mirror of
https://github.com/fish-shell/fish-shell
synced 2025-01-13 21:44:16 +00:00
1116 lines
40 KiB
C++
1116 lines
40 KiB
C++
// Utilities for keeping track of jobs, processes and subshells, as well as signal handling
|
|
// functions for tracking children. These functions do not themselves launch new processes, the exec
|
|
// library will call proc to create representations of the running jobs as needed.
|
|
//
|
|
// Some of the code in this file is based on code from the Glibc manual.
|
|
// IWYU pragma: no_include <__bit_reference>
|
|
#include "config.h"
|
|
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <sys/wait.h>
|
|
#include <termios.h>
|
|
#include <unistd.h>
|
|
#include <wchar.h>
|
|
#include <wctype.h>
|
|
|
|
#if HAVE_TERM_H
|
|
#include <term.h>
|
|
#elif HAVE_NCURSES_TERM_H
|
|
#include <ncurses/term.h>
|
|
#endif
|
|
#ifdef HAVE_SIGINFO_H
|
|
#include <siginfo.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_SELECT_H
|
|
#include <sys/select.h>
|
|
#endif
|
|
#include <sys/time.h> // IWYU pragma: keep
|
|
#include <sys/types.h>
|
|
|
|
#include <algorithm> // IWYU pragma: keep
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "common.h"
|
|
#include "event.h"
|
|
#include "fallback.h" // IWYU pragma: keep
|
|
#include "io.h"
|
|
#include "output.h"
|
|
#include "parse_tree.h"
|
|
#include "parser.h"
|
|
#include "proc.h"
|
|
#include "reader.h"
|
|
#include "sanity.h"
|
|
#include "signal.h"
|
|
#include "util.h"
|
|
#include "wutil.h" // IWYU pragma: keep
|
|
|
|
/// Size of buffer for reading buffered output.
|
|
#define BUFFER_SIZE 4096
|
|
|
|
/// Status of last process to exit.
|
|
static int last_status = 0;
|
|
|
|
bool job_list_is_empty(void) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
return parser_t::principal_parser().job_list().empty();
|
|
}
|
|
|
|
void job_iterator_t::reset() {
|
|
this->current = job_list->begin();
|
|
this->end = job_list->end();
|
|
}
|
|
|
|
job_iterator_t::job_iterator_t(job_list_t &jobs) : job_list(&jobs) { this->reset(); }
|
|
|
|
job_iterator_t::job_iterator_t() : job_list(&parser_t::principal_parser().job_list()) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
this->reset();
|
|
}
|
|
|
|
size_t job_iterator_t::count() const { return this->job_list->size(); }
|
|
|
|
#if 0
|
|
// This isn't used so the lint tools were complaining about its presence. I'm keeping it in the
|
|
// source because it could be useful for debugging. However, it would probably be better to add a
|
|
// verbose or debug option to the builtin `jobs` command.
|
|
void print_jobs(void)
|
|
{
|
|
job_iterator_t jobs;
|
|
job_t *j;
|
|
while (j = jobs.next()) {
|
|
fwprintf(stdout, L"%p -> %ls -> (foreground %d, complete %d, stopped %d, constructed %d)\n",
|
|
j, j->command_wcstr(), j->get_flag(JOB_FOREGROUND), job_is_completed(j),
|
|
job_is_stopped(j), j->get_flag(JOB_CONSTRUCTED));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool is_interactive_session = false;
|
|
bool is_subshell = false;
|
|
bool is_block = false;
|
|
bool is_breakpoint = false;
|
|
bool is_login = false;
|
|
int is_event = false;
|
|
pid_t proc_last_bg_pid = 0;
|
|
int job_control_mode = JOB_CONTROL_INTERACTIVE;
|
|
int no_exec = 0;
|
|
|
|
static int is_interactive = -1;
|
|
|
|
static bool proc_had_barrier = false;
|
|
|
|
bool shell_is_interactive(void) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
// is_interactive is statically initialized to -1. Ensure it has been dynamically set
|
|
// before we're called.
|
|
assert(is_interactive != -1);
|
|
return is_interactive > 0;
|
|
}
|
|
|
|
bool get_proc_had_barrier() {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
return proc_had_barrier;
|
|
}
|
|
|
|
void set_proc_had_barrier(bool flag) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
proc_had_barrier = flag;
|
|
}
|
|
|
|
/// The event variable used to send all process event.
|
|
static event_t event(0);
|
|
|
|
/// A stack containing the values of is_interactive. Used by proc_push_interactive and
|
|
/// proc_pop_interactive.
|
|
static std::vector<int> interactive_stack;
|
|
|
|
void proc_init() { proc_push_interactive(0); }
|
|
|
|
/// Remove job from list of jobs.
|
|
static int job_remove(job_t *j) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
return parser_t::principal_parser().job_remove(j);
|
|
}
|
|
|
|
void job_promote(job_t *job) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
parser_t::principal_parser().job_promote(job);
|
|
}
|
|
|
|
void proc_destroy() {
|
|
job_list_t &jobs = parser_t::principal_parser().job_list();
|
|
while (!jobs.empty()) {
|
|
job_t *job = jobs.front().get();
|
|
debug(2, L"freeing leaked job %ls", job->command_wcstr());
|
|
job_remove(job);
|
|
}
|
|
}
|
|
|
|
void proc_set_last_status(int s) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
last_status = s;
|
|
}
|
|
|
|
int proc_get_last_status() { return last_status; }
|
|
|
|
// Basic thread safe job IDs. The vector consumed_job_ids has a true value wherever the job ID
|
|
// corresponding to that slot is in use. The job ID corresponding to slot 0 is 1.
|
|
static owning_lock<std::vector<bool>> locked_consumed_job_ids;
|
|
|
|
job_id_t acquire_job_id(void) {
|
|
auto &&locker = locked_consumed_job_ids.acquire();
|
|
std::vector<bool> &consumed_job_ids = locker.value;
|
|
|
|
// Find the index of the first 0 slot.
|
|
std::vector<bool>::iterator slot =
|
|
std::find(consumed_job_ids.begin(), consumed_job_ids.end(), false);
|
|
if (slot != consumed_job_ids.end()) {
|
|
// We found a slot. Note that slot 0 corresponds to job ID 1.
|
|
*slot = true;
|
|
return (job_id_t)(slot - consumed_job_ids.begin() + 1);
|
|
}
|
|
|
|
// We did not find a slot; create a new slot. The size of the vector is now the job ID
|
|
// (since it is one larger than the slot).
|
|
consumed_job_ids.push_back(true);
|
|
return (job_id_t)consumed_job_ids.size();
|
|
}
|
|
|
|
void release_job_id(job_id_t jid) {
|
|
assert(jid > 0);
|
|
auto &&locker = locked_consumed_job_ids.acquire();
|
|
std::vector<bool> &consumed_job_ids = locker.value;
|
|
size_t slot = (size_t)(jid - 1), count = consumed_job_ids.size();
|
|
|
|
// Make sure this slot is within our vector and is currently set to consumed.
|
|
assert(slot < count);
|
|
assert(consumed_job_ids.at(slot) == true);
|
|
|
|
// Clear it and then resize the vector to eliminate unused trailing job IDs.
|
|
consumed_job_ids.at(slot) = false;
|
|
while (count--) {
|
|
if (consumed_job_ids.at(count)) break;
|
|
}
|
|
consumed_job_ids.resize(count + 1);
|
|
}
|
|
|
|
job_t *job_get(job_id_t id) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
return parser_t::principal_parser().job_get(id);
|
|
}
|
|
|
|
job_t *job_get_from_pid(int pid) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
return parser_t::principal_parser().job_get_from_pid(pid);
|
|
}
|
|
|
|
/// Return true if all processes in the job have stopped or completed.
|
|
///
|
|
/// \param j the job to test
|
|
int job_is_stopped(const job_t *j) {
|
|
for (const process_ptr_t &p : j->processes) {
|
|
if (!p->completed && !p->stopped) {
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/// Return true if the last processes in the job has completed.
|
|
///
|
|
/// \param j the job to test
|
|
bool job_is_completed(const job_t *j) {
|
|
assert(!j->processes.empty());
|
|
bool result = true;
|
|
for (const process_ptr_t &p : j->processes) {
|
|
if (!p->completed) {
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void job_t::set_flag(job_flag_t flag, bool set) {
|
|
if (set) {
|
|
this->flags |= flag;
|
|
} else {
|
|
this->flags &= ~flag;
|
|
}
|
|
}
|
|
|
|
bool job_t::get_flag(job_flag_t flag) const { return (this->flags & flag) == flag; }
|
|
|
|
int job_signal(job_t *j, int signal) {
|
|
pid_t my_pgid = getpgrp();
|
|
int res = 0;
|
|
|
|
if (j->pgid != my_pgid) {
|
|
res = killpg(j->pgid, signal);
|
|
} else {
|
|
for (const process_ptr_t &p : j->processes) {
|
|
if (!p->completed && p->pid && kill(p->pid, signal)) {
|
|
res = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/// Store the status of the process pid that was returned by waitpid.
|
|
static void mark_process_status(process_t *p, int status) {
|
|
// debug( 0, L"Process %ls %ls", p->argv[0], WIFSTOPPED (status)?L"stopped":(WIFEXITED( status
|
|
// )?L"exited":(WIFSIGNALED( status )?L"signaled to exit":L"BLARGH")) );
|
|
p->status = status;
|
|
|
|
if (WIFSTOPPED(status)) {
|
|
p->stopped = 1;
|
|
} else if (WIFSIGNALED(status) || WIFEXITED(status)) {
|
|
p->completed = 1;
|
|
} else {
|
|
// This should never be reached.
|
|
p->completed = 1;
|
|
debug(1, "Process %ld exited abnormally", (long)p->pid);
|
|
}
|
|
}
|
|
|
|
void job_mark_process_as_failed(job_t *job, const process_t *failed_proc) {
|
|
// The given process failed to even lift off (e.g. posix_spawn failed) and so doesn't have a
|
|
// valid pid. Mark it and everything after it as dead.
|
|
bool found = false;
|
|
for (process_ptr_t &p : job->processes) {
|
|
found = found || (p.get() == failed_proc);
|
|
if (found) {
|
|
p->completed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Handle status update for child \c pid.
|
|
///
|
|
/// \param pid the pid of the process whose status changes
|
|
/// \param status the status as returned by wait
|
|
static void handle_child_status(pid_t pid, int status) {
|
|
job_t *j = NULL;
|
|
const process_t *found_proc = NULL;
|
|
|
|
job_iterator_t jobs;
|
|
while (!found_proc && (j = jobs.next())) {
|
|
process_t *prev = NULL;
|
|
for (process_ptr_t &p : j->processes) {
|
|
if (pid == p->pid) {
|
|
mark_process_status(p.get(), status);
|
|
found_proc = p.get();
|
|
break;
|
|
}
|
|
prev = p.get();
|
|
}
|
|
}
|
|
|
|
// If the child process was not killed by a signal or other than SIGINT or SIGQUIT we're done.
|
|
if (!WIFSIGNALED(status) || (WTERMSIG(status) != SIGINT && WTERMSIG(status) != SIGQUIT)) {
|
|
return;
|
|
}
|
|
|
|
if (is_interactive_session) {
|
|
// In an interactive session, tell the principal parser to skip all blocks we're executing
|
|
// so control-C returns control to the user.
|
|
if (found_proc) parser_t::skip_all_blocks();
|
|
} else {
|
|
// Deliver the SIGINT or SIGQUIT signal to ourself since we're not interactive.
|
|
struct sigaction act;
|
|
sigemptyset(&act.sa_mask);
|
|
act.sa_flags = 0;
|
|
act.sa_handler = SIG_DFL;
|
|
sigaction(SIGINT, &act, 0);
|
|
sigaction(SIGQUIT, &act, 0);
|
|
kill(getpid(), WTERMSIG(status));
|
|
}
|
|
|
|
#if 0
|
|
// TODO: Decide whether to eliminate this block or have it emit a warning message.
|
|
// WARNING: See the special short-circuit logic above vis-a-vis signals.
|
|
if (!found_proc) {
|
|
// A child we lost track of? There have been bugs in both subshell handling and in builtin
|
|
// handling that have caused this previously...
|
|
}
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
process_t::process_t()
|
|
: is_first_in_job(),
|
|
is_last_in_job(),
|
|
type(), // gets set later
|
|
internal_block_node(NODE_OFFSET_INVALID),
|
|
pid(0),
|
|
pipe_write_fd(0),
|
|
pipe_read_fd(0),
|
|
completed(0),
|
|
stopped(0),
|
|
status(0),
|
|
count_help_magic(0)
|
|
#ifdef HAVE__PROC_SELF_STAT
|
|
,
|
|
last_time(),
|
|
last_jiffies(0)
|
|
#endif
|
|
{
|
|
}
|
|
|
|
/// The constructor sets the pgid to -2 as a sentinel value
|
|
/// 0 should not be used; although it is not a valid PGID in userspace,
|
|
/// the Linux kernel will use it for kernel processes.
|
|
/// -1 should not be used; it is a possible return value of the getpgid()
|
|
/// function
|
|
job_t::job_t(job_id_t jobid, const io_chain_t &bio)
|
|
: block_io(bio), pgid(-2), tmodes(), job_id(jobid), flags(0) {}
|
|
|
|
job_t::~job_t() { release_job_id(job_id); }
|
|
|
|
/// Return all the IO redirections. Start with the block IO, then walk over the processes.
|
|
io_chain_t job_t::all_io_redirections() const {
|
|
io_chain_t result = this->block_io;
|
|
for (const process_ptr_t &p : this->processes) {
|
|
result.append(p->io_chain());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
typedef unsigned int process_generation_count_t;
|
|
|
|
/// A static value tracking how many SIGCHLDs we have seen. This is only ever modified from within
|
|
/// the SIGCHLD signal handler, and therefore does not need atomics or locks.
|
|
static volatile process_generation_count_t s_sigchld_generation_cnt = 0;
|
|
|
|
/// If we have received a SIGCHLD signal, process any children. If await is false, this returns
|
|
/// immediately if no SIGCHLD has been received. If await is true, this waits for one. Returns true
|
|
/// if something was processed. This returns the number of children processed, or -1 on error.
|
|
static int process_mark_finished_children(bool wants_await) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
|
|
// A static value tracking the SIGCHLD gen count at the time we last processed it. When this is
|
|
// different from s_sigchld_generation_cnt, it indicates there may be unreaped processes.
|
|
// There may not be if we reaped them via the other waitpid path. This is only ever modified
|
|
// from the main thread, and not from a signal handler.
|
|
static process_generation_count_t s_last_sigchld_generation_cnt = 0;
|
|
|
|
int processed_count = 0;
|
|
bool got_error = false;
|
|
|
|
// The critical read. This fetches a value which is only written in the signal handler. This
|
|
// needs to be an atomic read (we'd use sig_atomic_t, if we knew that were unsigned -
|
|
// fortunately aligned unsigned int is atomic on pretty much any modern chip.) It also needs to
|
|
// occur before we start reaping, since the signal handler can be invoked at any point.
|
|
const process_generation_count_t local_count = s_sigchld_generation_cnt;
|
|
|
|
// Determine whether we have children to process. Note that we can't reliably use the difference
|
|
// because a single SIGCHLD may be delivered for multiple children - see #1768. Also if we are
|
|
// awaiting, we always process.
|
|
bool wants_waitpid = wants_await || local_count != s_last_sigchld_generation_cnt;
|
|
|
|
if (wants_waitpid) {
|
|
for (;;) {
|
|
// Call waitpid until we get 0/ECHILD. If we wait, it's only on the first iteration. So
|
|
// we want to set NOHANG (don't wait) unless wants_await is true and this is the first
|
|
// iteration.
|
|
int options = WUNTRACED;
|
|
if (!(wants_await && processed_count == 0)) {
|
|
options |= WNOHANG;
|
|
}
|
|
|
|
int status = -1;
|
|
pid_t pid = waitpid(-1, &status, options);
|
|
if (pid > 0) {
|
|
// We got a valid pid.
|
|
handle_child_status(pid, status);
|
|
processed_count += 1;
|
|
} else if (pid == 0) {
|
|
// No ready-and-waiting children, we're done.
|
|
break;
|
|
} else {
|
|
// This indicates an error. One likely failure is ECHILD (no children), which we
|
|
// break on, and is not considered an error. The other likely failure is EINTR,
|
|
// which means we got a signal, which is considered an error.
|
|
got_error = (errno != ECHILD);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (got_error) {
|
|
return -1;
|
|
}
|
|
s_last_sigchld_generation_cnt = local_count;
|
|
return processed_count;
|
|
}
|
|
|
|
/// This is called from a signal handler. The signal is always SIGCHLD.
|
|
void job_handle_signal(int signal, siginfo_t *info, void *context) {
|
|
UNUSED(signal);
|
|
UNUSED(info);
|
|
UNUSED(context);
|
|
// This is the only place that this generation count is modified. It's OK if it overflows.
|
|
s_sigchld_generation_cnt += 1;
|
|
}
|
|
|
|
/// Given a command like "cat file", truncate it to a reasonable length.
|
|
static wcstring truncate_command(const wcstring &cmd) {
|
|
const size_t max_len = 32;
|
|
if (cmd.size() <= max_len) {
|
|
// No truncation necessary.
|
|
return cmd;
|
|
}
|
|
|
|
// Truncation required.
|
|
const bool ellipsis_is_unicode = (ellipsis_char == L'\x2026');
|
|
const size_t ellipsis_length = ellipsis_is_unicode ? 1 : 3;
|
|
size_t trunc_length = max_len - ellipsis_length;
|
|
// Eat trailing whitespace.
|
|
while (trunc_length > 0 && iswspace(cmd.at(trunc_length - 1))) {
|
|
trunc_length -= 1;
|
|
}
|
|
wcstring result = wcstring(cmd, 0, trunc_length);
|
|
// Append ellipsis.
|
|
if (ellipsis_is_unicode) {
|
|
result.push_back(ellipsis_char);
|
|
} else {
|
|
result.append(L"...");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Format information about job status for the user to look at.
|
|
typedef enum { JOB_STOPPED, JOB_ENDED } job_status_t;
|
|
static void format_job_info(const job_t *j, job_status_t status) {
|
|
const wchar_t *msg = L"Job %d, '%ls' has ended"; // this is the most common status msg
|
|
if (status == JOB_STOPPED) msg = L"Job %d, '%ls' has stopped";
|
|
|
|
fwprintf(stdout, L"\r");
|
|
fwprintf(stdout, _(msg), j->job_id, truncate_command(j->command()).c_str());
|
|
fflush(stdout);
|
|
if (cur_term) {
|
|
tputs(clr_eol, 1, &writeb);
|
|
} else {
|
|
fwprintf(stdout, L"\e[K");
|
|
}
|
|
fwprintf(stdout, L"\n");
|
|
}
|
|
|
|
void proc_fire_event(const wchar_t *msg, int type, pid_t pid, int status) {
|
|
event.type = type;
|
|
event.param1.pid = pid;
|
|
|
|
event.arguments.push_back(msg);
|
|
event.arguments.push_back(to_string<int>(pid));
|
|
event.arguments.push_back(to_string<int>(status));
|
|
event_fire(&event);
|
|
event.arguments.resize(0);
|
|
}
|
|
|
|
static int process_clean_after_marking(bool allow_interactive) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
job_t *jnext;
|
|
int found = 0;
|
|
|
|
// this function may fire an event handler, we do not want to call ourselves recursively (to avoid
|
|
// infinite recursion).
|
|
static bool locked = false;
|
|
if (locked) {
|
|
return 0;
|
|
}
|
|
locked = true;
|
|
|
|
// this may be invoked in an exit handler, after the TERM has been torn down
|
|
// don't try to print in that case (#3222)
|
|
const bool interactive = allow_interactive && cur_term != NULL;
|
|
|
|
|
|
job_iterator_t jobs;
|
|
const size_t job_count = jobs.count();
|
|
jnext = jobs.next();
|
|
while (jnext) {
|
|
job_t *j = jnext;
|
|
jnext = jobs.next();
|
|
|
|
// If we are reaping only jobs who do not need status messages sent to the console, do not
|
|
// consider reaping jobs that need status messages.
|
|
if ((!j->get_flag(JOB_SKIP_NOTIFICATION)) && (!interactive) &&
|
|
(!j->get_flag(JOB_FOREGROUND))) {
|
|
continue;
|
|
}
|
|
|
|
for (const process_ptr_t &p : j->processes) {
|
|
int s;
|
|
if (!p->completed) continue;
|
|
|
|
if (!p->pid) continue;
|
|
|
|
s = p->status;
|
|
|
|
proc_fire_event(L"PROCESS_EXIT", EVENT_EXIT, p->pid,
|
|
(WIFSIGNALED(s) ? -1 : WEXITSTATUS(s)));
|
|
|
|
// Ignore signal SIGPIPE.We issue it ourselves to the pipe writer when the pipe reader
|
|
// dies.
|
|
if (!WIFSIGNALED(s) || WTERMSIG(s) == SIGPIPE) {
|
|
continue;
|
|
}
|
|
|
|
// Handle signals other than SIGPIPE.
|
|
int proc_is_job = (p->is_first_in_job && p->is_last_in_job);
|
|
if (proc_is_job) j->set_flag(JOB_NOTIFIED, true);
|
|
if (j->get_flag(JOB_SKIP_NOTIFICATION)) {
|
|
continue;
|
|
}
|
|
|
|
// Print nothing if we get SIGINT in the foreground process group, to avoid spamming
|
|
// obvious stuff on the console (#1119). If we get SIGINT for the foreground
|
|
// process, assume the user typed ^C and can see it working. It's possible they
|
|
// didn't, and the signal was delivered via pkill, etc., but the SIGINT/SIGTERM
|
|
// distinction is precisely to allow INT to be from a UI
|
|
// and TERM to be programmatic, so this assumption is keeping with the design of
|
|
// signals. If echoctl is on, then the terminal will have written ^C to the console.
|
|
// If off, it won't have. We don't echo ^C either way, so as to respect the user's
|
|
// preference.
|
|
if (WTERMSIG(p->status) != SIGINT || !j->get_flag(JOB_FOREGROUND)) {
|
|
if (proc_is_job) {
|
|
// We want to report the job number, unless it's the only job, in which case
|
|
// we don't need to.
|
|
const wcstring job_number_desc =
|
|
(job_count == 1) ? wcstring() : format_string(_(L"Job %d, "), j->job_id);
|
|
fwprintf(stdout, _(L"%ls: %ls\'%ls\' terminated by signal %ls (%ls)"),
|
|
program_name, job_number_desc.c_str(),
|
|
truncate_command(j->command()).c_str(), sig2wcs(WTERMSIG(p->status)),
|
|
signal_get_desc(WTERMSIG(p->status)));
|
|
} else {
|
|
const wcstring job_number_desc =
|
|
(job_count == 1) ? wcstring() : format_string(L"from job %d, ", j->job_id);
|
|
const wchar_t *fmt =
|
|
_(L"%ls: Process %d, \'%ls\' %ls\'%ls\' terminated by signal %ls (%ls)");
|
|
fwprintf(stdout, fmt, program_name, p->pid, p->argv0(), job_number_desc.c_str(),
|
|
truncate_command(j->command()).c_str(), sig2wcs(WTERMSIG(p->status)),
|
|
signal_get_desc(WTERMSIG(p->status)));
|
|
}
|
|
|
|
if (cur_term != NULL) {
|
|
tputs(clr_eol, 1, &writeb);
|
|
} else {
|
|
fwprintf(stdout, L"\e[K"); // no term set up - do clr_eol manually
|
|
}
|
|
fwprintf(stdout, L"\n");
|
|
}
|
|
found = 1;
|
|
p->status = 0; // clear status so it is not reported more than once
|
|
}
|
|
|
|
// If all processes have completed, tell the user the job has completed and delete it from
|
|
// the active job list.
|
|
if (job_is_completed(j)) {
|
|
if (!j->get_flag(JOB_FOREGROUND) && !j->get_flag(JOB_NOTIFIED) &&
|
|
!j->get_flag(JOB_SKIP_NOTIFICATION)) {
|
|
format_job_info(j, JOB_ENDED);
|
|
found = 1;
|
|
}
|
|
proc_fire_event(L"JOB_EXIT", EVENT_EXIT, -j->pgid, 0);
|
|
proc_fire_event(L"JOB_EXIT", EVENT_JOB_ID, j->job_id, 0);
|
|
|
|
job_remove(j);
|
|
} else if (job_is_stopped(j) && !j->get_flag(JOB_NOTIFIED)) {
|
|
// Notify the user about newly stopped jobs.
|
|
if (!j->get_flag(JOB_SKIP_NOTIFICATION)) {
|
|
format_job_info(j, JOB_STOPPED);
|
|
found = 1;
|
|
}
|
|
j->set_flag(JOB_NOTIFIED, true);
|
|
}
|
|
}
|
|
|
|
if (found) fflush(stdout);
|
|
|
|
locked = false;
|
|
|
|
return found;
|
|
}
|
|
|
|
int job_reap(bool allow_interactive) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
int found = 0;
|
|
|
|
process_mark_finished_children(false);
|
|
|
|
// Preserve the exit status.
|
|
const int saved_status = proc_get_last_status();
|
|
|
|
found = process_clean_after_marking(allow_interactive);
|
|
|
|
// Restore the exit status.
|
|
proc_set_last_status(saved_status);
|
|
|
|
return found;
|
|
}
|
|
|
|
#ifdef HAVE__PROC_SELF_STAT
|
|
|
|
/// Maximum length of a /proc/[PID]/stat filename.
|
|
#define FN_SIZE 256
|
|
|
|
/// Get the CPU time for the specified process.
|
|
unsigned long proc_get_jiffies(process_t *p) {
|
|
if (p->pid <= 0) return 0;
|
|
|
|
wchar_t fn[FN_SIZE];
|
|
char state;
|
|
int pid, ppid, pgrp, session, tty_nr, tpgid, exit_signal, processor;
|
|
long int cutime, cstime, priority, nice, placeholder, itrealvalue, rss;
|
|
unsigned long int flags, minflt, cminflt, majflt, cmajflt, utime, stime, starttime, vsize, rlim,
|
|
startcode, endcode, startstack, kstkesp, kstkeip, signal, blocked, sigignore, sigcatch,
|
|
wchan, nswap, cnswap;
|
|
char comm[1024];
|
|
|
|
swprintf(fn, FN_SIZE, L"/proc/%d/stat", p->pid);
|
|
FILE *f = wfopen(fn, "r");
|
|
if (!f) return 0;
|
|
|
|
// TODO: replace the use of fscanf() as it is brittle and should never be used.
|
|
int count = fscanf(f,
|
|
"%9d %1023s %c %9d %9d %9d %9d %9d %9lu "
|
|
"%9lu %9lu %9lu %9lu %9lu %9lu %9ld %9ld %9ld "
|
|
"%9ld %9ld %9ld %9lu %9lu %9ld %9lu %9lu %9lu "
|
|
"%9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu "
|
|
"%9lu %9d %9d ",
|
|
&pid, comm, &state, &ppid, &pgrp, &session, &tty_nr, &tpgid, &flags, &minflt,
|
|
&cminflt, &majflt, &cmajflt, &utime, &stime, &cutime, &cstime, &priority,
|
|
&nice, &placeholder, &itrealvalue, &starttime, &vsize, &rss, &rlim,
|
|
&startcode, &endcode, &startstack, &kstkesp, &kstkeip, &signal, &blocked,
|
|
&sigignore, &sigcatch, &wchan, &nswap, &cnswap, &exit_signal, &processor);
|
|
fclose(f);
|
|
if (count < 17) return 0;
|
|
return utime + stime + cutime + cstime;
|
|
}
|
|
|
|
/// Update the CPU time for all jobs.
|
|
void proc_update_jiffies() {
|
|
job_t *job;
|
|
job_iterator_t j;
|
|
|
|
for (job = j.next(); job; job = j.next()) {
|
|
for (process_ptr_t &p : job->processes) {
|
|
gettimeofday(&p->last_time, 0);
|
|
p->last_jiffies = proc_get_jiffies(p.get());
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/// Check if there are buffers associated with the job, and select on them for a while if available.
|
|
///
|
|
/// \param j the job to test
|
|
///
|
|
/// \return 1 if buffers were available, zero otherwise
|
|
static int select_try(job_t *j) {
|
|
fd_set fds;
|
|
int maxfd = -1;
|
|
|
|
FD_ZERO(&fds);
|
|
|
|
const io_chain_t chain = j->all_io_redirections();
|
|
for (size_t idx = 0; idx < chain.size(); idx++) {
|
|
const io_data_t *io = chain.at(idx).get();
|
|
if (io->io_mode == IO_BUFFER) {
|
|
const io_pipe_t *io_pipe = static_cast<const io_pipe_t *>(io);
|
|
int fd = io_pipe->pipe_fd[0];
|
|
// fwprintf( stderr, L"fd %d on job %ls\n", fd, j->command );
|
|
FD_SET(fd, &fds);
|
|
maxfd = maxi(maxfd, fd);
|
|
debug(3, L"select_try on %d", fd);
|
|
}
|
|
}
|
|
|
|
if (maxfd >= 0) {
|
|
int retval;
|
|
struct timeval tv;
|
|
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = 10000;
|
|
|
|
retval = select(maxfd + 1, &fds, 0, 0, &tv);
|
|
if (retval == 0) {
|
|
debug(3, L"select_try hit timeout");
|
|
}
|
|
return retval > 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/// Read from descriptors until they are empty.
|
|
///
|
|
/// \param j the job to test
|
|
static void read_try(job_t *j) {
|
|
io_buffer_t *buff = NULL;
|
|
|
|
// Find the last buffer, which is the one we want to read from.
|
|
const io_chain_t chain = j->all_io_redirections();
|
|
for (size_t idx = 0; idx < chain.size(); idx++) {
|
|
io_data_t *d = chain.at(idx).get();
|
|
if (d->io_mode == IO_BUFFER) {
|
|
buff = static_cast<io_buffer_t *>(d);
|
|
}
|
|
}
|
|
|
|
if (buff) {
|
|
debug(3, L"proc::read_try('%ls')", j->command_wcstr());
|
|
while (1) {
|
|
char b[BUFFER_SIZE];
|
|
long l;
|
|
|
|
l = read_blocked(buff->pipe_fd[0], b, BUFFER_SIZE);
|
|
if (l == 0) {
|
|
break;
|
|
} else if (l < 0) {
|
|
if (errno != EAGAIN) {
|
|
debug(1, _(L"An error occured while reading output from code block"));
|
|
wperror(L"read_try");
|
|
}
|
|
break;
|
|
} else {
|
|
buff->out_buffer_append(b, l);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Give ownership of the terminal to the specified job.
|
|
///
|
|
/// \param j The job to give the terminal to.
|
|
/// \param cont If this variable is set, we are giving back control to a job that has previously
|
|
/// been stopped. In that case, we need to set the terminal attributes to those saved in the job.
|
|
bool terminal_give_to_job(job_t *j, int cont) {
|
|
errno = 0;
|
|
if (j->pgid == 0) {
|
|
debug(2, "terminal_give_to_job() returning early due to no process group");
|
|
return true;
|
|
}
|
|
|
|
signal_block();
|
|
|
|
// It may not be safe to call tcsetpgrp if we've already done so, as at that point we are no
|
|
// longer the controlling process group for the terminal and no longer have permission to set
|
|
// the process group that is in control, causing tcsetpgrp to return EPERM, even though that's
|
|
// not the documented behavior in tcsetpgrp(3), which instead says other bad things will happen
|
|
// (it says SIGTTOU will be sent to all members of the background *calling* process group, but
|
|
// it's more complicated than that, SIGTTOU may or may not be sent depending on the TTY
|
|
// configuration and whether or not signal handlers for SIGTTOU are installed. Read:
|
|
// http://curiousthing.org/sigttin-sigttou-deep-dive-linux In all cases, our goal here was just
|
|
// to hand over control of the terminal to this process group, which is a no-op if it's already
|
|
// been done.
|
|
if (tcgetpgrp(STDIN_FILENO) == j->pgid) {
|
|
debug(2, L"Process group %d already has control of terminal\n", j->pgid);
|
|
} else {
|
|
debug(4,
|
|
L"Attempting to bring process group to foreground via tcsetpgrp for job->pgid %d\n",
|
|
j->pgid);
|
|
|
|
// The tcsetpgrp(2) man page says that EPERM is thrown if "pgrp has a supported value, but
|
|
// is not the process group ID of a process in the same session as the calling process."
|
|
// Since we _guarantee_ that this isn't the case (the child calls setpgid before it calls
|
|
// SIGSTOP, and the child was created in the same session as us), it seems that EPERM is
|
|
// being thrown because of an caching issue - the call to tcsetpgrp isn't seeing the
|
|
// newly-created process group just yet. On this developer's test machine (WSL running Linux
|
|
// 4.4.0), EPERM does indeed disappear on retry. The important thing is that we can
|
|
// guarantee the process isn't going to exit while we wait (which would cause us to possibly
|
|
// block indefinitely).
|
|
while (tcsetpgrp(STDIN_FILENO, j->pgid) != 0) {
|
|
bool pgroup_terminated = false;
|
|
if (errno == EINTR) {
|
|
; // Always retry on EINTR, see comments in tcsetattr EINTR code below.
|
|
} else if (errno == EINVAL) {
|
|
// OS X returns EINVAL if the process group no longer lives. Probably other OSes,
|
|
// too. Unlike EPERM below, EINVAL can only happen if the process group has
|
|
// terminated.
|
|
pgroup_terminated = true;
|
|
} else if (errno == EPERM) {
|
|
// Retry so long as this isn't because the process group is dead.
|
|
int wait_result = waitpid(-1 * j->pgid, &wait_result, WNOHANG);
|
|
if (wait_result == -1) {
|
|
// Note that -1 is technically an "error" for waitpid in the sense that an
|
|
// invalid argument was specified because no such process group exists any
|
|
// longer. This is the observed behavior on Linux 4.4.0. a "success" result
|
|
// would mean processes from the group still exist but is still running in some
|
|
// state or the other.
|
|
pgroup_terminated = true;
|
|
} else {
|
|
// Debug the original tcsetpgrp error (not the waitpid errno) to the log, and
|
|
// then retry until not EPERM or the process group has exited.
|
|
debug(2, L"terminal_give_to_job(): EPERM.\n", j->pgid);
|
|
}
|
|
} else {
|
|
if (errno == ENOTTY) redirect_tty_output();
|
|
debug(1, _(L"Could not send job %d ('%ls') with pgid %d to foreground"), j->job_id,
|
|
j->command_wcstr(), j->pgid);
|
|
wperror(L"tcsetpgrp");
|
|
signal_unblock();
|
|
return false;
|
|
}
|
|
|
|
if (pgroup_terminated) {
|
|
// All processes in the process group has exited. Since we force all child procs to
|
|
// SIGSTOP on startup, the only way that can happen is if the very last process in
|
|
// the group terminated, and didn't need to access the terminal, otherwise it would
|
|
// have hung waiting for terminal IO (SIGTTIN). We can ignore this.
|
|
debug(3, L"tcsetpgrp called but process group %d has terminated.\n", j->pgid);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cont) {
|
|
int result = -1;
|
|
// TODO: Remove this EINTR loop since we have blocked all signals and thus cannot be
|
|
// interrupted. I'm leaving it in place because all of the logic involving controlling
|
|
// terminal management is more than a little opaque and smacks of voodoo programming.
|
|
errno = EINTR;
|
|
while (result == -1 && errno == EINTR) {
|
|
result = tcsetattr(STDIN_FILENO, TCSADRAIN, &j->tmodes);
|
|
}
|
|
if (result == -1) {
|
|
if (errno == ENOTTY) redirect_tty_output();
|
|
debug(1, _(L"Could not send job %d ('%ls') to foreground"), j->job_id,
|
|
j->command_wcstr());
|
|
wperror(L"tcsetattr");
|
|
signal_unblock();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
signal_unblock();
|
|
return true;
|
|
}
|
|
|
|
/// Returns control of the terminal to the shell, and saves the terminal attribute state to the job,
|
|
/// so that we can restore the terminal ownership to the job at a later time.
|
|
static bool terminal_return_from_job(job_t *j) {
|
|
errno = 0;
|
|
if (j->pgid == 0) {
|
|
debug(2, "terminal_return_from_job() returning early due to no process group");
|
|
return true;
|
|
}
|
|
|
|
signal_block();
|
|
if (tcsetpgrp(STDIN_FILENO, getpgrp()) == -1) {
|
|
if (errno == ENOTTY) redirect_tty_output();
|
|
debug(1, _(L"Could not return shell to foreground"));
|
|
wperror(L"tcsetpgrp");
|
|
signal_unblock();
|
|
return false;
|
|
}
|
|
|
|
// Save jobs terminal modes.
|
|
if (tcgetattr(STDIN_FILENO, &j->tmodes)) {
|
|
if (errno == EIO) redirect_tty_output();
|
|
debug(1, _(L"Could not return shell to foreground"));
|
|
wperror(L"tcgetattr");
|
|
signal_unblock();
|
|
return false;
|
|
}
|
|
|
|
// Disabling this per
|
|
// https://github.com/adityagodbole/fish-shell/commit/9d229cd18c3e5c25a8bd37e9ddd3b67ddc2d1b72 On
|
|
// Linux, 'cd . ; ftp' prevents you from typing into the ftp prompt. See
|
|
// https://github.com/fish-shell/fish-shell/issues/121
|
|
#if 0
|
|
// Restore the shell's terminal modes.
|
|
if (tcsetattr(STDIN_FILENO, TCSADRAIN, &shell_modes) == -1) {
|
|
if (errno == EIO) redirect_tty_output();
|
|
debug(1, _(L"Could not return shell to foreground"));
|
|
wperror(L"tcsetattr");
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
signal_unblock();
|
|
return true;
|
|
}
|
|
|
|
void job_continue(job_t *j, bool cont) {
|
|
// Put job first in the job list.
|
|
job_promote(j);
|
|
j->set_flag(JOB_NOTIFIED, false);
|
|
|
|
CHECK_BLOCK();
|
|
debug(4, L"%ls job %d, gid %d (%ls), %ls, %ls", cont ? L"Continue" : L"Start", j->job_id,
|
|
j->pgid, j->command_wcstr(), job_is_completed(j) ? L"COMPLETED" : L"UNCOMPLETED",
|
|
is_interactive ? L"INTERACTIVE" : L"NON-INTERACTIVE");
|
|
|
|
if (!job_is_completed(j)) {
|
|
if (j->get_flag(JOB_TERMINAL) && j->get_flag(JOB_FOREGROUND)) {
|
|
// Put the job into the foreground. Hack: ensure that stdin is marked as blocking first
|
|
// (issue #176).
|
|
make_fd_blocking(STDIN_FILENO);
|
|
if (!terminal_give_to_job(j, cont)) return;
|
|
}
|
|
|
|
// Send the job a continue signal, if necessary.
|
|
if (cont) {
|
|
for (process_ptr_t &p : j->processes) p->stopped = false;
|
|
|
|
if (j->get_flag(JOB_CONTROL)) {
|
|
if (killpg(j->pgid, SIGCONT)) {
|
|
wperror(L"killpg (SIGCONT)");
|
|
return;
|
|
}
|
|
} else {
|
|
for (const process_ptr_t &p : j->processes) {
|
|
if (kill(p->pid, SIGCONT) < 0) {
|
|
wperror(L"kill (SIGCONT)");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (j->get_flag(JOB_FOREGROUND)) {
|
|
// Look for finished processes first, to avoid select() if it's already done.
|
|
process_mark_finished_children(false);
|
|
|
|
// Wait for job to report.
|
|
while (!reader_exit_forced() && !job_is_stopped(j) && !job_is_completed(j)) {
|
|
// debug( 1, L"select_try()" );
|
|
switch (select_try(j)) {
|
|
case 1: {
|
|
read_try(j);
|
|
process_mark_finished_children(false);
|
|
break;
|
|
}
|
|
case 0: {
|
|
// No FDs are ready. Look for finished processes.
|
|
process_mark_finished_children(false);
|
|
break;
|
|
}
|
|
case -1: {
|
|
// If there is no funky IO magic, we can use waitpid instead of handling
|
|
// child deaths through signals. This gives a rather large speed boost (A
|
|
// factor 3 startup time improvement on my 300 MHz machine) on short-lived
|
|
// jobs.
|
|
//
|
|
// This will return early if we get a signal, like SIGHUP.
|
|
process_mark_finished_children(true);
|
|
break;
|
|
}
|
|
default: {
|
|
DIE("unexpected return value from select_try()");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (j->get_flag(JOB_FOREGROUND)) {
|
|
if (job_is_completed(j)) {
|
|
// It's possible that the job will produce output and exit before we've even read from
|
|
// it.
|
|
//
|
|
// We'll eventually read the output, but it may be after we've executed subsequent calls
|
|
// This is why my prompt colors kept getting screwed up - the builtin echo calls
|
|
// were sometimes having their output combined with the set_color calls in the wrong
|
|
// order!
|
|
read_try(j);
|
|
|
|
const std::unique_ptr<process_t> &p = j->processes.back();
|
|
|
|
// Mark process status only if we are in the foreground and the last process in a pipe,
|
|
// and it is not a short circuited builtin.
|
|
if ((WIFEXITED(p->status) || WIFSIGNALED(p->status)) && p->pid) {
|
|
int status = proc_format_status(p->status);
|
|
// fwprintf(stdout, L"setting status %d for %ls\n", job_get_flag( j, JOB_NEGATE
|
|
// )?!status:status, j->command);
|
|
proc_set_last_status(j->get_flag(JOB_NEGATE) ? !status : status);
|
|
}
|
|
}
|
|
|
|
// Put the shell back in the foreground.
|
|
if (j->get_flag(JOB_TERMINAL) && j->get_flag(JOB_FOREGROUND)) {
|
|
terminal_return_from_job(j);
|
|
}
|
|
}
|
|
}
|
|
|
|
int proc_format_status(int status) {
|
|
if (WIFSIGNALED(status)) {
|
|
return 128 + WTERMSIG(status);
|
|
} else if (WIFEXITED(status)) {
|
|
return WEXITSTATUS(status);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
void proc_sanity_check() {
|
|
const job_t *fg_job = NULL;
|
|
|
|
job_iterator_t jobs;
|
|
while (const job_t *j = jobs.next()) {
|
|
if (!j->get_flag(JOB_CONSTRUCTED)) continue;
|
|
|
|
// More than one foreground job?
|
|
if (j->get_flag(JOB_FOREGROUND) && !(job_is_stopped(j) || job_is_completed(j))) {
|
|
if (fg_job) {
|
|
debug(0, _(L"More than one job in foreground: job 1: '%ls' job 2: '%ls'"),
|
|
fg_job->command_wcstr(), j->command_wcstr());
|
|
sanity_lose();
|
|
}
|
|
fg_job = j;
|
|
}
|
|
|
|
for (const process_ptr_t &p : j->processes) {
|
|
// Internal block nodes do not have argv - see issue #1545.
|
|
bool null_ok = (p->type == INTERNAL_BLOCK_NODE);
|
|
validate_pointer(p->get_argv(), _(L"Process argument list"), null_ok);
|
|
validate_pointer(p->argv0(), _(L"Process name"), null_ok);
|
|
|
|
if ((p->stopped & (~0x00000001)) != 0) {
|
|
debug(0, _(L"Job '%ls', process '%ls' has inconsistent state \'stopped\'=%d"),
|
|
j->command_wcstr(), p->argv0(), p->stopped);
|
|
sanity_lose();
|
|
}
|
|
|
|
if ((p->completed & (~0x00000001)) != 0) {
|
|
debug(0, _(L"Job '%ls', process '%ls' has inconsistent state \'completed\'=%d"),
|
|
j->command_wcstr(), p->argv0(), p->completed);
|
|
sanity_lose();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void proc_push_interactive(int value) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
int old = is_interactive;
|
|
interactive_stack.push_back(is_interactive);
|
|
is_interactive = value;
|
|
if (old != value) signal_set_handlers();
|
|
}
|
|
|
|
void proc_pop_interactive() {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
int old = is_interactive;
|
|
is_interactive = interactive_stack.back();
|
|
interactive_stack.pop_back();
|
|
if (is_interactive != old) signal_set_handlers();
|
|
}
|
|
|
|
pid_t proc_wait_any() {
|
|
int pid_status;
|
|
pid_t pid = waitpid(-1, &pid_status, WUNTRACED);
|
|
if (pid == -1) return -1;
|
|
handle_child_status(pid, pid_status);
|
|
process_clean_after_marking(is_interactive);
|
|
return pid;
|
|
}
|