fish-shell/src/signal.cpp
2022-12-19 15:54:23 -08:00

444 lines
13 KiB
C++

// The library for various signal related issues.
#include "config.h" // IWYU pragma: keep
#include <errno.h>
#ifdef HAVE_SIGINFO_H
#include <siginfo.h>
#endif
#include <unistd.h>
#include <csignal>
#include <cwchar>
#include <mutex>
#include "common.h"
#include "event.h"
#include "fallback.h" // IWYU pragma: keep
#include "global_safety.h"
#include "reader.h"
#include "signal.h"
#include "termsize.h"
#include "topic_monitor.h"
#include "wutil.h" // IWYU pragma: keep
/// Struct describing an entry for the lookup table used to convert between signal names and signal
/// ids, etc.
struct lookup_entry {
/// Signal id.
int signal;
/// Signal name.
const wchar_t *name;
/// Signal description.
const wchar_t *desc;
};
/// Lookup table used to convert between signal names and signal ids, etc.
static const struct lookup_entry signal_table[] = {
#ifdef SIGHUP
{SIGHUP, L"SIGHUP", N_(L"Terminal hung up")},
#endif
#ifdef SIGINT
{SIGINT, L"SIGINT", N_(L"Quit request from job control (^C)")},
#endif
#ifdef SIGQUIT
{SIGQUIT, L"SIGQUIT", N_(L"Quit request from job control with core dump (^\\)")},
#endif
#ifdef SIGILL
{SIGILL, L"SIGILL", N_(L"Illegal instruction")},
#endif
#ifdef SIGTRAP
{SIGTRAP, L"SIGTRAP", N_(L"Trace or breakpoint trap")},
#endif
#ifdef SIGABRT
{SIGABRT, L"SIGABRT", N_(L"Abort")},
#endif
#ifdef SIGBUS
{SIGBUS, L"SIGBUS", N_(L"Misaligned address error")},
#endif
#ifdef SIGFPE
{SIGFPE, L"SIGFPE", N_(L"Floating point exception")},
#endif
#ifdef SIGKILL
{SIGKILL, L"SIGKILL", N_(L"Forced quit")},
#endif
#ifdef SIGUSR1
{SIGUSR1, L"SIGUSR1", N_(L"User defined signal 1")},
#endif
#ifdef SIGUSR2
{SIGUSR2, L"SIGUSR2", N_(L"User defined signal 2")},
#endif
#ifdef SIGSEGV
{SIGSEGV, L"SIGSEGV", N_(L"Address boundary error")},
#endif
#ifdef SIGPIPE
{SIGPIPE, L"SIGPIPE", N_(L"Broken pipe")},
#endif
#ifdef SIGALRM
{SIGALRM, L"SIGALRM", N_(L"Timer expired")},
#endif
#ifdef SIGTERM
{SIGTERM, L"SIGTERM", N_(L"Polite quit request")},
#endif
#ifdef SIGCHLD
{SIGCHLD, L"SIGCHLD", N_(L"Child process status changed")},
#endif
#ifdef SIGCONT
{SIGCONT, L"SIGCONT", N_(L"Continue previously stopped process")},
#endif
#ifdef SIGSTOP
{SIGSTOP, L"SIGSTOP", N_(L"Forced stop")},
#endif
#ifdef SIGTSTP
{SIGTSTP, L"SIGTSTP", N_(L"Stop request from job control (^Z)")},
#endif
#ifdef SIGTTIN
{SIGTTIN, L"SIGTTIN", N_(L"Stop from terminal input")},
#endif
#ifdef SIGTTOU
{SIGTTOU, L"SIGTTOU", N_(L"Stop from terminal output")},
#endif
#ifdef SIGURG
{SIGURG, L"SIGURG", N_(L"Urgent socket condition")},
#endif
#ifdef SIGXCPU
{SIGXCPU, L"SIGXCPU", N_(L"CPU time limit exceeded")},
#endif
#ifdef SIGXFSZ
{SIGXFSZ, L"SIGXFSZ", N_(L"File size limit exceeded")},
#endif
#ifdef SIGVTALRM
{SIGVTALRM, L"SIGVTALRM", N_(L"Virtual timer expired")},
#endif
#ifdef SIGPROF
{SIGPROF, L"SIGPROF", N_(L"Profiling timer expired")},
#endif
#ifdef SIGWINCH
{SIGWINCH, L"SIGWINCH", N_(L"Window size change")},
#endif
#ifdef SIGWIND
{SIGWIND, L"SIGWIND", N_(L"Window size change")},
#endif
#ifdef SIGIO
{SIGIO, L"SIGIO", N_(L"I/O on asynchronous file descriptor is possible")},
#endif
#ifdef SIGPWR
{SIGPWR, L"SIGPWR", N_(L"Power failure")},
#endif
#ifdef SIGSYS
{SIGSYS, L"SIGSYS", N_(L"Bad system call")},
#endif
#ifdef SIGINFO
{SIGINFO, L"SIGINFO", N_(L"Information request")},
#endif
#ifdef SIGSTKFLT
{SIGSTKFLT, L"SISTKFLT", N_(L"Stack fault")},
#endif
#ifdef SIGEMT
{SIGEMT, L"SIGEMT", N_(L"Emulator trap")},
#endif
#ifdef SIGIOT
{SIGIOT, L"SIGIOT", N_(L"Abort (Alias for SIGABRT)")},
#endif
#ifdef SIGUNUSED
{SIGUNUSED, L"SIGUNUSED", N_(L"Unused signal")},
#endif
};
/// Test if \c name is a string describing the signal named \c canonical.
static int match_signal_name(const wchar_t *canonical, const wchar_t *name) {
if (wcsncasecmp(name, L"sig", const_strlen("sig")) == 0) name += 3;
return wcscasecmp(canonical + const_strlen("sig"), name) == 0;
}
int wcs2sig(const wchar_t *str) {
for (const auto &data : signal_table) {
if (match_signal_name(data.name, str)) {
return data.signal;
}
}
int res = fish_wcstoi(str);
if (errno || res < 0) return -1;
return res;
}
const wchar_t *sig2wcs(int sig) {
for (const auto &data : signal_table) {
if (data.signal == sig) {
return data.name;
}
}
return _(L"Unknown");
}
const wchar_t *signal_get_desc(int sig) {
for (const auto &data : signal_table) {
if (data.signal == sig) {
return _(data.desc);
}
}
return _(L"Unknown");
}
/// Store the "main" pid. This allows us to reliably determine if we are in a forked child.
static const pid_t s_main_pid = getpid();
/// It's possible that we receive a signal after we have forked, but before we have reset the signal
/// handlers (or even run the pthread_atfork calls). In that event we will do something dumb like
/// swallow SIGINT. Ensure that doesn't happen. Check if we are the main fish process; if not, reset
/// and re-raise the signal. \return whether we re-raised the signal.
static bool reraise_if_forked_child(int sig) {
// Don't use is_forked_child: it relies on atfork handlers which may have not yet run.
if (getpid() == s_main_pid) {
return false;
}
signal(sig, SIG_DFL);
raise(sig);
return true;
}
/// The cancellation signal we have received.
/// Of course this is modified from a signal handler.
static volatile relaxed_atomic_t<sig_atomic_t> s_cancellation_signal{0};
void signal_clear_cancel() { s_cancellation_signal = 0; }
int signal_check_cancel() { return s_cancellation_signal; }
/// The single signal handler. By centralizing signal handling we ensure that we can never install
/// the "wrong" signal handler (see #5969).
static void fish_signal_handler(int sig, siginfo_t *info, void *context) {
UNUSED(info);
UNUSED(context);
// Ensure we preserve errno.
const int saved_errno = errno;
// Check if we are a forked child.
if (reraise_if_forked_child(sig)) {
errno = saved_errno;
return;
}
// Check if fish script cares about this.
const bool observed = event_is_signal_observed(sig);
if (observed) {
event_enqueue_signal(sig);
}
// Do some signal-specific stuff.
switch (sig) {
#ifdef SIGWINCH
case SIGWINCH:
// Respond to a winch signal by telling the termsize container.
termsize_container_t::handle_winch();
break;
#endif
case SIGHUP:
// Exit unless the signal was trapped.
if (!observed) {
reader_sighup();
}
topic_monitor_t::principal().post(topic_t::sighupint);
break;
case SIGTERM:
// Handle sigterm. The only thing we do is restore the front process ID, then die.
if (!observed) {
restore_term_foreground_process_group_for_exit();
signal(SIGTERM, SIG_DFL);
raise(SIGTERM);
}
break;
case SIGINT:
// Cancel unless the signal was trapped.
if (!observed) {
s_cancellation_signal = SIGINT;
}
reader_handle_sigint();
topic_monitor_t::principal().post(topic_t::sighupint);
break;
case SIGCHLD:
// A child process stopped or exited.
topic_monitor_t::principal().post(topic_t::sigchld);
break;
case SIGALRM:
// We have a sigalarm handler that does nothing. This is used in the signal torture
// test, to verify that we behave correctly when receiving lots of irrelevant signals.
break;
}
errno = saved_errno;
}
void signal_reset_handlers() {
struct sigaction act;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = SIG_DFL;
for (const auto &data : signal_table) {
if (data.signal == SIGHUP) {
struct sigaction oact;
sigaction(SIGHUP, nullptr, &oact);
if (oact.sa_handler == SIG_IGN) continue;
}
sigaction(data.signal, &act, nullptr);
}
}
static void set_interactive_handlers() {
struct sigaction act, oact;
act.sa_flags = 0;
oact.sa_flags = 0;
sigemptyset(&act.sa_mask);
// Interactive mode. Ignore interactive signals. We are a shell, we know what is best for
// the user.
act.sa_handler = SIG_IGN;
sigaction(SIGTSTP, &act, nullptr);
sigaction(SIGTTOU, &act, nullptr);
// We don't ignore SIGTTIN because we might send it to ourself.
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGTTIN, &act, nullptr);
// SIGTERM restores the terminal controlling process before dying.
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGTERM, &act, nullptr);
sigaction(SIGHUP, nullptr, &oact);
if (oact.sa_handler == SIG_DFL) {
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGHUP, &act, nullptr);
}
// SIGALARM as part of our signal torture test
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGALRM, &act, nullptr);
#ifdef SIGWINCH
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGWINCH, &act, nullptr);
#endif
}
/// Sets up appropriate signal handlers.
void signal_set_handlers(bool interactive) {
struct sigaction act;
act.sa_flags = 0;
sigemptyset(&act.sa_mask);
// Ignore SIGPIPE. We'll detect failed writes and deal with them appropriately. We don't want
// this signal interrupting other syscalls or terminating us.
act.sa_sigaction = nullptr;
act.sa_handler = SIG_IGN;
sigaction(SIGPIPE, &act, nullptr);
// Ignore SIGQUIT.
act.sa_handler = SIG_IGN;
sigaction(SIGQUIT, &act, nullptr);
// Apply our SIGINT handler.
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGINT, &act, nullptr);
// Whether or not we're interactive we want SIGCHLD to not interrupt restartable syscalls.
act.sa_sigaction = &fish_signal_handler;
act.sa_flags = SA_SIGINFO | SA_RESTART;
if (sigaction(SIGCHLD, &act, nullptr)) {
wperror(L"sigaction");
FATAL_EXIT();
}
if (interactive) {
set_interactive_handlers();
}
#ifdef FISH_TSAN_WORKAROUNDS
// Work around the following TSAN bug:
// The structure containing signal information for a thread is lazily allocated by TSAN.
// It is possible for the same thread to receive two allocations, if the signal handler
// races with other allocation paths (e.g. a blocking call). This results in the first signal
// being potentially dropped.
// The workaround is to send ourselves a SIGCHLD signal now, to force the allocation to happen.
// As no child is associated with this signal, it is OK if it is dropped, so long as the
// allocation happens.
(void)kill(getpid(), SIGCHLD);
#endif
}
void signal_set_handlers_once(bool interactive) {
static std::once_flag s_noninter_once;
std::call_once(s_noninter_once, signal_set_handlers, false);
static std::once_flag s_inter_once;
if (interactive) std::call_once(s_inter_once, set_interactive_handlers);
}
void signal_handle(int sig) {
struct sigaction act;
// These should always be handled.
if ((sig == SIGINT) || (sig == SIGQUIT) || (sig == SIGTSTP) || (sig == SIGTTIN) ||
(sig == SIGTTOU) || (sig == SIGCHLD))
return;
act.sa_flags = 0;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
act.sa_sigaction = &fish_signal_handler;
sigaction(sig, &act, nullptr);
}
void get_signals_with_handlers(sigset_t *set) {
sigemptyset(set);
for (const auto &data : signal_table) {
struct sigaction act = {};
sigaction(data.signal, nullptr, &act);
// If SIGHUP is being ignored (e.g., because were were run via `nohup`) don't reset it.
// We don't special case other signals because if they're being ignored that shouldn't
// affect processes we spawn. They should get the default behavior for those signals.
if (data.signal == SIGHUP && act.sa_handler == SIG_IGN) continue;
if (act.sa_handler != SIG_DFL) sigaddset(set, data.signal);
}
}
/// Ensure we did not inherit any blocked signals. See issue #3964.
void signal_unblock_all() {
sigset_t iset;
sigemptyset(&iset);
sigprocmask(SIG_SETMASK, &iset, nullptr);
}
sigchecker_t::sigchecker_t(topic_t signal) : topic_(signal) {
// Call check() to update our generation.
check();
}
bool sigchecker_t::check() {
auto &tm = topic_monitor_t::principal();
generation_t gen = tm.generation_for_topic(topic_);
bool changed = this->gen_ != gen;
this->gen_ = gen;
return changed;
}
void sigchecker_t::wait() const {
auto &tm = topic_monitor_t::principal();
generation_list_t gens = generation_list_t::invalids();
gens.at(topic_) = this->gen_;
tm.check(&gens, true /* wait */);
}