fish-shell/src/io.cpp
Aaron Gyes 14d2a6d8ff IWYU-guided #include rejiggering.
Let's hope this doesn't causes build failures for e.g. musl: I just
know it's good on macOS and our Linux CI.

It's been a long time.

One fix this brings, is I discovered we #include assert.h or cassert
in a lot of places. If those ever happen to be in a file that doesn't
include common.h, or we are before common.h gets included, we're
unawaringly working with the system 'assert' macro again, which
may get disabled for debug builds or at least has different
behavior on crash. We undef 'assert' and redefine it in common.h.

Those were all eliminated, except in one catch-22 spot for
maybe.h: it can't include common.h. A fix might be to
make a fish_assert.h that *usually* common.h exports.
2022-08-20 23:55:18 -07:00

367 lines
14 KiB
C++

// Utilities for io redirection.
#include "config.h" // IWYU pragma: keep
#include "io.h"
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#include <cwchar>
#include <functional>
#include "common.h"
#include "fallback.h" // IWYU pragma: keep
#include "fd_monitor.h"
#include "flog.h"
#include "maybe.h"
#include "path.h"
#include "redirection.h"
#include "wutil.h" // IWYU pragma: keep
/// File redirection error message.
#define FILE_ERROR _(L"An error occurred while redirecting file '%ls'")
#define NOCLOB_ERROR _(L"The file '%ls' already exists")
/// Base open mode to pass to calls to open.
#define OPEN_MASK 0666
/// Provide the fd monitor used for background fillthread operations.
static fd_monitor_t &fd_monitor() {
// Deliberately leaked to avoid shutdown dtors.
static auto fdm = new fd_monitor_t();
return *fdm;
}
io_data_t::~io_data_t() = default;
io_pipe_t::~io_pipe_t() = default;
io_fd_t::~io_fd_t() = default;
io_close_t::~io_close_t() = default;
io_file_t::~io_file_t() = default;
io_bufferfill_t::~io_bufferfill_t() = default;
void io_close_t::print() const { std::fwprintf(stderr, L"close %d\n", fd); }
void io_fd_t::print() const { std::fwprintf(stderr, L"FD map %d -> %d\n", source_fd, fd); }
void io_file_t::print() const { std::fwprintf(stderr, L"file %d -> %d\n", file_fd_.fd(), fd); }
void io_pipe_t::print() const {
std::fwprintf(stderr, L"pipe {%d} (input: %s) -> %d\n", source_fd, is_input_ ? "yes" : "no",
fd);
}
void io_bufferfill_t::print() const {
std::fwprintf(stderr, L"bufferfill %d -> %d\n", write_fd_.fd(), fd);
}
ssize_t io_buffer_t::read_once(int fd, acquired_lock<separated_buffer_t> &buffer) {
assert(fd >= 0 && "Invalid fd");
errno = 0;
char bytes[4096 * 4];
// We want to swallow EINTR only; in particular EAGAIN needs to be returned back to the caller.
ssize_t amt;
do {
amt = read(fd, bytes, sizeof bytes);
} while (amt < 0 && errno == EINTR);
if (amt < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
wperror(L"read");
} else if (amt > 0) {
buffer->append(bytes, static_cast<size_t>(amt));
}
return amt;
}
void io_buffer_t::begin_filling(autoclose_fd_t fd) {
assert(!fillthread_running() && "Already have a fillthread");
// We want to fill buffer_ by reading from fd. fd is the read end of a pipe; the write end is
// owned by another process, or something else writing in fish.
// Pass fd to an fd_monitor. It will add fd to its select() loop, and give us a callback when
// the fd is readable, or when our item is poked. The usual path is that we will get called
// back, read a bit from the fd, and append it to the buffer. Eventually the write end of the
// pipe will be closed - probably the other process exited - and fd will be widowed; read() will
// then return 0 and we will stop reading.
// In exotic circumstances the write end of the pipe will not be closed; this may happen in
// e.g.:
// cmd ( background & ; echo hi )
// Here the background process will inherit the write end of the pipe and hold onto it forever.
// In this case, when complete_background_fillthread() is called, the callback will be invoked
// with item_wake_reason_t::poke, and we will notice that the shutdown flag is set (this
// indicates that the command substitution is done); in this case we will read until we get
// EAGAIN and then give up.
// Construct a promise. We will fulfill it in our fill thread, and wait for it in
// complete_background_fillthread(). Note that TSan complains if the promise's dtor races with
// the future's call to wait(), so we store the promise, not just its future (#7681).
auto promise = std::make_shared<std::promise<void>>();
this->fill_waiter_ = promise;
// Run our function to read until the receiver is closed.
// It's OK to capture 'this' by value because 'this' waits for the promise in its dtor.
fd_monitor_item_t item;
item.fd = std::move(fd);
item.callback = [this, promise](autoclose_fd_t &fd, item_wake_reason_t reason) {
ASSERT_IS_BACKGROUND_THREAD();
// Only check the shutdown flag if we timed out or were poked.
// It's important that if select() indicated we were readable, that we call select() again
// allowing it to time out. Note the typical case is that the fd will be closed, in which
// case select will return immediately.
bool done = false;
if (reason == item_wake_reason_t::readable) {
// select() reported us as readable; read a bit.
auto buffer = buffer_.acquire();
ssize_t ret = read_once(fd.fd(), buffer);
done = (ret == 0 || (ret < 0 && errno != EAGAIN && errno != EWOULDBLOCK));
} else if (shutdown_fillthread_) {
// Here our caller asked us to shut down; read while we keep getting data.
// This will stop when the fd is closed or if we get EAGAIN.
auto buffer = buffer_.acquire();
ssize_t ret;
do {
ret = read_once(fd.fd(), buffer);
} while (ret > 0);
done = true;
}
if (done) {
fd.close();
promise->set_value();
}
};
this->item_id_ = fd_monitor().add(std::move(item));
}
separated_buffer_t io_buffer_t::complete_background_fillthread_and_take_buffer() {
// Mark that our fillthread is done, then wake it up.
assert(fillthread_running() && "Should have a fillthread");
assert(this->item_id_ > 0 && "Should have a valid item ID");
shutdown_fillthread_ = true;
fd_monitor().poke_item(this->item_id_);
// Wait for the fillthread to fulfill its promise, and then clear the future so we know we no
// longer have one.
fill_waiter_->get_future().wait();
fill_waiter_.reset();
// Return our buffer, transferring ownership.
auto locked_buff = buffer_.acquire();
separated_buffer_t result = std::move(*locked_buff);
locked_buff->clear();
return result;
}
shared_ptr<io_bufferfill_t> io_bufferfill_t::create(size_t buffer_limit, int target) {
assert(target >= 0 && "Invalid target fd");
// Construct our pipes.
auto pipes = make_autoclose_pipes();
if (!pipes) {
return nullptr;
}
// Our buffer will read from the read end of the pipe. This end must be non-blocking. This is
// because our fillthread needs to poll to decide if it should shut down, and also accept input
// from direct buffer transfers.
if (make_fd_nonblocking(pipes->read.fd())) {
FLOGF(warning, PIPE_ERROR);
wperror(L"fcntl");
return nullptr;
}
// Our fillthread gets the read end of the pipe; out_pipe gets the write end.
auto buffer = std::make_shared<io_buffer_t>(buffer_limit);
buffer->begin_filling(std::move(pipes->read));
return std::make_shared<io_bufferfill_t>(target, std::move(pipes->write), buffer);
}
separated_buffer_t io_bufferfill_t::finish(std::shared_ptr<io_bufferfill_t> &&filler) {
// The io filler is passed in. This typically holds the only instance of the write side of the
// pipe used by the buffer's fillthread (except for that side held by other processes). Get the
// buffer out of the bufferfill and clear the shared_ptr; this will typically widow the pipe.
// Then allow the buffer to finish.
assert(filler && "Null pointer in finish");
auto buffer = filler->buffer();
filler.reset();
return buffer->complete_background_fillthread_and_take_buffer();
}
io_buffer_t::~io_buffer_t() {
assert(!fillthread_running() && "io_buffer_t destroyed with outstanding fillthread");
}
void io_chain_t::remove(const shared_ptr<const io_data_t> &element) {
// See if you can guess why std::find doesn't work here.
for (auto iter = this->begin(); iter != this->end(); ++iter) {
if (*iter == element) {
this->erase(iter);
break;
}
}
}
void io_chain_t::push_back(io_data_ref_t element) {
// Ensure we never push back NULL.
assert(element.get() != nullptr);
std::vector<io_data_ref_t>::push_back(std::move(element));
}
void io_chain_t::append(const io_chain_t &chain) {
assert(&chain != this && "Cannot append self to self");
this->insert(this->end(), chain.begin(), chain.end());
}
bool io_chain_t::append_from_specs(const redirection_spec_list_t &specs, const wcstring &pwd) {
bool have_error = false;
for (const auto &spec : specs) {
switch (spec.mode) {
case redirection_mode_t::fd: {
if (spec.is_close()) {
this->push_back(make_unique<io_close_t>(spec.fd));
} else {
auto target_fd = spec.get_target_as_fd();
assert(target_fd.has_value() &&
"fd redirection should have been validated already");
this->push_back(make_unique<io_fd_t>(spec.fd, *target_fd));
}
break;
}
default: {
// We have a path-based redireciton. Resolve it to a file.
// Mark it as CLO_EXEC because we don't want it to be open in any child.
wcstring path = path_apply_working_directory(spec.target, pwd);
int oflags = spec.oflags();
autoclose_fd_t file{wopen_cloexec(path, oflags, OPEN_MASK)};
if (!file.valid()) {
if ((oflags & O_EXCL) && (errno == EEXIST)) {
FLOGF(warning, NOCLOB_ERROR, spec.target.c_str());
} else {
if (should_flog(warning)) {
FLOGF(warning, FILE_ERROR, spec.target.c_str());
auto err = errno;
// If the error is that the file doesn't exist
// or there's a non-directory component,
// find the first problematic component for a better message.
if (err == ENOENT || err == ENOTDIR) {
auto dname = spec.target;
struct stat buf;
while (!dname.empty()) {
auto next = wdirname(dname);
if (!wstat(next, &buf)) {
if (!S_ISDIR(buf.st_mode)) {
FLOGF(warning, _(L"Path '%ls' is not a directory"),
next.c_str());
} else {
FLOGF(warning, _(L"Path '%ls' does not exist"),
dname.c_str());
}
break;
}
dname = next;
}
} else {
wperror(L"open");
}
}
}
// If opening a file fails, insert a closed FD instead of the file redirection
// and return false. This lets execution potentially recover and at least gives
// the shell a chance to gracefully regain control of the shell (see #7038).
this->push_back(make_unique<io_close_t>(spec.fd));
have_error = true;
break;
}
this->push_back(std::make_shared<io_file_t>(spec.fd, std::move(file)));
break;
}
}
}
return !have_error;
}
void io_chain_t::print() const {
if (this->empty()) {
std::fwprintf(stderr, L"Empty chain %p\n", this);
return;
}
std::fwprintf(stderr, L"Chain %p (%ld items):\n", this, static_cast<long>(this->size()));
for (size_t i = 0; i < this->size(); i++) {
const auto &io = this->at(i);
if (io == nullptr) {
std::fwprintf(stderr, L"\t(null)\n");
} else {
std::fwprintf(stderr, L"\t%lu: fd:%d, ", static_cast<unsigned long>(i), io->fd);
io->print();
}
}
}
shared_ptr<const io_data_t> io_chain_t::io_for_fd(int fd) const {
for (auto iter = rbegin(); iter != rend(); ++iter) {
const auto &data = *iter;
if (data->fd == fd) {
return data;
}
}
return nullptr;
}
void output_stream_t::append_narrow_buffer(const separated_buffer_t &buffer) {
for (const auto &rhs_elem : buffer.elements()) {
append_with_separation(str2wcstring(rhs_elem.contents), rhs_elem.separation, false);
}
}
void output_stream_t::append_with_separation(const wchar_t *s, size_t len, separation_type_t type,
bool want_newline) {
append(s, len);
if (type == separation_type_t::explicitly && want_newline) {
append(L'\n');
}
}
const wcstring &output_stream_t::contents() const { return g_empty_string; }
int output_stream_t::flush_and_check_error() { return STATUS_CMD_OK; }
void fd_output_stream_t::append(const wchar_t *s, size_t amt) {
if (errored_) return;
int res = wwrite_to_fd(s, amt, this->fd_);
if (res < 0) {
// TODO: this error is too aggressive, e.g. if we got SIGINT we should not complain.
if (errno != EPIPE) {
wperror(L"write");
}
errored_ = true;
}
}
int fd_output_stream_t::flush_and_check_error() {
// Return a generic 1 on any write failure.
return errored_ ? STATUS_CMD_ERROR : STATUS_CMD_OK;
}
void null_output_stream_t::append(const wchar_t *, size_t) {}
void string_output_stream_t::append(const wchar_t *s, size_t amt) { contents_.append(s, amt); }
const wcstring &string_output_stream_t::contents() const { return contents_; }
void buffered_output_stream_t::append(const wchar_t *s, size_t amt) {
buffer_->append(wcs2string(s, amt));
}
void buffered_output_stream_t::append_with_separation(const wchar_t *s, size_t len,
separation_type_t type, bool want_newline) {
UNUSED(want_newline);
buffer_->append(wcs2string(s, len), type);
}
int buffered_output_stream_t::flush_and_check_error() {
if (buffer_->discarded()) {
return STATUS_READ_TOO_MUCH;
}
return 0;
}