mirror of
https://github.com/fish-shell/fish-shell
synced 2024-12-31 23:28:45 +00:00
306 lines
12 KiB
C++
306 lines
12 KiB
C++
// Helper functions for working with wcstring.
|
|
#ifndef FISH_WCSTRINGUTIL_H
|
|
#define FISH_WCSTRINGUTIL_H
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "common.h"
|
|
#include "expand.h"
|
|
|
|
/// Test if a string prefixes another. Returns true if a is a prefix of b.
|
|
bool string_prefixes_string(const wcstring &proposed_prefix, const wcstring &value);
|
|
bool string_prefixes_string(const wchar_t *proposed_prefix, const wcstring &value);
|
|
bool string_prefixes_string(const wchar_t *proposed_prefix, const wchar_t *value);
|
|
bool string_prefixes_string(const char *proposed_prefix, const std::string &value);
|
|
bool string_prefixes_string(const char *proposed_prefix, const char *value);
|
|
|
|
/// Test if a string is a suffix of another.
|
|
bool string_suffixes_string(const wcstring &proposed_suffix, const wcstring &value);
|
|
bool string_suffixes_string(const wchar_t *proposed_suffix, const wcstring &value);
|
|
bool string_suffixes_string_case_insensitive(const wcstring &proposed_suffix,
|
|
const wcstring &value);
|
|
|
|
/// Test if a string prefixes another without regard to case. Returns true if a is a prefix of b.
|
|
bool string_prefixes_string_case_insensitive(const wcstring &proposed_prefix,
|
|
const wcstring &value);
|
|
|
|
/// Case-insensitive string search, modeled after std::string::find().
|
|
/// \param fuzzy indicates this is being used for fuzzy matching and case insensitivity is
|
|
/// expanded to include symbolic characters (#3584).
|
|
/// \return the offset of the first case-insensitive matching instance of `needle` within
|
|
/// `haystack`, or `string::npos()` if no results were found.
|
|
size_t ifind(const wcstring &haystack, const wcstring &needle, bool fuzzy = false);
|
|
size_t ifind(const std::string &haystack, const std::string &needle, bool fuzzy = false);
|
|
|
|
/// A lightweight value-type describing how closely a string fuzzy-matches another string.
|
|
struct string_fuzzy_match_t {
|
|
// The ways one string can contain another.
|
|
enum class contain_type_t : uint8_t {
|
|
exact, // exact match: foobar matches foo
|
|
prefix, // prefix match: foo matches foobar
|
|
substr, // substring match: ooba matches foobar
|
|
subseq, // subsequence match: fbr matches foobar
|
|
};
|
|
contain_type_t type;
|
|
|
|
// The case-folding required for the match.
|
|
enum class case_fold_t : uint8_t {
|
|
samecase, // exact match: foobar matches foobar
|
|
smartcase, // case insensitive match with lowercase input. foobar matches FoBar.
|
|
icase, // case insensitive: FoBaR matches foobAr
|
|
};
|
|
case_fold_t case_fold;
|
|
|
|
// Constructor.
|
|
constexpr string_fuzzy_match_t(contain_type_t type, case_fold_t case_fold)
|
|
: type(type), case_fold(case_fold) {}
|
|
|
|
// Helper to return an exact match.
|
|
static constexpr string_fuzzy_match_t exact_match() {
|
|
return string_fuzzy_match_t(contain_type_t::exact, case_fold_t::samecase);
|
|
}
|
|
|
|
/// \return whether this is a samecase exact match.
|
|
bool is_samecase_exact() const {
|
|
return type == contain_type_t::exact && case_fold == case_fold_t::samecase;
|
|
}
|
|
|
|
/// \return if we are exact or prefix match.
|
|
bool is_exact_or_prefix() const {
|
|
switch (type) {
|
|
case contain_type_t::exact:
|
|
case contain_type_t::prefix:
|
|
return true;
|
|
case contain_type_t::substr:
|
|
case contain_type_t::subseq:
|
|
return false;
|
|
}
|
|
DIE("Unreachable");
|
|
return false;
|
|
}
|
|
|
|
// \return if our match requires a full replacement, i.e. is not a strict extension of our
|
|
// existing string. This is false only if our case matches, and our type is prefix or exact.
|
|
bool requires_full_replacement() const {
|
|
if (case_fold != case_fold_t::samecase) return true;
|
|
switch (type) {
|
|
case contain_type_t::exact:
|
|
case contain_type_t::prefix:
|
|
return false;
|
|
case contain_type_t::substr:
|
|
case contain_type_t::subseq:
|
|
return true;
|
|
}
|
|
DIE("Unreachable");
|
|
return false;
|
|
}
|
|
|
|
/// Try creating a fuzzy match for \p string against \p match_against.
|
|
/// \p string is something like "foo" and \p match_against is like "FooBar".
|
|
/// If \p anchor_start is set, then only exact and prefix matches are permitted.
|
|
static maybe_t<string_fuzzy_match_t> try_create(const wcstring &string,
|
|
const wcstring &match_against,
|
|
bool anchor_start);
|
|
|
|
/// \return a rank for filtering matches.
|
|
/// Earlier (smaller) ranks are better matches.
|
|
uint32_t rank() const;
|
|
};
|
|
|
|
/// Cover over string_fuzzy_match_t::try_create().
|
|
inline maybe_t<string_fuzzy_match_t> string_fuzzy_match_string(const wcstring &string,
|
|
const wcstring &match_against,
|
|
bool anchor_start = false) {
|
|
return string_fuzzy_match_t::try_create(string, match_against, anchor_start);
|
|
}
|
|
|
|
/// Split a string by a separator character.
|
|
wcstring_list_t split_string(const wcstring &val, wchar_t sep);
|
|
|
|
/// Split a string by runs of any of the separator characters provided in \p seps.
|
|
/// Note the delimiters are the characters in \p seps, not \p seps itself.
|
|
/// \p seps may contain the NUL character.
|
|
/// Do not output more than \p max_results results. If we are to output exactly that much,
|
|
/// the last output is the the remainder of the input, including leading delimiters,
|
|
/// except for the first. This is historical behavior.
|
|
/// Example: split_string_tok(" a b c ", " ", 3) -> {"a", "b", " c "}
|
|
wcstring_list_t split_string_tok(const wcstring &val, const wcstring &seps,
|
|
size_t max_results = std::numeric_limits<size_t>::max());
|
|
|
|
/// Join a list of strings by a separator character.
|
|
wcstring join_strings(const wcstring_list_t &vals, wchar_t sep);
|
|
|
|
inline wcstring to_string(long x) {
|
|
wchar_t buff[64];
|
|
format_long_safe(buff, x);
|
|
return wcstring(buff);
|
|
}
|
|
|
|
inline wcstring to_string(unsigned long long x) {
|
|
wchar_t buff[64];
|
|
format_ullong_safe(buff, x);
|
|
return wcstring(buff);
|
|
}
|
|
|
|
inline wcstring to_string(int x) { return to_string(static_cast<long>(x)); }
|
|
|
|
inline wcstring to_string(size_t x) { return to_string(static_cast<unsigned long long>(x)); }
|
|
|
|
inline bool bool_from_string(const std::string &x) {
|
|
if (x.empty()) return false;
|
|
switch (x.front()) {
|
|
case 'Y':
|
|
case 'T':
|
|
case 'y':
|
|
case 't':
|
|
case '1':
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline bool bool_from_string(const wcstring &x) {
|
|
return !x.empty() && std::wcschr(L"YTyt1", x.at(0));
|
|
}
|
|
|
|
/// Given iterators into a string (forward or reverse), splits the haystack iterators
|
|
/// about the needle sequence, up to max times. Inserts splits into the output array.
|
|
/// If the iterators are forward, this does the normal thing.
|
|
/// If the iterators are backward, this returns reversed strings, in reversed order!
|
|
/// If the needle is empty, split on individual elements (characters).
|
|
/// Max output entries will be max + 1 (after max splits)
|
|
template <typename ITER>
|
|
void split_about(ITER haystack_start, ITER haystack_end, ITER needle_start, ITER needle_end,
|
|
wcstring_list_t *output, long max = LONG_MAX, bool no_empty = false) {
|
|
long remaining = max;
|
|
ITER haystack_cursor = haystack_start;
|
|
while (remaining > 0 && haystack_cursor != haystack_end) {
|
|
ITER split_point;
|
|
if (needle_start == needle_end) { // empty needle, we split on individual elements
|
|
split_point = haystack_cursor + 1;
|
|
} else {
|
|
split_point = std::search(haystack_cursor, haystack_end, needle_start, needle_end);
|
|
}
|
|
if (split_point == haystack_end) { // not found
|
|
break;
|
|
}
|
|
if (!no_empty || haystack_cursor != split_point) {
|
|
output->emplace_back(haystack_cursor, split_point);
|
|
}
|
|
remaining--;
|
|
// Need to skip over the needle for the next search note that the needle may be empty.
|
|
haystack_cursor = split_point + std::distance(needle_start, needle_end);
|
|
}
|
|
// Trailing component, possibly empty.
|
|
if (!no_empty || haystack_cursor != haystack_end) {
|
|
output->emplace_back(haystack_cursor, haystack_end);
|
|
}
|
|
}
|
|
|
|
enum class ellipsis_type {
|
|
None,
|
|
// Prefer niceness over minimalness
|
|
Prettiest,
|
|
// Make every character count ($ instead of ...)
|
|
Shortest,
|
|
};
|
|
|
|
wcstring truncate(const wcstring &input, int max_len,
|
|
ellipsis_type etype = ellipsis_type::Prettiest);
|
|
wcstring trim(wcstring input);
|
|
wcstring trim(wcstring input, const wchar_t *any_of);
|
|
|
|
/// Converts a string to lowercase.
|
|
wcstring wcstolower(wcstring input);
|
|
|
|
/// \return the number of escaping backslashes before a character.
|
|
/// \p idx may be "one past the end."
|
|
size_t count_preceding_backslashes(const wcstring &text, size_t idx);
|
|
|
|
// Out-of-line helper for wcs2string_callback.
|
|
void wcs2string_bad_char(wchar_t);
|
|
|
|
/// Implementation of wcs2string that accepts a callback.
|
|
/// This invokes \p func with (const char*, size_t) pairs.
|
|
/// If \p func returns false, it stops; otherwise it continues.
|
|
/// \return false if the callback returned false, otherwise true.
|
|
template <typename Func>
|
|
bool wcs2string_callback(const wchar_t *input, size_t len, const Func &func) {
|
|
mbstate_t state = {};
|
|
char converted[MB_LEN_MAX];
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
wchar_t wc = input[i];
|
|
// TODO: this doesn't seem sound.
|
|
if (wc == INTERNAL_SEPARATOR) {
|
|
// do nothing
|
|
} else if (wc >= ENCODE_DIRECT_BASE && wc < ENCODE_DIRECT_BASE + 256) {
|
|
converted[0] = wc - ENCODE_DIRECT_BASE;
|
|
if (!func(converted, 1)) return false;
|
|
} else if (MB_CUR_MAX == 1) { // single-byte locale (C/POSIX/ISO-8859)
|
|
// If `wc` contains a wide character we emit a question-mark.
|
|
if (wc & ~0xFF) {
|
|
wc = '?';
|
|
}
|
|
converted[0] = wc;
|
|
if (!func(converted, 1)) return false;
|
|
} else {
|
|
std::memset(converted, 0, sizeof converted);
|
|
size_t len = std::wcrtomb(converted, wc, &state);
|
|
if (len == static_cast<size_t>(-1)) {
|
|
wcs2string_bad_char(wc);
|
|
std::memset(&state, 0, sizeof(state));
|
|
} else {
|
|
if (!func(converted, len)) return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Support for iterating over a newline-separated string.
|
|
template <typename Collection>
|
|
class line_iterator_t {
|
|
// Storage for each line.
|
|
Collection storage;
|
|
|
|
// The collection we're iterating. Note we hold this by reference.
|
|
const Collection &coll;
|
|
|
|
// The current location in the iteration.
|
|
typename Collection::const_iterator current;
|
|
|
|
public:
|
|
/// Construct from a collection (presumably std::string or std::wcstring).
|
|
line_iterator_t(const Collection &coll) : coll(coll), current(coll.cbegin()) {}
|
|
|
|
/// Access the storage in which the last line was stored.
|
|
const Collection &line() const { return storage; }
|
|
|
|
/// Advances to the next line. \return true on success, false if we have exhausted the string.
|
|
bool next() {
|
|
if (current == coll.end()) return false;
|
|
auto newline_or_end = std::find(current, coll.cend(), '\n');
|
|
storage.assign(current, newline_or_end);
|
|
current = newline_or_end;
|
|
|
|
// Skip the newline.
|
|
if (current != coll.cend()) ++current;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// Like fish_wcwidth, but returns 0 for characters with no real width instead of -1.
|
|
int fish_wcwidth_visible(wchar_t widechar);
|
|
|
|
/// The same, but for all chars. Note that this only makes sense if the string has an arbitrary long
|
|
/// prefix - backslashes can move the cursor *before* the string.
|
|
///
|
|
/// In typical usage, you probably want to wrap wcwidth_visible to accumulate the width, but never
|
|
/// go below 0.
|
|
int fish_wcswidth_visible(const wcstring &str);
|
|
#endif
|