fish-shell/src/lru.h
ridiculousfish accba09709 Remove entry_was_evicted from LRU
This was no longer used. This allows us to remove the CRTP bits as well.
2021-09-30 11:33:03 -07:00

309 lines
10 KiB
C++

// Least-recently-used cache implementation.
#ifndef FISH_LRU_H
#define FISH_LRU_H
#include <cwchar>
#include <unordered_map>
#include "common.h"
// Least-recently-used cache class.
//
// This a map from wcstring to Contents, that will evict entries when the count exceeds the maximum.
// This uses the classic LRU cache structure: a dictionary mapping keys to nodes, where the nodes
// also form a linked list. Our linked list is circular and has a sentinel node (the "mouth" -
// picture a snake swallowing its tail). This simplifies the logic: no pointer is ever NULL! It also
// works well with C++'s iterator since the sentinel node is a natural value for end(). Our nodes
// also have the unusual property of having a "back pointer": they store an iterator to the entry in
// the map containing the node. This allows us, given a node, to immediately locate the node and its
// key in the dictionary. This allows us to avoid duplicating the key in the node.
template <class Contents>
class lru_cache_t {
struct lru_node_t;
struct lru_link_t : noncopyable_t {
// Our doubly linked list.
// The base class is used for the mouth only.
lru_link_t *prev = nullptr;
lru_link_t *next = nullptr;
};
// The node type in our LRU cache
struct lru_node_t : public lru_link_t {
// Our key in the map. This is owned by the map itself.
const wcstring *key = nullptr;
// The value from the client
Contents value;
explicit lru_node_t(Contents &&v) : value(std::move(v)) {}
};
// Max node count. This may be (transiently) exceeded by add_node_without_eviction, which is
// used from background threads.
const size_t max_node_count;
// All of our nodes.
// Note that our linked list contains pointers to these nodes in the map.
// We are dependent on the iterator-noninvalidation guarantees of std::unordered_map.
std::unordered_map<wcstring, lru_node_t> node_map;
// Head of the linked list
// The list is circular!
// If "empty" the mouth just points at itself.
lru_link_t mouth;
// Take a node and move it to the front of the list
void promote_node(lru_node_t *node) {
assert(node != &mouth);
// First unhook us
node->prev->next = node->next;
node->next->prev = node->prev;
// Put us after the mouth
node->next = mouth.next;
node->next->prev = node;
node->prev = &mouth;
mouth.next = node;
}
// Remove the node
void evict_node(lru_node_t *node) {
// We should never evict the mouth.
assert(node != &mouth && node != nullptr && node->key != nullptr);
auto iter = this->node_map.find(*node->key);
assert(iter != this->node_map.end());
// Remove it from the linked list.
node->prev->next = node->next;
node->next->prev = node->prev;
// Remove us from the map. This deallocates node!
node_map.erase(iter);
}
// Evicts the last node
void evict_last_node() {
assert(mouth.prev != &mouth);
evict_node(static_cast<lru_node_t *>(mouth.prev));
}
// Implementation of merge step for mergesort.
// Given two singly linked lists left and right, and a binary func F implementing less-than,
// return the list in sorted order.
template <typename F>
static lru_link_t *merge(lru_link_t *left, size_t left_len, lru_link_t *right, size_t right_len,
const F &func) {
assert(left_len > 0 && right_len > 0);
auto popleft = [&]() {
lru_link_t *ret = left;
left = left->next;
left_len--;
return ret;
};
auto popright = [&]() {
lru_link_t *ret = right;
right = right->next;
right_len--;
return ret;
};
lru_link_t *head;
lru_link_t **cursor = &head;
while (left_len && right_len) {
bool goleft = !func(static_cast<lru_node_t *>(left)->value,
static_cast<lru_node_t *>(right)->value);
*cursor = goleft ? popleft() : popright();
cursor = &(*cursor)->next;
}
while (left_len || right_len) {
*cursor = left_len ? popleft() : popright();
cursor = &(*cursor)->next;
}
return head;
}
// mergesort the given list of the given length.
// This only sets the next pointers, not the prev ones.
template <typename F>
static lru_link_t *mergesort(lru_link_t *node, size_t length, const F &func) {
if (length <= 1) {
return node;
}
// divide us into two lists, left and right
const size_t left_len = length / 2;
const size_t right_len = length - left_len;
lru_link_t *left = node;
lru_link_t *right = node;
for (size_t i = 0; i < left_len; i++) {
right = right->next;
}
// Recursive sorting
left = mergesort(left, left_len, func);
right = mergesort(right, right_len, func);
// Merge them
return merge(left, left_len, right, right_len, func);
}
public:
// Constructor. Note our linked list is always circular.
explicit lru_cache_t(size_t max_size = 1024) : max_node_count(max_size) {
mouth.next = mouth.prev = &mouth;
}
// Returns the value for a given key, or NULL.
// This counts as a "use" and so promotes the node
Contents *get(const wcstring &key) {
auto where = this->node_map.find(key);
if (where == this->node_map.end()) {
// not found
return nullptr;
}
promote_node(&where->second);
return &where->second.value;
}
// Evicts the node for a given key, returning true if a node was evicted.
bool evict_node(const wcstring &key) {
auto where = this->node_map.find(key);
if (where == this->node_map.end()) return false;
evict_node(&where->second);
return true;
}
// Adds a node under the given key. Returns true if the node was added, false if the node was
// not because a node with that key is already in the set.
bool insert(wcstring key, Contents value) {
if (!this->insert_no_eviction(std::move(key), std::move(value))) {
return false;
}
while (this->node_map.size() > max_node_count) {
evict_last_node();
}
return true;
}
// Adds a node under the given key without triggering eviction. Returns true if the node was
// added, false if the node was not because a node with that key is already in the set.
bool insert_no_eviction(wcstring &&key, Contents &&value) {
// Try inserting; return false if it was already in the set.
auto iter_inserted = this->node_map.emplace(std::move(key), lru_node_t(std::move(value)));
if (!iter_inserted.second) {
// already present - so promote it
promote_node(&iter_inserted.first->second);
return false;
}
// Tell the node where it is in the map
auto iter = iter_inserted.first;
lru_node_t *node = &iter->second;
node->key = &iter->first;
node->next = mouth.next;
node->next->prev = node;
node->prev = &mouth;
mouth.next = node;
return true;
}
// Number of entries
size_t size() const { return this->node_map.size(); }
// Given a binary function F implementing less-than on the contents, place the nodes in sorted
// order.
template <typename F>
void stable_sort(const F &func) {
// Perform the sort. This sets forward pointers only
size_t length = this->size();
if (length <= 1) {
return;
}
lru_link_t *sorted = mergesort(this->mouth.next, length, func);
mouth.next = sorted;
// Go through and set back back pointers.
lru_link_t *cursor = sorted;
lru_link_t *prev = &mouth;
for (size_t i = 0; i < length; i++) {
cursor->prev = prev;
prev = cursor;
cursor = cursor->next;
}
// prev is now last element in list
// make the list circular
prev->next = &mouth;
mouth.prev = prev;
}
void evict_all_nodes(void) {
while (this->size() > 0) {
evict_last_node();
}
}
// Iterator for walking nodes, from least recently used to most.
class iterator {
const lru_link_t *node;
public:
using value_type = std::pair<const wcstring &, const Contents &>;
explicit iterator(const lru_link_t *val) : node(val) {}
void operator++() { node = node->prev; }
bool operator==(const iterator &other) const { return node == other.node; }
bool operator!=(const iterator &other) const { return !(*this == other); }
value_type operator*() const {
const lru_node_t *dnode = static_cast<const lru_node_t *>(node);
return {*dnode->key, dnode->value};
}
};
iterator begin() const { return iterator(mouth.prev); }
iterator end() const { return iterator(&mouth); }
void check_sanity() const {
// Check linked list sanity
size_t expected_count = this->size();
const lru_link_t *prev = &mouth;
const lru_link_t *cursor = mouth.next;
size_t max = 1024 * 1024 * 64;
size_t count = 0;
while (cursor != &mouth) {
if (cursor->prev != prev) {
DIE("node busted previous link");
}
prev = cursor;
cursor = cursor->next;
if (count++ > max) {
DIE("LRU cache unable to re-reach the mouth - not circularly linked?");
}
}
if (mouth.prev != prev) {
DIE("mouth.prev does not connect to last node");
}
if (count != expected_count) {
DIE("linked list count mismatch from map count");
}
// Count iterators
size_t iter_dist = 0;
for (auto p : *this) {
UNUSED(p);
iter_dist++;
}
if (iter_dist != count) {
DIE("linked list iterator mismatch from map count");
}
}
};
#endif