fish-shell/src/history.rs
2024-03-09 15:21:47 -06:00

2050 lines
75 KiB
Rust

//! Fish supports multiple shells writing to history at once. Here is its strategy:
//!
//! 1. All history files are append-only. Data, once written, is never modified.
//!
//! 2. A history file may be re-written ("vacuumed"). This involves reading in the file and writing a
//! new one, while performing maintenance tasks: discarding items in an LRU fashion until we reach
//! the desired maximum count, removing duplicates, and sorting them by timestamp (eventually, not
//! implemented yet). The new file is atomically moved into place via rename().
//!
//! 3. History files are mapped in via mmap(). Before the file is mapped, the file takes a fcntl read
//! lock. The purpose of this lock is to avoid seeing a transient state where partial data has been
//! written to the file.
//!
//! 4. History is appended to under a fcntl write lock.
//!
//! 5. The chaos_mode boolean can be set to true to do things like lower buffer sizes which can
//! trigger race conditions. This is useful for testing.
use crate::{common::cstr2wcstring, env::EnvVar, wcstringutil::trim};
use std::{
borrow::Cow,
collections::{BTreeMap, HashMap, HashSet, VecDeque},
ffi::CString,
io::{BufRead, Read, Write},
mem,
num::NonZeroUsize,
ops::ControlFlow,
os::fd::{AsFd, AsRawFd, OwnedFd, RawFd},
sync::{Arc, Mutex, MutexGuard},
time::{Duration, SystemTime, UNIX_EPOCH},
};
use bitflags::bitflags;
use libc::{fchmod, fchown, flock, fstat, ftruncate, lseek, LOCK_EX, LOCK_SH, LOCK_UN, SEEK_SET};
use lru::LruCache;
use nix::{fcntl::OFlag, sys::stat::Mode};
use rand::Rng;
use crate::{
ast::{Ast, Node},
common::{
str2wcstring, unescape_string, valid_var_name, wcs2zstring, write_loop, CancelChecker,
UnescapeStringStyle,
},
env::{EnvMode, EnvStack, Environment},
expand::{expand_one, ExpandFlags},
fallback::fish_mkstemp_cloexec,
fds::wopen_cloexec,
flog::{FLOG, FLOGF},
global_safety::RelaxedAtomicBool,
history::file::{append_history_item_to_buffer, HistoryFileContents},
io::IoStreams,
operation_context::{OperationContext, EXPANSION_LIMIT_BACKGROUND},
parse_constants::{ParseTreeFlags, StatementDecoration},
parse_util::{parse_util_detect_errors, parse_util_unescape_wildcards},
path::{
path_get_config, path_get_data, path_get_data_remoteness, path_is_valid, DirRemoteness,
},
threads::{assert_is_background_thread, iothread_perform},
util::find_subslice,
wchar::prelude::*,
wcstringutil::subsequence_in_string,
wildcard::{wildcard_match, ANY_STRING},
wutil::{
file_id_for_fd, file_id_for_path, wgettext_fmt, wrealpath, wrename, wstat, wunlink, FileId,
INVALID_FILE_ID,
},
};
mod file;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum SearchType {
/// Search for commands exactly matching the given string.
Exact,
/// Search for commands containing the given string.
Contains,
/// Search for commands starting with the given string.
Prefix,
/// Search for commands containing the given glob pattern.
ContainsGlob,
/// Search for commands starting with the given glob pattern.
PrefixGlob,
/// Search for commands containing the given string as a subsequence
ContainsSubsequence,
/// Matches everything.
MatchEverything,
}
/// Ways that a history item may be written to disk (or omitted).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum PersistenceMode {
/// The history item is written to disk normally
Disk,
/// The history item is stored in-memory only, not written to disk
Memory,
/// The history item is stored in-memory and deleted when a new item is added
Ephemeral,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum SearchDirection {
Forward,
Backward,
}
use self::file::time_to_seconds;
// Our history format is intended to be valid YAML. Here it is:
//
// - cmd: ssh blah blah blah
// when: 2348237
// paths:
// - /path/to/something
// - /path/to/something_else
//
// Newlines are replaced by \n. Backslashes are replaced by \\.
/// This is the history session ID we use by default if the user has not set env var fish_history.
const DFLT_FISH_HISTORY_SESSION_ID: &wstr = L!("fish");
/// When we rewrite the history, the number of items we keep.
// FIXME: https://github.com/rust-lang/rust/issues/67441
const HISTORY_SAVE_MAX: NonZeroUsize = unsafe { NonZeroUsize::new_unchecked(1024 * 256) };
/// Default buffer size for flushing to the history file.
const HISTORY_OUTPUT_BUFFER_SIZE: usize = 64 * 1024;
/// The file access mode we use for creating history files
const HISTORY_FILE_MODE: Mode = Mode::from_bits_truncate(0o600);
/// How many times we retry to save
/// Saving may fail if the file is modified in between our opening
/// the file and taking the lock
const MAX_SAVE_TRIES: usize = 1024;
/// If the size of `buffer` is at least `min_size`, output the contents `buffer` to `fd`,
/// and clear the string.
fn flush_to_fd(buffer: &mut Vec<u8>, fd: RawFd, min_size: usize) -> std::io::Result<()> {
if buffer.is_empty() || buffer.len() < min_size {
return Ok(());
}
write_loop(&fd, buffer)?;
buffer.clear();
return Ok(());
}
struct TimeProfiler {
what: &'static str,
start: SystemTime,
}
impl TimeProfiler {
fn new(what: &'static str) -> Self {
let start = SystemTime::now();
Self { what, start }
}
}
impl Drop for TimeProfiler {
fn drop(&mut self) {
if let Ok(duration) = self.start.elapsed() {
FLOGF!(
profile_history,
"%s: %d.%06d ms",
self.what,
duration.as_millis() as u64, // todo!("remove cast")
(duration.as_nanos() / 1000) as u64 // todo!("remove cast")
)
} else {
FLOGF!(profile_history, "%s: ??? ms", self.what)
}
}
}
trait LruCacheExt {
/// Function to add a history item.
fn add_item(&mut self, item: HistoryItem);
}
impl LruCacheExt for LruCache<WString, HistoryItem> {
fn add_item(&mut self, item: HistoryItem) {
// Skip empty items.
if item.is_empty() {
return;
}
// See if it's in the cache. If it is, update the timestamp. If not, we create a new node
// and add it. Note that calling get_node promotes the node to the front.
let key = item.str();
if let Some(node) = self.get_mut(key) {
node.creation_timestamp = SystemTime::max(node.timestamp(), item.timestamp());
// What to do about paths here? Let's just ignore them.
} else {
self.put(key.to_owned(), item);
}
}
}
/// Returns the path for the history file for the given `session_id`, or `None` if it could not be
/// loaded. If `suffix` is provided, append that suffix to the path; this is used for temporary files.
fn history_filename(session_id: &wstr, suffix: &wstr) -> Option<WString> {
if session_id.is_empty() {
return None;
}
let mut result = path_get_data()?;
result.push('/');
result.push_utfstr(session_id);
result.push_utfstr(L!("_history"));
result.push_utfstr(suffix);
Some(result)
}
pub type PathList = Vec<WString>;
pub type HistoryIdentifier = u64;
#[derive(Clone, Debug)]
pub struct HistoryItem {
/// The actual contents of the entry.
contents: WString,
/// Original creation time for the entry.
creation_timestamp: SystemTime,
/// Paths that we require to be valid for this item to be autosuggested.
required_paths: Vec<WString>,
/// Sometimes unique identifier used for hinting.
identifier: HistoryIdentifier,
/// Whether to write this item to disk.
persist_mode: PersistenceMode,
}
impl HistoryItem {
/// Construct from a text, timestamp, and optional identifier.
/// If `persist_mode` is not [`PersistenceMode::Disk`], then do not write this item to disk.
pub fn new(
s: WString,
when: SystemTime, /*=0*/
ident: HistoryIdentifier, /*=0*/
persist_mode: PersistenceMode, /*=Disk*/
) -> Self {
Self {
contents: s,
creation_timestamp: when,
required_paths: vec![],
identifier: ident,
persist_mode,
}
}
/// Returns the text as a string.
pub fn str(&self) -> &wstr {
&self.contents
}
/// Returns whether the text is empty.
pub fn is_empty(&self) -> bool {
self.contents.is_empty()
}
/// Returns whether our contents matches a search term.
pub fn matches_search(&self, term: &wstr, typ: SearchType, case_sensitive: bool) -> bool {
// Note that 'term' has already been lowercased when constructing the
// search object if we're doing a case insensitive search.
let content_to_match = if case_sensitive {
Cow::Borrowed(&self.contents)
} else {
Cow::Owned(self.contents.to_lowercase())
};
match typ {
SearchType::Exact => term == *content_to_match,
SearchType::Contains => {
find_subslice(term.as_slice(), content_to_match.as_slice()).is_some()
}
SearchType::Prefix => content_to_match.as_slice().starts_with(term.as_slice()),
SearchType::ContainsGlob => {
let mut pat = parse_util_unescape_wildcards(term);
if !pat.starts_with(ANY_STRING) {
pat.insert(0, ANY_STRING);
}
if !pat.ends_with(ANY_STRING) {
pat.push(ANY_STRING);
}
wildcard_match(content_to_match.as_ref(), &pat, false)
}
SearchType::PrefixGlob => {
let mut pat = parse_util_unescape_wildcards(term);
if !pat.ends_with(ANY_STRING) {
pat.push(ANY_STRING);
}
wildcard_match(content_to_match.as_ref(), &pat, false)
}
SearchType::ContainsSubsequence => subsequence_in_string(term, &content_to_match),
SearchType::MatchEverything => true,
}
}
/// Returns the timestamp for creating this history item.
pub fn timestamp(&self) -> SystemTime {
self.creation_timestamp
}
/// Returns whether this item should be persisted (written to disk).
pub fn should_write_to_disk(&self) -> bool {
self.persist_mode == PersistenceMode::Disk
}
/// Get the list of arguments which referred to files.
/// This is used for autosuggestion hinting.
pub fn get_required_paths(&self) -> &[WString] {
&self.required_paths
}
/// Set the list of arguments which referred to files.
/// This is used for autosuggestion hinting.
pub fn set_required_paths(&mut self, paths: Vec<WString>) {
self.required_paths = paths;
}
/// We can merge two items if they are the same command. We use the more recent timestamp, more
/// recent identifier, and the longer list of required paths.
fn merge(&mut self, item: &HistoryItem) -> bool {
// We can only merge items if they agree on their text and persistence mode.
if self.contents != item.contents || self.persist_mode != item.persist_mode {
return false;
}
// Ok, merge this item.
self.creation_timestamp = self.creation_timestamp.max(item.creation_timestamp);
if self.required_paths.len() < item.required_paths.len() {
self.required_paths = item.required_paths.clone();
}
if self.identifier < item.identifier {
self.identifier = item.identifier;
}
true
}
}
static HISTORIES: Mutex<BTreeMap<WString, Arc<History>>> = Mutex::new(BTreeMap::new());
struct HistoryImpl {
/// The name of this list. Used for picking a suitable filename and for switching modes.
name: WString,
/// New items. Note that these are NOT discarded on save. We need to keep these around so we can
/// distinguish between items in our history and items in the history of other shells that were
/// started after we were started.
new_items: Vec<HistoryItem>,
/// The index of the first new item that we have not yet written.
first_unwritten_new_item_index: usize, // 0
/// Whether we have a pending item. If so, the most recently added item is ignored by
/// item_at_index.
has_pending_item: bool, // false
/// Whether we should disable saving to the file for a time.
disable_automatic_save_counter: u32, // 0
/// Deleted item contents.
/// Boolean describes if it should be deleted only in this session or in all
/// (used in deduplication).
deleted_items: HashMap<WString, bool>,
/// The buffer containing the history file contents.
file_contents: Option<HistoryFileContents>,
/// The file ID of the history file.
history_file_id: FileId, // INVALID_FILE_ID
/// The boundary timestamp distinguishes old items from new items. Items whose timestamps are <=
/// the boundary are considered "old". Items whose timestemps are > the boundary are new, and are
/// ignored by this instance (unless they came from this instance). The timestamp may be adjusted
/// by incorporate_external_changes().
boundary_timestamp: SystemTime,
/// The most recent "unique" identifier for a history item.
last_identifier: HistoryIdentifier, // 0
/// How many items we add until the next vacuum. Initially a random value.
countdown_to_vacuum: Option<usize>, // -1
/// Whether we've loaded old items.
loaded_old: bool, // false
/// List of old items, as offsets into out mmap data.
old_item_offsets: VecDeque<usize>,
}
/// If set, we gave up on file locking because it took too long.
/// Note this is shared among all history instances.
static ABANDONED_LOCKING: RelaxedAtomicBool = RelaxedAtomicBool::new(false);
impl HistoryImpl {
/// Add a new history item to the end. If `pending` is set, the item will not be returned by
/// `item_at_index()` until a call to `resolve_pending()`. Pending items are tracked with an
/// offset into the array of new items, so adding a non-pending item has the effect of resolving
/// all pending items.
fn add(
&mut self,
item: HistoryItem,
pending: bool, /*=false*/
do_save: bool, /*=true*/
) {
// We use empty items as sentinels to indicate the end of history.
// Do not allow them to be added (#6032).
if item.contents.is_empty() {
return;
}
// Try merging with the last item.
if let Some(last) = self.new_items.last_mut() {
if last.merge(&item) {
// We merged, so we don't have to add anything. Maybe this item was pending, but it just got
// merged with an item that is not pending, so pending just becomes false.
self.has_pending_item = false;
return;
}
}
// We have to add a new item.
self.new_items.push(item);
self.has_pending_item = pending;
if do_save {
self.save_unless_disabled();
}
}
/// Internal function.
fn clear_file_state(&mut self) {
// Erase everything we know about our file.
self.file_contents = None;
self.loaded_old = false;
self.old_item_offsets.clear();
}
/// Returns a timestamp for new items - see the implementation for a subtlety.
fn timestamp_now(&self) -> SystemTime {
let mut when = SystemTime::now();
// Big hack: do not allow timestamps equal to our boundary date. This is because we include
// items whose timestamps are equal to our boundary when reading old history, so we can catch
// "just closed" items. But this means that we may interpret our own items, that we just wrote,
// as old items, if we wrote them in the same second as our birthdate.
if when.duration_since(UNIX_EPOCH).ok().map(|d| d.as_secs())
== self
.boundary_timestamp
.duration_since(UNIX_EPOCH)
.ok()
.map(|d| d.as_secs())
{
when += Duration::from_secs(1);
}
when
}
/// Returns a new item identifier, incrementing our counter.
fn next_identifier(&mut self) -> HistoryIdentifier {
self.last_identifier += 1;
self.last_identifier
}
/// Figure out the offsets of our file contents.
fn populate_from_file_contents(&mut self) {
self.old_item_offsets.clear();
if let Some(file_contents) = &self.file_contents {
let mut cursor = 0;
while let Some(offset) =
file_contents.offset_of_next_item(&mut cursor, Some(self.boundary_timestamp))
{
// Remember this item.
self.old_item_offsets.push_back(offset);
}
}
FLOGF!(history, "Loaded %lu old items", self.old_item_offsets.len());
}
/// Loads old items if necessary.
fn load_old_if_needed(&mut self) {
if self.loaded_old {
return;
}
self.loaded_old = true;
let _profiler = TimeProfiler::new("load_old");
if let Some(filename) = history_filename(&self.name, L!("")) {
let Ok(fd) = wopen_cloexec(&filename, OFlag::O_RDONLY, Mode::empty()) else {
return;
};
// Take a read lock to guard against someone else appending. This is released after
// getting the file's length. We will read the file after releasing the lock, but that's
// not a problem, because we never modify already written data. In short, the purpose of
// this lock is to ensure we don't see the file size change mid-update.
//
// We may fail to lock (e.g. on lockless NFS - see issue #685. In that case, we proceed
// as if it did not fail. The risk is that we may get an incomplete history item; this
// is unlikely because we only treat an item as valid if it has a terminating newline.
let locked = unsafe { Self::maybe_lock_file(&fd, LOCK_SH) };
self.file_contents = HistoryFileContents::create(fd.as_raw_fd());
self.history_file_id = if self.file_contents.is_some() {
file_id_for_fd(fd.as_raw_fd())
} else {
INVALID_FILE_ID
};
if locked {
unsafe {
Self::unlock_file(fd.as_raw_fd());
}
}
let _profiler = TimeProfiler::new("populate_from_file_contents");
self.populate_from_file_contents();
}
}
/// Deletes duplicates in new_items.
fn compact_new_items(&mut self) {
// Keep only the most recent items with the given contents.
let mut seen = HashSet::new();
for idx in (0..self.new_items.len()).rev() {
let item = &self.new_items[idx];
// Only compact persisted items.
if !item.should_write_to_disk() {
continue;
}
if !seen.insert(item.contents.to_owned()) {
// This item was not inserted because it was already in the set, so delete the item at
// this index.
self.new_items.remove(idx);
if idx < self.first_unwritten_new_item_index {
// Decrement first_unwritten_new_item_index if we are deleting a previously written
// item.
self.first_unwritten_new_item_index -= 1;
}
}
}
}
/// Removes trailing ephemeral items.
/// Ephemeral items have leading spaces, and can only be retrieved immediately; adding any item
/// removes them.
fn remove_ephemeral_items(&mut self) {
while matches!(
self.new_items.last(),
Some(&HistoryItem {
persist_mode: PersistenceMode::Ephemeral,
..
})
) {
self.new_items.pop();
}
self.first_unwritten_new_item_index =
usize::min(self.first_unwritten_new_item_index, self.new_items.len());
}
/// Given the fd of an existing history file, write a new history file to `dst_fd`.
/// Returns false on error, true on success
fn rewrite_to_temporary_file(&self, existing_fd: Option<RawFd>, dst_fd: RawFd) -> bool {
// We are reading FROM existing_fd and writing TO dst_fd
// dst_fd must be valid
assert!(dst_fd >= 0);
// Make an LRU cache to save only the last N elements.
let mut lru = LruCache::new(HISTORY_SAVE_MAX);
// Read in existing items (which may have changed out from underneath us, so don't trust our
// old file contents).
if let Some(existing_fd) = existing_fd {
if let Some(local_file) = HistoryFileContents::create(existing_fd) {
let mut cursor = 0;
while let Some(offset) = local_file.offset_of_next_item(&mut cursor, None) {
// Try decoding an old item.
let Some(old_item) = local_file.decode_item(offset) else {
continue;
};
// If old item is newer than session always erase if in deleted.
if old_item.timestamp() > self.boundary_timestamp {
if old_item.is_empty() || self.deleted_items.contains_key(old_item.str()) {
continue;
}
lru.add_item(old_item);
} else {
// If old item is older and in deleted items don't erase if added by
// clear_session.
if old_item.is_empty()
|| self.deleted_items.get(old_item.str()) == Some(&false)
{
continue;
}
// Add this old item.
lru.add_item(old_item);
}
}
}
}
// Insert any unwritten new items
for item in self
.new_items
.iter()
.skip(self.first_unwritten_new_item_index)
{
if item.should_write_to_disk() {
lru.add_item(item.clone());
}
}
// Stable-sort our items by timestamp
// This is because we may have read "old" items with a later timestamp than our "new" items
// This is the essential step that roughly orders items by history
let mut items: Vec<_> = lru.into_iter().map(|(_key, item)| item).collect();
items.sort_by_key(HistoryItem::timestamp);
// Write them out.
let mut err = None;
let mut buffer = Vec::with_capacity(HISTORY_OUTPUT_BUFFER_SIZE + 128);
for item in items {
append_history_item_to_buffer(&item, &mut buffer);
if let Err(e) = flush_to_fd(&mut buffer, dst_fd, HISTORY_OUTPUT_BUFFER_SIZE) {
err = Some(e);
break;
}
}
if let Some(err) = err {
FLOGF!(
history_file,
"Error %d when writing to temporary history file",
err.raw_os_error().unwrap_or_default()
);
false
} else {
flush_to_fd(&mut buffer, dst_fd, 0).is_ok()
}
}
/// Saves history by rewriting the file.
fn save_internal_via_rewrite(&mut self) {
FLOGF!(
history,
"Saving %lu items via rewrite",
self.new_items.len() - self.first_unwritten_new_item_index
);
// We want to rewrite the file, while holding the lock for as briefly as possible
// To do this, we speculatively write a file, and then lock and see if our original file changed
// Repeat until we succeed or give up
let Some(possibly_indirect_target_name) = history_filename(&self.name, L!("")) else {
return;
};
let Some(tmp_name_template) = history_filename(&self.name, L!(".XXXXXX")) else {
return;
};
// If the history file is a symlink, we want to rewrite the real file so long as we can find it.
let target_name =
wrealpath(&possibly_indirect_target_name).unwrap_or(possibly_indirect_target_name);
// Make our temporary file
// Remember that we have to close this fd!
let Some((tmp_file, tmp_name)) = create_temporary_file(&tmp_name_template) else {
return;
};
let tmp_fd = tmp_file.as_raw_fd();
let mut done = false;
for _i in 0..MAX_SAVE_TRIES {
if done {
break;
}
let target_fd_before = wopen_cloexec(
&target_name,
OFlag::O_RDONLY | OFlag::O_CREAT,
HISTORY_FILE_MODE,
);
let orig_file_id = target_fd_before
.as_ref()
.map(|fd| file_id_for_fd(fd.as_raw_fd()))
.unwrap_or(INVALID_FILE_ID);
// Open any target file, but do not lock it right away
if !self.rewrite_to_temporary_file(
target_fd_before.as_ref().map(AsRawFd::as_raw_fd).ok(),
tmp_fd,
) {
// Failed to write, no good
break;
}
drop(target_fd_before);
// The crux! We rewrote the history file; see if the history file changed while we
// were rewriting it. Make an effort to take the lock before checking, to avoid racing.
// If the open fails, then proceed; this may be because there is no current history
let mut new_file_id = INVALID_FILE_ID;
let target_fd_after = wopen_cloexec(&target_name, OFlag::O_RDONLY, Mode::empty());
if let Ok(target_fd_after) = target_fd_after.as_ref() {
// critical to take the lock before checking file IDs,
// and hold it until after we are done replacing.
// Also critical to check the file at the path, NOT based on our fd.
// It's only OK to replace the file while holding the lock.
// Note any lock is released when target_fd_after is closed.
unsafe {
Self::maybe_lock_file(target_fd_after, LOCK_EX);
}
new_file_id = file_id_for_path(&target_name);
}
let can_replace_file = new_file_id == orig_file_id || new_file_id == INVALID_FILE_ID;
if !can_replace_file {
// The file has changed, so we're going to re-read it
// Truncate our tmp_fd so we can reuse it
if unsafe { ftruncate(tmp_fd, 0) } == -1
|| unsafe { lseek(tmp_fd, 0, SEEK_SET) } == -1
{
FLOGF!(
history_file,
"Error %d when truncating temporary history file",
errno::errno().0
);
}
} else {
// The file is unchanged, or the new file doesn't exist or we can't read it
// We also attempted to take the lock, so we feel confident in replacing it
// Ensure we maintain the ownership and permissions of the original (#2355). If the
// stat fails, we assume (hope) our default permissions are correct. This
// corresponds to e.g. someone running sudo -E as the very first command. If they
// did, it would be tricky to set the permissions correctly. (bash doesn't get this
// case right either).
if let Ok(target_fd_after) = target_fd_after.as_ref() {
let mut sbuf: libc::stat = unsafe { mem::zeroed() };
if unsafe { fstat(target_fd_after.as_raw_fd(), &mut sbuf) } >= 0 {
if unsafe { fchown(tmp_fd, sbuf.st_uid, sbuf.st_gid) } == -1 {
FLOGF!(
history_file,
"Error %d when changing ownership of history file",
errno::errno().0
);
}
if unsafe { fchmod(tmp_fd, sbuf.st_mode) } == -1 {
FLOGF!(
history_file,
"Error %d when changing mode of history file",
errno::errno().0,
);
}
}
}
// Slide it into place
if wrename(&tmp_name, &target_name) == -1 {
FLOG!(
error,
wgettext_fmt!(
"Error when renaming history file: %s",
errno::errno().to_string()
)
);
}
// We did it
done = true;
}
drop(target_fd_after);
}
// Ensure we never leave the old file around
let _ = wunlink(&tmp_name);
if done {
// We've saved everything, so we have no more unsaved items.
self.first_unwritten_new_item_index = self.new_items.len();
// We deleted our deleted items.
self.deleted_items.clear();
// Our history has been written to the file, so clear our state so we can re-reference the
// file.
self.clear_file_state();
}
}
/// Saves history by appending to the file.
fn save_internal_via_appending(&mut self) -> bool {
FLOGF!(
history,
"Saving %lu items via appending",
self.new_items.len() - self.first_unwritten_new_item_index
);
// No deleting allowed.
assert!(self.deleted_items.is_empty());
let mut ok = false;
// If the file is different (someone vacuumed it) then we need to update our mmap.
let mut file_changed = false;
// Get the path to the real history file.
let Some(history_path) = history_filename(&self.name, L!("")) else {
return true;
};
// We are going to open the file, lock it, append to it, and then close it
// After locking it, we need to stat the file at the path; if there is a new file there, it
// means the file was replaced and we have to try again.
// Limit our max tries so we don't do this forever.
let mut history_fd = None;
for _i in 0..MAX_SAVE_TRIES {
let Ok(fd) = wopen_cloexec(
&history_path,
OFlag::O_WRONLY | OFlag::O_APPEND,
Mode::empty(),
) else {
// can't open, we're hosed
break;
};
// Exclusive lock on the entire file. This is released when we close the file (below). This
// may fail on (e.g.) lockless NFS. If so, proceed as if it did not fail; the risk is that
// we may get interleaved history items, which is considered better than no history, or
// forcing everything through the slow copy-move mode. We try to minimize this possibility
// by writing with O_APPEND.
unsafe {
Self::maybe_lock_file(&fd, LOCK_EX);
}
let file_id = file_id_for_fd(fd.as_raw_fd());
if file_id_for_path(&history_path) == file_id {
// File IDs match, so the file we opened is still at that path
// We're going to use this fd
if file_id != self.history_file_id {
file_changed = true;
}
history_fd = Some(fd);
break;
}
}
if let Some(history_fd) = history_fd {
// We (hopefully successfully) took the exclusive lock. Append to the file.
// Note that this is sketchy for a few reasons:
// - Another shell may have appended its own items with a later timestamp, so our file may
// no longer be sorted by timestamp.
// - Another shell may have appended the same items, so our file may now contain
// duplicates.
//
// We cannot modify any previous parts of our file, because other instances may be reading
// those portions. We can only append.
//
// Originally we always rewrote the file on saving, which avoided both of these problems.
// However, appending allows us to save history after every command, which is nice!
//
// Periodically we "clean up" the file by rewriting it, so that most of the time it doesn't
// have duplicates, although we don't yet sort by timestamp (the timestamp isn't really used
// for much anyways).
// So far so good. Write all items at or after first_unwritten_new_item_index. Note that we
// write even a pending item - pending items are ignored by history within the command
// itself, but should still be written to the file.
// TODO: consider filling the buffer ahead of time, so we can just lock, splat, and unlock?
let mut res = Ok(());
// Use a small buffer size for appending, we usually only have 1 item
let mut buffer = Vec::new();
while self.first_unwritten_new_item_index < self.new_items.len() {
let item = &self.new_items[self.first_unwritten_new_item_index];
if item.should_write_to_disk() {
append_history_item_to_buffer(item, &mut buffer);
res = flush_to_fd(
&mut buffer,
history_fd.as_raw_fd(),
HISTORY_OUTPUT_BUFFER_SIZE,
);
if res.is_err() {
break;
}
}
// We wrote or skipped this item, hooray.
self.first_unwritten_new_item_index += 1;
}
if res.is_ok() {
res = flush_to_fd(&mut buffer, history_fd.as_raw_fd(), 0);
}
// Since we just modified the file, update our history_file_id to match its current state
// Otherwise we'll think the file has been changed by someone else the next time we go to
// write.
// We don't update the mapping since we only appended to the file, and everything we
// appended remains in our new_items
self.history_file_id = file_id_for_fd(history_fd.as_raw_fd());
ok = res.is_ok();
drop(history_fd);
}
// If someone has replaced the file, forget our file state.
if file_changed {
self.clear_file_state();
}
ok
}
/// Saves history.
fn save(&mut self, vacuum: bool) {
// Nothing to do if there's no new items.
if self.first_unwritten_new_item_index >= self.new_items.len()
&& self.deleted_items.is_empty()
{
return;
}
if history_filename(&self.name, L!("")).is_none() {
// We're in the "incognito" mode. Pretend we've saved the history.
self.first_unwritten_new_item_index = self.new_items.len();
self.deleted_items.clear();
self.clear_file_state();
}
// Compact our new items so we don't have duplicates.
self.compact_new_items();
// Try saving. If we have items to delete, we have to rewrite the file. If we do not, we can
// append to it.
let mut ok = false;
if !vacuum && self.deleted_items.is_empty() {
// Try doing a fast append.
ok = self.save_internal_via_appending();
if !ok {
FLOG!(history, "Appending failed");
}
}
if !ok {
// We did not or could not append; rewrite the file ("vacuum" it).
self.save_internal_via_rewrite();
}
}
/// Saves history unless doing so is disabled.
fn save_unless_disabled(&mut self) {
// Respect disable_automatic_save_counter.
if self.disable_automatic_save_counter > 0 {
return;
}
// We may or may not vacuum. We try to vacuum every kVacuumFrequency items, but start the
// countdown at a random number so that even if the user never runs more than 25 commands, we'll
// eventually vacuum. If countdown_to_vacuum is None, it means we haven't yet picked a value for
// the counter.
let vacuum_frequency = 25;
let countdown_to_vacuum = self
.countdown_to_vacuum
.get_or_insert_with(|| rand::thread_rng().gen_range(0..vacuum_frequency));
// Determine if we're going to vacuum.
let mut vacuum = false;
if *countdown_to_vacuum == 0 {
*countdown_to_vacuum = vacuum_frequency;
vacuum = true;
}
// Update our countdown.
assert!(*countdown_to_vacuum > 0);
*countdown_to_vacuum -= 1;
// This might be a good candidate for moving to a background thread.
let _profiler = TimeProfiler::new(if vacuum {
"save vacuum"
} else {
"save no vacuum"
});
self.save(vacuum);
}
fn new(name: WString) -> Self {
Self {
name,
new_items: vec![],
first_unwritten_new_item_index: 0,
has_pending_item: false,
disable_automatic_save_counter: 0,
deleted_items: HashMap::new(),
file_contents: None,
history_file_id: INVALID_FILE_ID,
boundary_timestamp: SystemTime::now(),
last_identifier: 0,
countdown_to_vacuum: None,
loaded_old: false,
old_item_offsets: VecDeque::new(),
}
}
/// Returns whether this is using the default name.
fn is_default(&self) -> bool {
self.name == DFLT_FISH_HISTORY_SESSION_ID
}
/// Determines whether the history is empty. Unfortunately this cannot be const, since it may
/// require populating the history.
fn is_empty(&mut self) -> bool {
// If we have new items, we're not empty.
if !self.new_items.is_empty() {
return false;
}
if self.loaded_old {
// If we've loaded old items, see if we have any offsets.
self.old_item_offsets.is_empty()
} else {
// If we have not loaded old items, don't actually load them (which may be expensive); just
// stat the file and see if it exists and is nonempty.
let Some(where_) = history_filename(&self.name, L!("")) else {
return true;
};
if let Ok(md) = wstat(&where_) {
// We're empty if the file is empty.
md.len() == 0
} else {
// Access failed, assume missing.
true
}
}
}
/// Remove a history item.
fn remove(&mut self, str_to_remove: WString) {
// Add to our list of deleted items.
self.deleted_items.insert(str_to_remove.clone(), false);
for idx in (0..self.new_items.len()).rev() {
let matched = self.new_items[idx].str() == str_to_remove;
if matched {
self.new_items.remove(idx);
// If this index is before our first_unwritten_new_item_index, then subtract one from
// that index so it stays pointing at the same item. If it is equal to or larger, then
// we have not yet written this item, so we don't have to adjust the index.
if idx < self.first_unwritten_new_item_index {
self.first_unwritten_new_item_index -= 1;
}
}
}
assert!(self.first_unwritten_new_item_index <= self.new_items.len());
}
/// Resolves any pending history items, so that they may be returned in history searches.
fn resolve_pending(&mut self) {
self.has_pending_item = false;
}
/// Enable / disable automatic saving. Main thread only!
fn disable_automatic_saving(&mut self) {
self.disable_automatic_save_counter += 1;
assert!(self.disable_automatic_save_counter != 0); // overflow!
}
fn enable_automatic_saving(&mut self) {
assert!(self.disable_automatic_save_counter > 0); // negative overflow!
self.disable_automatic_save_counter -= 1;
self.save_unless_disabled();
}
/// Irreversibly clears history.
fn clear(&mut self) {
self.new_items.clear();
self.deleted_items.clear();
self.first_unwritten_new_item_index = 0;
self.old_item_offsets.clear();
if let Some(filename) = history_filename(&self.name, L!("")) {
wunlink(&filename);
}
self.clear_file_state();
}
/// Clears only session.
fn clear_session(&mut self) {
for item in &self.new_items {
self.deleted_items.insert(item.str().to_owned(), true);
}
self.new_items.clear();
self.first_unwritten_new_item_index = 0;
}
/// Populates from older location (in config path, rather than data path).
/// This is accomplished by clearing ourselves, and copying the contents of the old history
/// file to the new history file.
/// The new contents will automatically be re-mapped later.
fn populate_from_config_path(&mut self) {
let Some(new_file) = history_filename(&self.name, L!("")) else {
return;
};
let Some(mut old_file) = path_get_config() else {
return;
};
old_file.push('/');
old_file.push_utfstr(&self.name);
old_file.push_str("_history");
let Ok(src_fd) = wopen_cloexec(&old_file, OFlag::O_RDONLY, Mode::empty()) else {
return;
};
let mut src_fd = std::fs::File::from(src_fd);
// Clear must come after we've retrieved the new_file name, and before we open
// destination file descriptor, since it destroys the name and the file.
self.clear();
let Ok(dst_fd) = wopen_cloexec(
&new_file,
OFlag::O_WRONLY | OFlag::O_CREAT,
HISTORY_FILE_MODE,
) else {
FLOG!(history_file, "Error when writing history file");
return;
};
let mut dst_fd = std::fs::File::from(dst_fd);
let mut buf = [0; libc::BUFSIZ as usize];
while let Ok(n) = src_fd.read(&mut buf) {
if n == 0 {
break;
}
if dst_fd.write(&buf[..n]).is_err() {
// This message does not have high enough priority to be shown by default.
FLOG!(history_file, "Error when writing history file");
break;
}
}
}
/// Import a bash command history file. Bash's history format is very simple: just lines with
/// `#`s for comments. Ignore a few commands that are bash-specific. It makes no attempt to
/// handle multiline commands. We can't actually parse bash syntax and the bash history file
/// does not unambiguously encode multiline commands.
fn populate_from_bash<R: BufRead>(&mut self, contents: R) {
// Process the entire history file until EOF is observed.
// Pretend all items were created at this time.
let when = self.timestamp_now();
for line in contents.split(b'\n') {
let Ok(line) = line else {
break;
};
let wide_line = trim(str2wcstring(&line), None);
// Add this line if it doesn't contain anything we know we can't handle.
if should_import_bash_history_line(&wide_line) {
self.add(
HistoryItem::new(wide_line, when, 0, PersistenceMode::Disk),
/*pending=*/ false,
/*do_save=*/ false,
);
}
}
self.save_unless_disabled();
}
/// Incorporates the history of other shells into this history.
fn incorporate_external_changes(&mut self) {
// To incorporate new items, we simply update our timestamp to now, so that items from previous
// instances get added. We then clear the file state so that we remap the file. Note that this
// is somewhat expensive because we will be going back over old items. An optimization would be
// to preserve old_item_offsets so that they don't have to be recomputed. (However, then items
// *deleted* in other instances would not show up here).
let new_timestamp = SystemTime::now();
// If for some reason the clock went backwards, we don't want to start dropping items; therefore
// we only do work if time has progressed. This also makes multiple calls cheap.
if new_timestamp > self.boundary_timestamp {
self.boundary_timestamp = new_timestamp;
self.clear_file_state();
// We also need to erase new items, since we go through those first, and that means we
// will not properly interleave them with items from other instances.
// We'll pick them up from the file (#2312)
// TODO: this will drop items that had no_persist set, how can we avoid that while still
// properly interleaving?
self.save(false);
self.new_items.clear();
self.first_unwritten_new_item_index = 0;
}
}
/// Gets all the history into a list. This is intended for the $history environment variable.
/// This may be long!
fn get_history(&mut self) -> Vec<WString> {
let mut result = vec![];
// If we have a pending item, we skip the first encountered (i.e. last) new item.
let mut next_is_pending = self.has_pending_item;
let mut seen = HashSet::new();
// Append new items.
for item in self.new_items.iter().rev() {
// Skip a pending item if we have one.
if next_is_pending {
next_is_pending = false;
continue;
}
if seen.insert(item.str().to_owned()) {
result.push(item.str().to_owned())
}
}
// Append old items.
self.load_old_if_needed();
for &offset in self.old_item_offsets.iter().rev() {
let Some(item) = self.file_contents.as_ref().unwrap().decode_item(offset) else {
continue;
};
if seen.insert(item.str().to_owned()) {
result.push(item.str().to_owned());
}
}
result
}
/// Let indexes be a list of one-based indexes into the history, matching the interpretation of
/// $history. That is, $history[1] is the most recently executed command. Values less than one
/// are skipped. Return a mapping from index to history item text.
fn items_at_indexes(
&mut self,
indexes: impl IntoIterator<Item = usize>,
) -> HashMap<usize, WString> {
let mut result = HashMap::new();
for idx in indexes {
// If this is the first time the index is encountered, we have to go fetch the item.
#[allow(clippy::map_entry)] // looks worse
if !result.contains_key(&idx) {
// New key.
let contents = match self.item_at_index(idx) {
None => WString::new(),
Some(Cow::Borrowed(HistoryItem { contents, .. })) => contents.clone(),
Some(Cow::Owned(HistoryItem { contents, .. })) => contents,
};
result.insert(idx, contents);
}
}
result
}
/// Sets the valid file paths for the history item with the given identifier.
fn set_valid_file_paths(&mut self, valid_file_paths: Vec<WString>, ident: HistoryIdentifier) {
// 0 identifier is used to mean "not necessary".
if ident == 0 {
return;
}
// Look for an item with the given identifier. It is likely to be at the end of new_items.
for item in self.new_items.iter_mut().rev() {
if item.identifier == ident {
// found it
item.required_paths = valid_file_paths;
break;
}
}
}
/// Return the specified history at the specified index. 0 is the index of the current
/// commandline. (So the most recent item is at index 1.)
fn item_at_index(&mut self, mut idx: usize) -> Option<Cow<HistoryItem>> {
// 0 is considered an invalid index.
assert!(idx > 0);
idx -= 1;
// Determine how many "resolved" (non-pending) items we have. We can have at most one pending
// item, and it's always the last one.
let mut resolved_new_item_count = self.new_items.len();
if self.has_pending_item && resolved_new_item_count > 0 {
resolved_new_item_count -= 1;
}
// idx == 0 corresponds to the last resolved item.
if idx < resolved_new_item_count {
return Some(Cow::Borrowed(
&self.new_items[resolved_new_item_count - idx - 1],
));
}
// Now look in our old items.
idx -= resolved_new_item_count;
self.load_old_if_needed();
if let Some(file_contents) = &self.file_contents {
let old_item_count = self.old_item_offsets.len();
if idx < old_item_count {
// idx == 0 corresponds to last item in old_item_offsets.
let offset = self.old_item_offsets[old_item_count - idx - 1];
return file_contents.decode_item(offset).map(Cow::Owned);
}
}
// Index past the valid range, so return None.
return None;
}
/// Return the number of history entries.
fn size(&mut self) -> usize {
let mut new_item_count = self.new_items.len();
if self.has_pending_item && new_item_count > 0 {
new_item_count -= 1;
}
self.load_old_if_needed();
let old_item_count = self.old_item_offsets.len();
return new_item_count + old_item_count;
}
/// Maybe lock a history file.
/// Returns `true` if successful, `false` if locking was skipped.
///
/// # Safety
///
/// `fd` and `lock_type` must be valid arguments to `flock(2)`.
unsafe fn maybe_lock_file(fd: impl AsFd, lock_type: libc::c_int) -> bool {
assert!(lock_type & LOCK_UN == 0, "Do not use lock_file to unlock");
let raw_fd = fd.as_fd().as_raw_fd();
// Don't lock if it took too long before, if we are simulating a failing lock, or if our history
// is on a remote filesystem.
if ABANDONED_LOCKING.load() {
return false;
}
if CHAOS_MODE.load() {
return false;
}
if path_get_data_remoteness() == DirRemoteness::remote {
return false;
}
let start_time = SystemTime::now();
let retval = unsafe { flock(raw_fd, lock_type) };
if let Ok(duration) = start_time.elapsed() {
if duration > Duration::from_millis(250) {
FLOG!(
warning,
wgettext_fmt!(
"Locking the history file took too long (%.3f seconds).",
duration.as_secs_f64()
)
);
ABANDONED_LOCKING.store(true);
}
}
retval != -1
}
/// Unlock a history file.
///
/// # Safety
///
/// `fd` must be a valid argument to `flock(2)` with `LOCK_UN`.
unsafe fn unlock_file(fd: RawFd) {
unsafe {
libc::flock(fd, LOCK_UN);
}
}
}
// Returns the fd of an opened temporary file, or None on failure.
fn create_temporary_file(name_template: &wstr) -> Option<(OwnedFd, WString)> {
for _attempt in 0..10 {
let narrow_str = wcs2zstring(name_template);
if let Ok((fd, narrow_str)) = fish_mkstemp_cloexec(narrow_str) {
return Some((fd, str2wcstring(narrow_str.to_bytes())));
}
}
None
}
fn string_could_be_path(potential_path: &wstr) -> bool {
// Assume that things with leading dashes aren't paths.
return !(potential_path.is_empty() || potential_path.starts_with('-'));
}
/// Perform a search of `hist` for `search_string`. Invoke a function `func` for each match. If
/// `func` returns [`ControlFlow::Break`], stop the search.
fn do_1_history_search(
hist: Arc<History>,
search_type: SearchType,
search_string: WString,
case_sensitive: bool,
mut func: impl FnMut(&HistoryItem) -> ControlFlow<(), ()>,
cancel_check: &CancelChecker,
) {
let mut searcher = HistorySearch::new_with(
hist,
search_string,
search_type,
if case_sensitive {
SearchFlags::empty()
} else {
SearchFlags::IGNORE_CASE
},
0,
);
while !cancel_check() && searcher.go_to_next_match(SearchDirection::Backward) {
if let ControlFlow::Break(()) = func(searcher.current_item()) {
break;
}
}
}
/// Formats a single history record, including a trailing newline.
///
/// Returns nothing. The only possible failure involves formatting the timestamp. If that happens we
/// simply omit the timestamp from the output.
fn format_history_record(
item: &HistoryItem,
show_time_format: Option<&str>,
null_terminate: bool,
) -> WString {
let mut result = WString::new();
let seconds = time_to_seconds(item.timestamp());
let seconds = seconds as libc::time_t;
let mut timestamp: libc::tm = unsafe { std::mem::zeroed() };
if let Some(show_time_format) = show_time_format.and_then(|s| CString::new(s).ok()) {
if !unsafe { libc::localtime_r(&seconds, &mut timestamp).is_null() } {
const max_tstamp_length: usize = 100;
let mut timestamp_str = [0_u8; max_tstamp_length];
// The libc crate fails to declare strftime on BSD.
#[cfg(bsd)]
extern "C" {
fn strftime(
buf: *mut libc::c_char,
maxsize: usize,
format: *const libc::c_char,
timeptr: *const libc::tm,
) -> usize;
}
#[cfg(not(bsd))]
use libc::strftime;
if unsafe {
strftime(
&mut timestamp_str[0] as *mut u8 as *mut libc::c_char,
max_tstamp_length,
show_time_format.as_ptr(),
&timestamp,
)
} != 0
{
result.push_utfstr(&cstr2wcstring(&timestamp_str[..]));
}
}
}
result.push_utfstr(item.str());
result.push(if null_terminate { '\0' } else { '\n' });
result
}
/// Decide whether we ought to import a bash history line into fish. This is a very crude heuristic.
fn should_import_bash_history_line(line: &wstr) -> bool {
if line.is_empty() {
return false;
}
// The following are Very naive tests!
// Skip comments.
if line.starts_with('#') {
return false;
}
// Skip lines with backticks because we don't have that syntax,
// Skip brace expansions and globs because they don't work like ours
// Skip lines that end with a backslash. We do not handle multiline commands from bash history.
if line.chars().any(|c| matches!(c, '`' | '{' | '*' | '\\')) {
return false;
}
// Skip lines with [[...]] and ((...)) since we don't handle those constructs.
// "<<" here is a proxy for heredocs (and herestrings).
for seq in [L!("[["), L!("]]"), L!("(("), L!("))"), L!("<<")] {
if find_subslice(seq, line.as_char_slice()).is_some() {
return false;
}
}
if Ast::parse(line, ParseTreeFlags::empty(), None).errored() {
return false;
}
// In doing this test do not allow incomplete strings. Hence the "false" argument.
let mut errors = Vec::new();
let _ = parse_util_detect_errors(line, Some(&mut errors), false);
errors.is_empty()
}
pub struct History(Mutex<HistoryImpl>);
impl History {
fn imp(&self) -> MutexGuard<HistoryImpl> {
self.0.lock().unwrap()
}
/// Privately add an item. If pending, the item will not be returned by history searches until a
/// call to resolve_pending. Any trailing ephemeral items are dropped.
/// Exposed for testing.
pub fn add(&self, item: HistoryItem, pending: bool /*=false*/) {
self.imp().add(item, pending, true)
}
/// Exposed for testing.
pub fn add_commandline(&self, s: WString) {
let mut imp = self.imp();
let when = imp.timestamp_now();
let item = HistoryItem::new(s, when, 0, PersistenceMode::Disk);
imp.add(item, false, true)
}
pub fn new(name: &wstr) -> Arc<Self> {
Arc::new(Self(Mutex::new(HistoryImpl::new(name.to_owned()))))
}
/// Returns history with the given name, creating it if necessary.
pub fn with_name(name: &wstr) -> Arc<Self> {
let mut histories = HISTORIES.lock().unwrap();
if let Some(hist) = histories.get(name) {
Arc::clone(hist)
} else {
let hist = Self::new(name);
histories.insert(name.to_owned(), Arc::clone(&hist));
hist
}
}
/// Returns whether this is using the default name.
pub fn is_default(&self) -> bool {
self.imp().is_default()
}
/// Determines whether the history is empty.
pub fn is_empty(&self) -> bool {
self.imp().is_empty()
}
/// Remove a history item.
pub fn remove(&self, s: WString) {
self.imp().remove(s)
}
/// Remove any trailing ephemeral items.
pub fn remove_ephemeral_items(&self) {
self.imp().remove_ephemeral_items()
}
/// Add a new pending history item to the end, and then begin file detection on the items to
/// determine which arguments are paths. Arguments may be expanded (e.g. with PWD and variables)
/// using the given `vars`. The item has the given `persist_mode`.
pub fn add_pending_with_file_detection(
self: Arc<Self>,
s: &wstr,
vars: &EnvStack,
persist_mode: PersistenceMode, /*=disk*/
) {
// We use empty items as sentinels to indicate the end of history.
// Do not allow them to be added (#6032).
if s.is_empty() {
return;
}
// Find all arguments that look like they could be file paths.
let mut needs_sync_write = false;
let ast = Ast::parse(s, ParseTreeFlags::empty(), None);
let mut potential_paths = Vec::new();
for node in ast.walk() {
if let Some(arg) = node.as_argument() {
let potential_path = arg.source(s);
if string_could_be_path(potential_path) {
potential_paths.push(potential_path.to_owned());
}
} else if let Some(stmt) = node.as_decorated_statement() {
// Hack hack hack - if the command is likely to trigger an exit, then don't do
// background file detection, because we won't be able to write it to our history file
// before we exit.
// Also skip it for 'echo'. This is because echo doesn't take file paths, but also
// because the history file test wants to find the commands in the history file
// immediately after running them, so it can't tolerate the asynchronous file detection.
if stmt.decoration() == StatementDecoration::exec {
needs_sync_write = true;
}
let source = stmt.command.source(s);
let command = unescape_string(source, UnescapeStringStyle::default());
let command = command.as_deref().unwrap_or(source);
if [L!("exit"), L!("reboot"), L!("restart"), L!("echo")].contains(&command) {
needs_sync_write = true;
}
}
}
// If we got a path, we'll perform file detection for autosuggestion hinting.
let wants_file_detection = !potential_paths.is_empty() && !needs_sync_write;
let mut imp = self.imp();
// Make our history item.
let when = imp.timestamp_now();
let identifier = imp.next_identifier();
let item = HistoryItem::new(s.to_owned(), when, identifier, persist_mode);
if wants_file_detection {
imp.disable_automatic_saving();
// Add the item. Then check for which paths are valid on a background thread,
// and unblock the item.
// Don't hold the lock while we perform this file detection.
imp.add(item, /*pending=*/ true, /*do_save=*/ true);
drop(imp);
let vars_snapshot = vars.snapshot();
iothread_perform(move || {
// Don't hold the lock while we perform this file detection.
let validated_paths = expand_and_detect_paths(potential_paths, &vars_snapshot);
let mut imp = self.imp();
imp.set_valid_file_paths(validated_paths, identifier);
imp.enable_automatic_saving();
});
} else {
// Add the item.
// If we think we're about to exit, save immediately, regardless of any disabling. This may
// cause us to lose file hinting for some commands, but it beats losing history items.
imp.add(item, /*pending=*/ true, /*do_save=*/ true);
if needs_sync_write {
imp.save(false);
}
}
}
/// Resolves any pending history items, so that they may be returned in history searches.
pub fn resolve_pending(&self) {
self.imp().resolve_pending()
}
/// Saves history.
pub fn save(&self) {
self.imp().save(false)
}
/// Searches history.
#[allow(clippy::too_many_arguments)]
pub fn search(
self: &Arc<Self>,
search_type: SearchType,
search_args: &[&wstr],
show_time_format: Option<&str>,
max_items: usize,
case_sensitive: bool,
null_terminate: bool,
reverse: bool,
cancel_check: &CancelChecker,
streams: &mut IoStreams,
) -> bool {
let mut remaining = max_items;
let mut collected = Vec::new();
let mut output_error = false;
// The function we use to act on each item.
let mut func = |item: &HistoryItem| {
if remaining == 0 {
return ControlFlow::Break(());
}
remaining -= 1;
let formatted_record = format_history_record(item, show_time_format, null_terminate);
if reverse {
// We need to collect this for later.
collected.push(formatted_record);
} else {
// We can output this immediately.
if !streams.out.append(formatted_record) {
// This can happen if the user hit Ctrl-C to abort (maybe after the first page?).
output_error = true;
return ControlFlow::Break(());
}
}
ControlFlow::Continue(())
};
if search_args.is_empty() {
// The user had no search terms; just append everything.
do_1_history_search(
Arc::clone(self),
SearchType::MatchEverything,
WString::new(),
false,
&mut func,
cancel_check,
);
} else {
#[allow(clippy::unnecessary_to_owned)]
for search_string in search_args.iter().copied() {
if search_string.is_empty() {
streams
.err
.append(L!("Searching for the empty string isn't allowed"));
return false;
}
do_1_history_search(
Arc::clone(self),
search_type,
search_string.to_owned(),
case_sensitive,
&mut func,
cancel_check,
);
}
}
// Output any items we collected (which only happens in reverse).
for item in collected.into_iter().rev() {
if output_error {
break;
}
if !streams.out.append(item) {
// Don't force an error if output was aborted (typically via Ctrl-C/SIGINT); just don't
// try writing any more.
output_error = true;
}
}
// We are intentionally not returning false in case of an output error, as the user aborting the
// output early (the most common case) isn't a reason to exit w/ a non-zero status code.
true
}
/// Irreversibly clears history.
pub fn clear(&self) {
self.imp().clear()
}
/// Irreversibly clears history for the current session.
pub fn clear_session(&self) {
self.imp().clear_session()
}
/// Populates from older location (in config path, rather than data path).
pub fn populate_from_config_path(&self) {
self.imp().populate_from_config_path()
}
/// Populates from a bash history file.
pub fn populate_from_bash<R: BufRead>(&self, contents: R) {
self.imp().populate_from_bash(contents)
}
/// Incorporates the history of other shells into this history.
pub fn incorporate_external_changes(&self) {
self.imp().incorporate_external_changes()
}
/// Gets all the history into a list. This is intended for the $history environment variable.
/// This may be long!
pub fn get_history(&self) -> Vec<WString> {
self.imp().get_history()
}
/// Let indexes be a list of one-based indexes into the history, matching the interpretation of
/// `$history`. That is, `$history[1]` is the most recently executed command.
/// Returns a mapping from index to history item text.
pub fn items_at_indexes(
&self,
indexes: impl IntoIterator<Item = usize>,
) -> HashMap<usize, WString> {
self.imp().items_at_indexes(indexes)
}
/// Return the specified history at the specified index. 0 is the index of the current
/// commandline. (So the most recent item is at index 1.)
pub fn item_at_index(&self, idx: usize) -> Option<HistoryItem> {
self.imp().item_at_index(idx).map(Cow::into_owned)
}
/// Return the number of history entries.
pub fn size(&self) -> usize {
self.imp().size()
}
}
bitflags! {
/// Flags for history searching.
#[derive(Clone, Copy, Default)]
pub struct SearchFlags: u32 {
/// If set, ignore case.
const IGNORE_CASE = 1 << 0;
/// If set, do not deduplicate, which can help performance.
const NO_DEDUP = 1 << 1;
}
}
/// Support for searching a history backwards.
/// Note this does NOT de-duplicate; it is the caller's responsibility to do so.
pub struct HistorySearch {
/// The history in which we are searching.
history: Arc<History>,
/// The original search term.
orig_term: WString,
/// The (possibly lowercased) search term.
canon_term: WString,
/// Our search type.
search_type: SearchType, // history_search_type_t::contains
/// Our flags.
flags: SearchFlags, // 0
/// The current history item.
current_item: Option<HistoryItem>,
/// Index of the current history item.
current_index: usize, // 0
/// If deduping, the items we've seen.
deduper: HashSet<WString>,
}
impl HistorySearch {
pub fn new(hist: Arc<History>, s: WString) -> Self {
Self::new_with(hist, s, SearchType::Contains, SearchFlags::default(), 0)
}
pub fn new_with_type(hist: Arc<History>, s: WString, search_type: SearchType) -> Self {
Self::new_with(hist, s, search_type, SearchFlags::default(), 0)
}
pub fn new_with_flags(hist: Arc<History>, s: WString, flags: SearchFlags) -> Self {
Self::new_with(hist, s, SearchType::Contains, flags, 0)
}
/// Constructs a new history search.
pub fn new_with(
hist: Arc<History>,
s: WString,
search_type: SearchType,
flags: SearchFlags,
starting_index: usize,
) -> Self {
let mut search = Self {
history: hist,
orig_term: s.clone(),
canon_term: s,
search_type,
flags,
current_item: None,
current_index: starting_index,
deduper: HashSet::new(),
};
if search.ignores_case() {
search.canon_term = search.canon_term.to_lowercase();
}
search
}
/// Returns the original search term.
pub fn original_term(&self) -> &wstr {
&self.orig_term
}
/// Finds the next search result. Returns `true` if one was found.
pub fn go_to_next_match(&mut self, direction: SearchDirection) -> bool {
let invalid_index = match direction {
SearchDirection::Backward => usize::MAX,
SearchDirection::Forward => 0,
};
if self.current_index == invalid_index {
return false;
}
let mut index = self.current_index;
loop {
// Backwards means increasing our index.
match direction {
SearchDirection::Backward => index += 1,
SearchDirection::Forward => index -= 1,
};
if self.current_index == invalid_index {
return false;
}
// We're done if it's empty or we cancelled.
let Some(item) = self.history.item_at_index(index) else {
return false;
};
// Look for an item that matches and (if deduping) that we haven't seen before.
if !item.matches_search(&self.canon_term, self.search_type, !self.ignores_case()) {
continue;
}
// Skip if deduplicating.
if self.dedup() && !self.deduper.insert(item.str().to_owned()) {
continue;
}
// This is our new item.
self.current_item = Some(item);
self.current_index = index;
return true;
}
}
/// Returns the current search result item.
///
/// # Panics
///
/// This function panics if there is no current item.
pub fn current_item(&self) -> &HistoryItem {
self.current_item.as_ref().expect("No current item")
}
/// Returns the current search result item contents.
///
/// # Panics
///
/// This function panics if there is no current item.
pub fn current_string(&self) -> &wstr {
self.current_item().str()
}
/// Returns the index of the current history item.
pub fn current_index(&self) -> usize {
self.current_index
}
/// Returns whether we are case insensitive.
pub fn ignores_case(&self) -> bool {
self.flags.contains(SearchFlags::IGNORE_CASE)
}
/// Returns whether we deduplicate items.
fn dedup(&self) -> bool {
!self.flags.contains(SearchFlags::NO_DEDUP)
}
}
/// Saves the new history to disk.
pub fn save_all() {
for hist in HISTORIES.lock().unwrap().values() {
hist.save();
}
}
/// Return the prefix for the files to be used for command and read history.
pub fn history_session_id(vars: &dyn Environment) -> WString {
history_session_id_from_var(vars.get(L!("fish_history")))
}
pub fn history_session_id_from_var(history_name_var: Option<EnvVar>) -> WString {
let Some(var) = history_name_var else {
return DFLT_FISH_HISTORY_SESSION_ID.to_owned();
};
let session_id = var.as_string();
if session_id.is_empty() || valid_var_name(&session_id) {
session_id
} else {
FLOG!(
error,
wgettext_fmt!(
"History session ID '%ls' is not a valid variable name. Falling back to `%ls`.",
&session_id,
DFLT_FISH_HISTORY_SESSION_ID
),
);
DFLT_FISH_HISTORY_SESSION_ID.to_owned()
}
}
/// Given a list of proposed paths and a context, perform variable and home directory expansion,
/// and detect if the result expands to a value which is also the path to a file.
/// Wildcard expansions are suppressed - see implementation comments for why.
///
/// This is used for autosuggestion hinting. If we add an item to history, and one of its arguments
/// refers to a file, then we only want to suggest it if there is a valid file there.
/// This does disk I/O and may only be called in a background thread.
pub fn expand_and_detect_paths<P: IntoIterator<Item = WString>>(
paths: P,
vars: &dyn Environment,
) -> Vec<WString> {
assert_is_background_thread();
let working_directory = vars.get_pwd_slash();
let ctx = OperationContext::background(vars, EXPANSION_LIMIT_BACKGROUND);
let mut result = Vec::new();
for path in paths {
// Suppress cmdsubs since we are on a background thread and don't want to execute fish
// script.
// Suppress wildcards because we want to suggest e.g. `rm *` even if the directory
// is empty (and so rm will fail); this is nevertheless a useful command because it
// confirms the directory is empty.
let mut expanded_path = path.clone();
if expand_one(
&mut expanded_path,
ExpandFlags::FAIL_ON_CMDSUBST | ExpandFlags::SKIP_WILDCARDS,
&ctx,
None,
) && path_is_valid(&expanded_path, &working_directory)
{
// Note we return the original (unexpanded) path.
result.push(path);
}
}
result
}
/// Given a list of proposed paths and a context, expand each one and see if it refers to a file.
/// Wildcard expansions are suppressed.
/// Returns `true` if `paths` is empty or every path is valid.
pub fn all_paths_are_valid<P: IntoIterator<Item = WString>>(
paths: P,
ctx: &OperationContext<'_>,
) -> bool {
assert_is_background_thread();
let working_directory = ctx.vars().get_pwd_slash();
for mut path in paths {
if ctx.check_cancel() {
return false;
}
if !expand_one(
&mut path,
ExpandFlags::FAIL_ON_CMDSUBST | ExpandFlags::SKIP_WILDCARDS,
ctx,
None,
) {
return false;
}
if !path_is_valid(&path, &working_directory) {
return false;
}
}
true
}
/// Sets private mode on. Once in private mode, it cannot be turned off.
pub fn start_private_mode(vars: &EnvStack) {
vars.set_one(L!("fish_history"), EnvMode::GLOBAL, L!("").to_owned());
vars.set_one(L!("fish_private_mode"), EnvMode::GLOBAL, L!("1").to_owned());
}
/// Queries private mode status.
pub fn in_private_mode(vars: &dyn Environment) -> bool {
vars.get_unless_empty(L!("fish_private_mode")).is_some()
}
/// Whether to force the read path instead of mmap. This is useful for testing.
static NEVER_MMAP: RelaxedAtomicBool = RelaxedAtomicBool::new(false);
/// Whether we're in maximum chaos mode, useful for testing.
/// This causes things like locks to fail.
pub static CHAOS_MODE: RelaxedAtomicBool = RelaxedAtomicBool::new(false);