstring &msg, const termsize_t &termsize) {
wcstring buff;
int line_width = 0;
int screen_width = termsize.width;
if (screen_width) {
const wchar_t *start = msg.c_str();
const wchar_t *pos = start;
while (true) {
int overflow = 0;
int tok_width = 0;
// Tokenize on whitespace, and also calculate the width of the token.
while (*pos && (!std::wcschr(L" \n\r\t", *pos))) {
// Check is token is wider than one line. If so we mark it as an overflow and break
// the token.
if ((tok_width + fish_wcwidth(*pos)) > (screen_width - 1)) {
overflow = 1;
break;
}
tok_width += fish_wcwidth(*pos);
pos++;
}
// If token is zero character long, we don't do anything.
if (pos == start) {
pos = pos + 1;
} else if (overflow) {
// In case of overflow, we print a newline, except if we already are at position 0.
wchar_t *token = wcsndup(start, pos - start);
if (line_width != 0) buff.push_back(L'\n');
buff.append(format_string(L"%ls-\n", token));
free(token);
line_width = 0;
} else {
// Print the token.
wchar_t *token = wcsndup(start, pos - start);
if ((line_width + (line_width != 0 ? 1 : 0) + tok_width) > screen_width) {
buff.push_back(L'\n');
line_width = 0;
}
buff.append(format_string(L"%ls%ls", line_width ? L" " : L"", token));
free(token);
line_width += (line_width != 0 ? 1 : 0) + tok_width;
}
// Break on end of string.
if (!*pos) {
break;
}
start = pos;
}
} else {
buff.append(msg);
}
buff.push_back(L'\n');
return buff;
}
/// Escape a string in a fashion suitable for using as a URL. Store the result in out_str.
static void escape_string_url(const wcstring &in, wcstring &out) {
const std::string narrow = wcs2string(in);
for (auto &c1 : narrow) {
// This silliness is so we get the correct result whether chars are signed or unsigned.
unsigned int c2 = static_cast<unsigned int>(c1) & 0xFF;
if (!(c2 & 0x80) &&
(isalnum(c2) || c2 == '/' || c2 == '.' || c2 == '~' || c2 == '-' || c2 == '_')) {
// The above characters don't need to be encoded.
out.push_back(static_cast<wchar_t>(c2));
} else {
// All other chars need to have their UTF-8 representation encoded in hex.
wchar_t buf[4];
swprintf(buf, sizeof buf / sizeof buf[0], L"%%%02X", c2);
out.append(buf);
}
}
}
/// Reverse the effects of `escape_string_url()`. By definition the string has consist of just ASCII
/// chars.
static bool unescape_string_url(const wchar_t *in, wcstring *out) {
std::string result;
result.reserve(out->size());
for (wchar_t c = *in; c; c = *++in) {
if (c > 0x7F) return false; // invalid character means we can't decode the string
if (c == '%') {
int c1 = in[1];
if (c1 == 0) return false; // found unexpected end of string
if (c1 == '%') {
result.push_back('%');
in++;
} else {
int c2 = in[2];
if (c2 == 0) return false; // string ended prematurely
long d1 = convert_digit(c1, 16);
if (d1 < 0) return false;
long d2 = convert_digit(c2, 16);
if (d2 < 0) return false;
result.push_back(16 * d1 + d2);
in += 2;
}
} else {
result.push_back(c);
}
}
*out = str2wcstring(result);
return true;
}
/// Escape a string in a fashion suitable for using as a fish var name. Store the result in out_str.
static void escape_string_var(const wcstring &in, wcstring &out) {
bool prev_was_hex_encoded = false;
const std::string narrow = wcs2string(in);
for (auto c1 : narrow) {
// This silliness is so we get the correct result whether chars are signed or unsigned.
unsigned int c2 = static_cast<unsigned int>(c1) & 0xFF;
if (!(c2 & 0x80) && isalnum(c2) && (!prev_was_hex_encoded || !is_hex_digit(c2))) {
// ASCII alphanumerics don't need to be encoded.
if (prev_was_hex_encoded) {
out.push_back(L'_');
prev_was_hex_encoded = false;
}
out.push_back(static_cast<wchar_t>(c2));
} else if (c2 == '_') {
// Underscores are encoded by doubling them.
out.append(L"__");
prev_was_hex_encoded = false;
} else {
// All other chars need to have their UTF-8 representation encoded in hex.
wchar_t buf[4];
swprintf(buf, sizeof buf / sizeof buf[0], L"_%02X", c2);
out.append(buf);
prev_was_hex_encoded = true;
}
}
if (prev_was_hex_encoded) {
out.push_back(L'_');
}
}
/// Reverse the effects of `escape_string_var()`. By definition the string has consist of just ASCII
/// chars.
static bool unescape_string_var(const wchar_t *in, wcstring *out) {
std::string result;
result.reserve(out->size());
bool prev_was_hex_encoded = false;
for (wchar_t c = *in; c; c = *++in) {
if (c > 0x7F) return false; // invalid character means we can't decode the string
if (c == '_') {
int c1 = in[1];
if (c1 == 0) {
if (prev_was_hex_encoded) break;
return false; // found unexpected escape char at end of string
}
if (c1 == '_') {
result.push_back('_');
in++;
} else if (is_hex_digit(c1)) {
int c2 = in[2];
if (c2 == 0) return false; // string ended prematurely
long d1 = convert_hex_digit(c1);
if (d1 < 0) return false;
long d2 = convert_hex_digit(c2);
if (d2 < 0) return false;
result.push_back(16 * d1 + d2);
in += 2;
prev_was_hex_encoded = true;
}
// No "else" clause because if the first char after an underscore is not another
// underscore or a valid hex character then the underscore is there to improve
// readability after we've encoded a character not valid in a var name.
} else {
result.push_back(c);
}
}
*out = str2wcstring(result);
return true;
}
/// Escape a string in a fashion suitable for using in fish script. Store the result in out_str.
static void escape_string_script(const wchar_t *orig_in, size_t in_len, wcstring &out,
escape_flags_t flags) {
const wchar_t *in = orig_in;
const bool escape_all = static_cast<bool>(flags & ESCAPE_ALL);
const bool no_quoted = static_cast<bool>(flags & ESCAPE_NO_QUOTED);
const bool no_tilde = static_cast<bool>(flags & ESCAPE_NO_TILDE);
const bool no_caret = feature_test(features_t::stderr_nocaret);
const bool no_qmark = feature_test(features_t::qmark_noglob);
bool need_escape = false;
bool need_complex_escape = false;
if (!no_quoted && in_len == 0) {
out.assign(L"''");
return;
}
for (size_t i = 0; i < in_len; i++) {
if ((*in >= ENCODE_DIRECT_BASE) && (*in < ENCODE_DIRECT_BASE + 256)) {
int val = *in - ENCODE_DIRECT_BASE;
int tmp;
out += L'\\';
out += L'X';
tmp = val / 16;
out += tmp > 9 ? L'a' + (tmp - 10) : L'0' + tmp;
tmp = val % 16;
out += tmp > 9 ? L'a' + (tmp - 10) : L'0' + tmp;
need_escape = need_complex_escape = true;
} else {
wchar_t c = *in;
switch (c) {
case L'\t': {
out += L'\\';
out += L't';
need_escape = need_complex_escape = true;
break;
}
case L'\n': {
out += L'\\';
out += L'n';
need_escape = need_complex_escape = true;
break;
}
case L'\b': {
out += L'\\';
out += L'b';
need_escape = need_complex_escape = true;
break;
}
case L'\r': {
out += L'\\';
out += L'r';
need_escape = need_complex_escape = true;
break;
}
case L'\x1B': {
out += L'\\';
out += L'e';
need_escape = need_complex_escape = true;
break;
}
case L'\x7F': {
out += L'\\';
out += L'x';
out += L'7';
out += L'f';
need_escape = need_complex_escape = true;
break;
}
case L'\\':
case L'\'': {
need_escape = need_complex_escape = true;
out += L'\\';
out += *in;
break;
}
case ANY_CHAR: {
// See #1614
out += L'?';
break;
}
case ANY_STRING: {
out += L'*';
break;
}
case ANY_STRING_RECURSIVE: {
out += L"**";
break;
}
case L'&':
case L'$':
case L' ':
case L'#':
case L'^':
case L'<':
case L'>':
case L'(':
case L')':
case L'[':
case L']':
case L'{':
case L'}':
case L'?':
case L'*':
case L'|':
case L';':
case L'"':
case L'%':
case L'~': {
bool char_is_normal = (c == L'~' && no_tilde) || (c == L'^' && no_caret) ||
(c == L'?' && no_qmark);
if (!char_is_normal) {
need_escape = true;
if (escape_all) out += L'\\';
}
out += *in;
break;
}
default: {
if (*in < 32) {
if (*in < 27 && *in > 0) {
out += L'\\';
out += L'c';
out += L'a' + *in - 1;
need_escape = need_complex_escape = true;
break;
}
int tmp = (*in) % 16;
out += L'\\';
out += L'x';
out += ((*in > 15) ? L'1' : L'0');
out += tmp > 9 ? L'a' + (tmp - 10) : L'0' + tmp;
need_escape = need_complex_escape = true;
} else {
out += *in;
}
break;
}
}
}
in++;
}
// Use quoted escaping if possible, since most people find it easier to read.
if (!no_quoted && need_escape && !need_complex_escape && escape_all) {
wchar_t single_quote = L'\'';
out.clear();
out.reserve(2 + in_len);
out.push_back(single_quote);
out.append(orig_in, in_len);
out.push_back(single_quote);
}
}
/// Escapes a string for use in a regex string. Not safe for use with `eval` as only
/// characters reserved by PCRE2 are escaped, i.e. it relies on fish's automatic escaping
/// of subshell output in subsequent concatenation or for use as an argument.
/// \param in is the raw string to be searched for literally when substituted in a PCRE2 expression.
static wcstring escape_string_pcre2(const wcstring &in) {
wcstring out;
out.reserve(in.size() * 1.3); // a wild guess
for (auto c : in) {
switch (c) {
case L'.':
case L'^':
case L'$':
case L'*':
case L'+':
case L'(':
case L')':
case L'?':
case L'[':
case L'{':
case L'}':
case L'\\':
case L'|':
// these two only *need* to be escaped within a character class, and technically it
// makes no sense to ever use process substitution output to compose a character class,
// but...
case L'-':
case L']':
out.push_back('\\');
/* FALLTHROUGH */
default:
out.push_back(c);
}
}
return out;
}
wcstring escape_string(const wchar_t *in, escape_flags_t flags, escape_string_style_t style) {
wcstring result;
switch (style) {
case STRING_STYLE_SCRIPT: {
escape_string_script(in, std::wcslen(in), result, flags);
break;
}
case STRING_STYLE_URL: {
escape_string_url(in, result);
break;
}
case STRING_STYLE_VAR: {
escape_string_var(in, result);
break;
}
case STRING_STYLE_REGEX: {
result = escape_string_pcre2(in);
break;
}
}
return result;
}
wcstring escape_string(const wcstring &in, escape_flags_t flags, escape_string_style_t style) {
wcstring result;
switch (style) {
case STRING_STYLE_SCRIPT: {
escape_string_script(in.c_str(), in.size(), result, flags);
break;
}
case STRING_STYLE_URL: {
escape_string_url(in, result);
break;
}
case STRING_STYLE_VAR: {
escape_string_var(in, result);
break;
}
case STRING_STYLE_REGEX: {
result = escape_string_pcre2(in);
break;
}
}
return result;
}
/// Helper to return the last character in a string, or none.
static maybe_t<wchar_t> string_last_char(const wcstring &str) {
if (str.empty()) return none();
return str.back();
}
/// Given a null terminated string starting with a backslash, read the escape as if it is unquoted,
/// appending to result. Return the number of characters consumed, or 0 on error.
maybe_t<size_t> read_unquoted_escape(const wchar_t *input, wcstring *result, bool allow_incomplete,
bool unescape_special) {
assert(input[0] == L'\\' && "Not an escape");
// Here's the character we'll ultimately append, or none. Note that L'\0' is a
// valid thing to append.
maybe_t<wchar_t> result_char_or_none = none();
bool errored = false;
size_t in_pos = 1; // in_pos always tracks the next character to read (and therefore the number
// of characters read so far)
const wchar_t c = input[in_pos++];
switch (c) {
// A null character after a backslash is an error.
case L'\0': {
// Adjust in_pos to only include the backslash.
assert(in_pos > 0);
in_pos--;
// It's an error, unless we're allowing incomplete escapes.
if (!allow_incomplete) errored = true;
break;
}
// Numeric escape sequences. No prefix means octal escape, otherwise hexadecimal.
case L'0':
case L'1':
case L'2':
case L'3':
case L'4':
case L'5':
case L'6':
case L'7':
case L'u':
case L'U':
case L'x':
case L'X': {
long long res = 0;
size_t chars = 2;
int base = 16;
bool byte_literal = false;
wchar_t max_val = ASCII_MAX;
switch (c) {
case L'u': {
chars = 4;
max_val = UCS2_MAX;
break;
}
case L'U': {
chars = 8;
max_val = WCHAR_MAX;
// Don't exceed the largest Unicode code point - see #1107.
if (0x10FFFF < max_val) max_val = static_cast<wchar_t>(0x10FFFF);
break;
}
case L'x': {
chars = 2;
max_val = ASCII_MAX;
break;
}
case L'X': {
byte_literal = true;
max_val = BYTE_MAX;
break;
}
default: {
base = 8;
chars = 3;
// Note that in_pos currently is just after the first post-backslash character;
// we want to start our escape from there.
assert(in_pos > 0);
in_pos--;
break;
}
}
for (size_t i = 0; i < chars; i++) {
long d = convert_digit(input[in_pos], base);
if (d < 0) {
break;
}
res = (res * base) + d;
in_pos++;
}
if (res <= max_val) {
result_char_or_none =
static_cast<wchar_t>((byte_literal ? ENCODE_DIRECT_BASE : 0) + res);
} else {
errored = true;
}
break;
}
// \a means bell (alert).
case L'a': {
result_char_or_none = L'\a';
break;
}
// \b means backspace.
case L'b': {
result_char_or_none = L'\b';
break;
}
// \cX means control sequence X.
case L'c': {
const wchar_t sequence_char = input[in_pos++];
if (sequence_char >= L'a' && sequence_char <= (L'a' + 32)) {
result_char_or_none = sequence_char - L'a' + 1;
} else if (sequence_char >= L'A' && sequence_char <= (L'A' + 32)) {
result_char_or_none = sequence_char - L'A' + 1;
} else {
errored = true;
}
break;
}
// \x1B means escape.
case L'e': {
result_char_or_none = L'\x1B';
break;
}
// \f means form feed.
case L'f': {
result_char_or_none = L'\f';
break;
}
// \n means newline.
case L'n': {
result_char_or_none = L'\n';
break;
}
// \r means carriage return.
case L'r': {
result_char_or_none = L'\r';
break;
}
// \t means tab.
case L't': {
result_char_or_none = L'\t';
break;
}
// \v means vertical tab.
case L'v': {
result_char_or_none = L'\v';
break;
}
// If a backslash is followed by an actual newline, swallow them both.
case L'\n': {
result_char_or_none = none();
break;
}
default: {
if (unescape_special) result->push_back(INTERNAL_SEPARATOR);
result_char_or_none = c;
break;
}
}
if (!errored && result_char_or_none.has_value()) {
result->push_back(*result_char_or_none);
}
if (errored) return none();
return in_pos;
}
/// Returns the unescaped version of input_str into output_str (by reference). Returns true if
/// successful. If false, the contents of output_str are undefined (!).
static bool unescape_string_internal(const wchar_t *const input, const size_t input_len,
wcstring *output_str, unescape_flags_t flags) {
// Set up result string, which we'll swap with the output on success.
wcstring result;
result.reserve(input_len);
const bool unescape_special = static_cast<bool>(flags & UNESCAPE_SPECIAL);
const bool allow_incomplete = static_cast<bool>(flags & UNESCAPE_INCOMPLETE);
const bool ignore_backslashes = static_cast<bool>(flags & UNESCAPE_NO_BACKSLASHES);
// The positions of open braces.
std::vector<size_t> braces;
// The positions of variable expansions or brace ","s.
// We only read braces as expanders if there's a variable expansion or "," in them.
std::vector<size_t> vars_or_seps;
int brace_count = 0;
bool errored = false;
enum {
mode_unquoted,
mode_single_quotes,
mode_double_quotes,
} mode = mode_unquoted;
for (size_t input_position = 0; input_position < input_len && !errored; input_position++) {
const wchar_t c = input[input_position];
// Here's the character we'll append to result, or none() to suppress it.
maybe_t<wchar_t> to_append_or_none = c;
if (mode == mode_unquoted) {
switch (c) {
case L'\\': {
if (!ignore_backslashes) {
// Backslashes (escapes) are complicated and may result in errors, or
// appending INTERNAL_SEPARATORs, so we have to handle them specially.
auto escape_chars = read_unquoted_escape(
input + input_position, &result, allow_incomplete, unescape_special);
if (!escape_chars) {
// A none() return indicates an error.
errored = true;
} else {
// Skip over the characters we read, minus one because the outer loop
// will increment it.
assert(*escape_chars > 0);
input_position += *escape_chars - 1;
}
// We've already appended, don't append anything else.
to_append_or_none = none();
}
break;
}
case L'~': {
if (unescape_special && (input_position == 0)) {
to_append_or_none = HOME_DIRECTORY;
}
break;
}
case L'%': {
// Note that this only recognizes %self if the string is literally %self.
// %self/foo will NOT match this.
if (unescape_special && input_position == 0 &&
!std::wcscmp(input, PROCESS_EXPAND_SELF_STR)) {
to_append_or_none = PROCESS_EXPAND_SELF;
input_position += PROCESS_EXPAND_SELF_STR_LEN - 1; // skip over 'self's
}
break;
}
case L'*': {
if (unescape_special) {
// In general, this is ANY_STRING. But as a hack, if the last appended char
// is ANY_STRING, delete the last char and store ANY_STRING_RECURSIVE to
// reflect the fact that ** is the recursive wildcard.
if (string_last_char(result) == ANY_STRING) {
assert(!result.empty());
result.resize(result.size() - 1);
to_append_or_none = ANY_STRING_RECURSIVE;
} else {
to_append_or_none = ANY_STRING;
}
}
break;
}
case L'?': {
if (unescape_special && !feature_test(features_t::qmark_noglob)) {
to_append_or_none = ANY_CHAR;
}
break;
}
case L'$': {
if (unescape_special) {
to_append_or_none = VARIABLE_EXPAND;
vars_or_seps.push_back(input_position);
}
break;
}
case L'{': {
if (unescape_special) {
brace_count++;
to_append_or_none = BRACE_BEGIN;
// We need to store where the brace *ends up* in the output.
braces.push_back(result.size());
}
break;
}
case L'}': {
if (unescape_special) {
// HACK: The completion machinery sometimes hands us partial tokens.
// We can't parse them properly, but it shouldn't hurt,
// so we don't assert here.
// See #4954.
// assert(brace_count > 0 && "imbalanced brackets are a tokenizer error, we
// shouldn't be able to get here");
brace_count--;
to_append_or_none = BRACE_END;
if (!braces.empty()) {
// If we didn't have a var or separator since the last '{',
// put the literal back.
if (vars_or_seps.empty() || vars_or_seps.back() < braces.back()) {
result[braces.back()] = L'{';
// We also need to turn all spaces back.
for (size_t i = braces.back() + 1; i < result.size(); i++) {
if (result[i] == BRACE_SPACE) result[i] = L' ';
}
to_append_or_none = L'}';
}
// Remove all seps inside the current brace pair, so if we have a
// surrounding pair we only get seps inside *that*.
if (!vars_or_seps.empty()) {
while (!vars_or_seps.empty() && vars_or_seps.back() > braces.back())
vars_or_seps.pop_back();
}
braces.pop_back();
}
}
break;
}
case L',': {
if (unescape_special && brace_count > 0) {
to_append_or_none = BRACE_SEP;
vars_or_seps.push_back(input_position);
}
break;
}
case L' ': {
if (unescape_special && brace_count > 0) {
to_append_or_none = BRACE_SPACE;
}
break;
}
case L'\'': {
mode = mode_single_quotes;
to_append_or_none =
unescape_special ? maybe_t<wchar_t>(INTERNAL_SEPARATOR) : none();
break;
}
case L'\"': {
mode = mode_double_quotes;
to_append_or_none =
unescape_special ? maybe_t<wchar_t>(INTERNAL_SEPARATOR) : none();
break;
}
default: {
break;
}
}
} else if (mode == mode_single_quotes) {
if (c == L'\\') {
// A backslash may or may not escape something in single quotes.
switch (input[input_position + 1]) {
case '\\':
case L'\'': {
to_append_or_none = input[input_position + 1];
input_position += 1; // skip over the backslash
break;
}
case L'\0': {
if (!allow_incomplete) {
errored = true;
} else {
// PCA this line had the following cryptic comment: 'We may ever escape
// a NULL character, but still appending a \ in case I am wrong.' Not
// sure what it means or the importance of this.
input_position += 1; /* Skip over the backslash */
to_append_or_none = L'\\';
}
break;
}
default: {
// Literal backslash that doesn't escape anything! Leave things alone; we'll
// append the backslash itself.
break;
}
}
} else if (c == L'\'') {
to_append_or_none =
unescape_special ? maybe_t<wchar_t>(INTERNAL_SEPARATOR) : none();
mode = mode_unquoted;
}
} else if (mode == mode_double_quotes) {
switch (c) {
case L'"': {
mode = mode_unquoted;
to_append_or_none =
unescape_special ? maybe_t<wchar_t>(INTERNAL_SEPARATOR) : none();
break;
}
case '\\': {
switch (input[input_position + 1]) {
case L'\0': {
if (!allow_incomplete) {
errored = true;
} else {
to_append_or_none = L'\0';
}
break;
}
case '\\':
case L'$':
case '"': {
to_append_or_none = input[input_position + 1];
input_position += 1; /* Skip over the backslash */
break;
}
case '\n': {
/* Swallow newline */
to_append_or_none = none();
input_position += 1; /* Skip over the backslash */
break;
}
default: {
/* Literal backslash that doesn't escape anything! Leave things alone;
* we'll append the backslash itself */
break;
}
}
break;
}
case '$': {
if (unescape_special) {
to_append_or_none = VARIABLE_EXPAND_SINGLE;
vars_or_seps.push_back(input_position);
}
break;
}
default: {
break;
}
}
}
// Now maybe append the char.
if (to_append_or_none.has_value()) {
result.push_back(*to_append_or_none);
}
}
// Return the string by reference, and then success.
if (!errored) {
*output_str = std::move(result);
}
return !errored;
}
bool unescape_string_in_place(wcstring *str, unescape_flags_t escape_special) {
assert(str != nullptr);
wcstring output;
bool success = unescape_string_internal(str->c_str(), str->size(), &output, escape_special);
if (success) {
*str = std::move(output);
}
return success;
}
bool unescape_string(const wchar_t *input, wcstring *output, unescape_flags_t escape_special,
escape_string_style_t style) {
bool success = false;
switch (style) {
case STRING_STYLE_SCRIPT: {
success = unescape_string_internal(input, std::wcslen(input), output, escape_special);
break;
}
case STRING_STYLE_URL: {
success = unescape_string_url(input, output);
break;
}
case STRING_STYLE_VAR: {
success = unescape_string_var(input, output);
break;
}
case STRING_STYLE_REGEX: {
// unescaping PCRE2 is not needed/supported, the PCRE2 engine is responsible for that
success = false;
break;
}
}
if (!success) output->clear();
return success;
}
bool unescape_string(const wcstring &input, wcstring *output, unescape_flags_t escape_special,
escape_string_style_t style) {
bool success = false;
switch (style) {
case STRING_STYLE_SCRIPT: {
success = unescape_string_internal(input.c_str(), input.size(), output, escape_special);
break;
}
case STRING_STYLE_URL: {
success = unescape_string_url(input.c_str(), output);
break;
}
case STRING_STYLE_VAR: {
success = unescape_string_var(input.c_str(), output);
break;
}
case STRING_STYLE_REGEX: {
// unescaping PCRE2 is not needed/supported, the PCRE2 engine is responsible for that
success = false;
break;
}
}
if (!success) output->clear();
return success;
}
[[gnu::noinline]] void bugreport() {
FLOG(error, _(L"This is a bug. Break on 'bugreport' to debug."));
FLOG(error, _(L"If you can reproduce it, please report: "), PACKAGE_BUGREPORT, L'.');
}
wcstring format_size(long long sz) {
wcstring result;
const wchar_t *sz_name[] = {L"kB", L"MB", L"GB", L"TB", L"PB", L"EB", L"ZB", L"YB", nullptr};
if (sz < 0) {
result.append(L"unknown");
} else if (sz < 1) {
result.append(_(L"empty"));
} else if (sz < 1024) {
result.append(format_string(L"%lldB", sz));
} else {
int i;
for (i = 0; sz_name[i]; i++) {
if (sz < (1024 * 1024) || !sz_name[i + 1]) {
long isz = (static_cast<long>(sz)) / 1024;
if (isz > 9)
result.append(format_string(L"%ld%ls", isz, sz_name[i]));
else
result.append(
format_string(L"%.1f%ls", static_cast<double>(sz) / 1024, sz_name[i]));
break;
}
sz /= 1024;
}
}
return result;
}
/// Crappy function to extract the most significant digit of an unsigned long long value.
static char extract_most_significant_digit(unsigned long long *xp) {
unsigned long long place_value = 1;
unsigned long long x = *xp;
while (x >= 10) {
x /= 10;
place_value *= 10;
}
*xp -= (place_value * x);
return x + '0';
}
static void append_ull(char *buff, unsigned long long val, size_t *inout_idx, size_t max_len) {
size_t idx = *inout_idx;
while (val > 0 && idx < max_len) buff[idx++] = extract_most_significant_digit(&val);
*inout_idx = idx;
}
static void append_str(char *buff, const char *str, size_t *inout_idx, size_t max_len) {
size_t idx = *inout_idx;
while (*str && idx < max_len) buff[idx++] = *str++;
*inout_idx = idx;
}
void format_size_safe(char buff[128], unsigned long long sz) {
const size_t buff_size = 128;
const size_t max_len = buff_size - 1; // need to leave room for a null terminator
std::memset(buff, 0, buff_size);
size_t idx = 0;
const char *const sz_name[] = {"kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB", nullptr};
if (sz < 1) {
strncpy(buff, "empty", buff_size);
} else if (sz < 1024) {
append_ull(buff, sz, &idx, max_len);
append_str(buff, "B", &idx, max_len);
} else {
for (size_t i = 0; sz_name[i]; i++) {
if (sz < (1024 * 1024) || !sz_name[i + 1]) {
unsigned long long isz = sz / 1024;
if (isz > 9) {
append_ull(buff, isz, &idx, max_len);
} else {
append_ull(buff, isz, &idx, max_len);
// Maybe append a single fraction digit.
unsigned long long remainder = sz % 1024;
if (remainder > 0) {
char tmp[3] = {'.', extract_most_significant_digit(&remainder), 0};
append_str(buff, tmp, &idx, max_len);
}
}
append_str(buff, sz_name[i], &idx, max_len);
break;
}
sz /= 1024;
}
}
}
/// Return the number of seconds from the UNIX epoch, with subsecond precision. This function uses
/// the gettimeofday function and will have the same precision as that function.
double timef() {
struct timeval tv;
assert_with_errno(gettimeofday(&tv, nullptr) != -1);
// return (double)tv.tv_sec + 0.000001 * tv.tv_usec;
return static_cast<double>(tv.tv_sec) + 1e-6 * tv.tv_usec;
}
void exit_without_destructors(int code) { _exit(code); }
extern "C" {
[[gnu::noinline]] void debug_thread_error(void) {
// Wait for a SIGINT. We can't use sigsuspend() because the signal may be delivered on another
// thread.
sigchecker_t sigint(topic_t::sighupint);
sigint.wait();
}
}
void set_main_thread() {
// Just call thread_id() once to force increment of thread_id.
uint64_t tid = thread_id();
assert(tid == 1 && "main thread should have thread ID 1");
(void)tid;
}
void configure_thread_assertions_for_testing() { thread_asserts_cfg_for_testing = true; }
bool is_forked_child() { return is_forked_proc; }
void setup_fork_guards() {
is_forked_proc = false;
static std::once_flag fork_guard_flag;
std::call_once(fork_guard_flag,
[] { pthread_atfork(nullptr, nullptr, [] { is_forked_proc = true; }); });
}
void save_term_foreground_process_group() {
ASSERT_IS_MAIN_THREAD();
initial_fg_process_group = tcgetpgrp(STDIN_FILENO);
}
void restore_term_foreground_process_group_for_exit() {
// We wish to restore the tty to the initial owner. There's two ways this can go wrong:
// 1. We may steal the tty from someone else (#7060).
// 2. The call to tcsetpgrp may deliver SIGSTOP to us, and we will not exit.
// Hanging on exit seems worse, so ensure that SIGTTOU is ignored so we do not get SIGSTOP.
// Note initial_fg_process_group == 0 is possible with Linux pid namespaces.
// This is called during shutdown and from a signal handler. We don't bother to complain on
// failure because doing so is unlikely to be noticed.
if (initial_fg_process_group > 0 && initial_fg_process_group != getpgrp()) {
(void)signal(SIGTTOU, SIG_IGN);
(void)tcsetpgrp(STDIN_FILENO, initial_fg_process_group);
}
}
bool is_main_thread() { return thread_id() == 1; }
void assert_is_main_thread(const char *who) {
if (!is_main_thread() && !thread_asserts_cfg_for_testing) {
FLOGF(error, L"%s called off of main thread.", who);
FLOGF(error, L"Break on debug_thread_error to debug.");
debug_thread_error();
}
}
void assert_is_not_forked_child(const char *who) {
if (is_forked_child()) {
FLOGF(error, L"%s called in a forked child.", who);
FLOG(error, L"Break on debug_thread_error to debug.");
debug_thread_error();
}
}
void assert_is_background_thread(const char *who) {
if (is_main_thread() && !thread_asserts_cfg_for_testing) {
FLOGF(error, L"%s called on the main thread (may block!).", who);
FLOG(error, L"Break on debug_thread_error to debug.");
debug_thread_error();
}
}
void assert_is_locked(std::mutex &mutex, const char *who, const char *caller) {
// Note that std::mutex.try_lock() is allowed to return false when the mutex isn't
// actually locked; fortunately we are checking the opposite so we're safe.
if (mutex.try_lock()) {
FLOGF(error, L"%s is not locked when it should be in '%s'", who, caller);
FLOG(error, L"Break on debug_thread_error to debug.");
debug_thread_error();
mutex.unlock();
}
}
/// Test if the specified character is in a range that fish uses interally to store special tokens.
///
/// NOTE: This is used when tokenizing the input. It is also used when reading input, before
/// tokenization, to replace such chars with REPLACEMENT_WCHAR if they're not part of a quoted
/// string. We don't want external input to be able to feed reserved characters into our
/// lexer/parser or code evaluator.
//
// TODO: Actually implement the replacement as documented above.
bool fish_reserved_codepoint(wchar_t c) {
return (c >= RESERVED_CHAR_BASE && c < RESERVED_CHAR_END) ||
(c >= ENCODE_DIRECT_BASE && c < ENCODE_DIRECT_END);
}
/// Reopen stdin, stdout and/or stderr on /dev/null. This is invoked when we find that our tty has
/// become invalid.
void redirect_tty_output() {
struct termios t;
int fd = open("/dev/null", O_WRONLY);
if (fd == -1) {
__fish_assert("Could not open /dev/null!", __FILE__, __LINE__, errno);
}
if (tcgetattr(STDIN_FILENO, &t) == -1 && errno == EIO) dup2(fd, STDIN_FILENO);
if (tcgetattr(STDOUT_FILENO, &t) == -1 && errno == EIO) dup2(fd, STDOUT_FILENO);
if (tcgetattr(STDERR_FILENO, &t) == -1 && errno == EIO) dup2(fd, STDERR_FILENO);
close(fd);
}
/// Display a failed assertion message, dump a stack trace if possible, then die.
[[noreturn]] void __fish_assert(const char *msg, const char *file, size_t line, int error) {
if (error) {
FLOGF(error, L"%s:%zu: failed assertion: %s: errno %d (%s)", file, line, msg, error,
std::strerror(error));
} else {
FLOGF(error, L"%s:%zu: failed assertion: %s", file, line, msg);
}
show_stackframe(L'E', 99, 1);
abort();
}
/// Test if the given char is valid in a variable name.
bool valid_var_name_char(wchar_t chr) { return fish_iswalnum(chr) || chr == L'_'; }
/// Test if the given string is a valid variable name.
bool valid_var_name(const wcstring &str) {
// Note do not use c_str(), we want to fail on embedded nul bytes.
return !str.empty() && std::all_of(str.begin(), str.end(), valid_var_name_char);
}
bool valid_var_name(const wchar_t *str) {
if (str[0] == L'\0') return false;
for (size_t i = 0; str[i] != L'\0'; i++) {
if (!valid_var_name_char(str[i])) return false;
}
return true;
}
/// Test if the string is a valid function name.
bool valid_func_name(const wcstring &str) {
if (str.empty()) return false;
if (str.at(0) == L'-') return false;
if (str.find_first_of(L'/') != wcstring::npos) return false;
return true;
}
/// Return the path to the current executable. This needs to be realpath'd.
std::string get_executable_path(const char *argv0) {
char buff[PATH_MAX];
#ifdef __APPLE__
// On OS X use it's proprietary API to get the path to the executable.
// This is basically grabbing exec_path after argc, argv, envp, ...: for us
// https://opensource.apple.com/source/adv_cmds/adv_cmds-163/ps/print.c
uint32_t buffSize = sizeof buff;
if (_NSGetExecutablePath(buff, &buffSize) == 0) return std::string(buff);
#elif defined(__BSD__) && defined(KERN_PROC_PATHNAME) && !defined(__NetBSD__)
// BSDs do not have /proc by default, (although it can be mounted as procfs via the Linux
// compatibility layer). We can use sysctl instead: per sysctl(3), passing in a process ID of -1
// returns the value for the current process.
//
// (this is broken on NetBSD, while /proc works, so we use that)
size_t buff_size = sizeof buff;
int name[] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1};
int result = sysctl(name, sizeof(name) / sizeof(int), buff, &buff_size, nullptr, 0);
if (result != 0) {
wperror(L"sysctl KERN_PROC_PATHNAME");
} else {
return std::string(buff);
}
#else
// On other unixes, fall back to the Linux-ish /proc/ directory
ssize_t len;
len = readlink("/proc/self/exe", buff, sizeof buff - 1); // Linux
if (len == -1) {
len = readlink("/proc/curproc/file", buff, sizeof buff - 1); // other BSDs
if (len == -1) {
len = readlink("/proc/self/path/a.out", buff, sizeof buff - 1); // Solaris
}
}
if (len > 0) {
buff[len] = '\0';
return std::string(buff);
}
#endif
// Just return argv0, which probably won't work (i.e. it's not an absolute path or a path
// relative to the working directory, but instead something the caller found via $PATH). We'll
// eventually fall back to the compile time paths.
return std::string(argv0 ? argv0 : "");
}
/// Return a path to a directory where we can store temporary files.
std::string get_path_to_tmp_dir() {
char *env_tmpdir = getenv("TMPDIR");
if (env_tmpdir) {
return env_tmpdir;
}
#if defined(_CS_DARWIN_USER_TEMP_DIR)
char osx_tmpdir[PATH_MAX];
size_t n = confstr(_CS_DARWIN_USER_TEMP_DIR, osx_tmpdir, PATH_MAX);
if (0 < n && n <= PATH_MAX) {
return osx_tmpdir;
} else {
return "/tmp";
}
#elif defined(P_tmpdir)
return P_tmpdir;
#elif defined(_PATH_TMP)
return _PATH_TMP;
#else
return "/tmp";
#endif
}
// This function attempts to distinguish between a console session (at the actual login vty) and a
// session within a terminal emulator inside a desktop environment or over SSH. Unfortunately
// there are few values of $TERM that we can interpret as being exclusively console sessions, and
// most common operating systems do not use them. The value is cached for the duration of the fish
// session. We err on the side of assuming it's not a console session. This approach isn't
// bullet-proof and that's OK.
bool is_console_session() {
static const bool console_session = [] {
ASSERT_IS_MAIN_THREAD();
const char *tty_name = ttyname(0);
constexpr auto len = const_strlen("/dev/tty");
const char *TERM = getenv("TERM");
return
// Test that the tty matches /dev/(console|dcons|tty[uv\d])
tty_name &&
((strncmp(tty_name, "/dev/tty", len) == 0 &&
(tty_name[len] == 'u' || tty_name[len] == 'v' || isdigit(tty_name[len]))) ||
strcmp(tty_name, "/dev/dcons") == 0 || strcmp(tty_name, "/dev/console") == 0)
// and that $TERM is simple, e.g. `xterm` or `vt100`, not `xterm-something`
&& (!TERM || !strchr(TERM, '-') || !strcmp(TERM, "sun-color"));
}();
return console_session;
}