mirror of
https://github.com/fish-shell/fish-shell
synced 2025-01-24 10:45:08 +00:00
523 lines
17 KiB
C++
523 lines
17 KiB
C++
/*
|
|
* TINYEXPR - Tiny recursive descent parser and evaluation engine in C
|
|
*
|
|
* Copyright (c) 2015, 2016 Lewis Van Winkle
|
|
*
|
|
* http://CodePlea.com
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgement in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
// This version has been altered and ported to C++ for inclusion in fish.
|
|
#include "tinyexpr.h"
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <cstring>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
// TODO: It would be nice not to rely on a typedef for this, especially one that can only do functions with two args.
|
|
typedef double (*te_fun2)(double, double);
|
|
typedef double (*te_fun1)(double);
|
|
typedef double (*te_fun0)();
|
|
|
|
enum {
|
|
TE_CONSTANT = 0,
|
|
TE_FUNCTION0, TE_FUNCTION1, TE_FUNCTION2, TE_FUNCTION3,
|
|
TOK_NULL, TOK_ERROR, TOK_END, TOK_SEP,
|
|
TOK_OPEN, TOK_CLOSE, TOK_NUMBER, TOK_INFIX
|
|
};
|
|
|
|
int get_arity(const int type) {
|
|
if (type == TE_FUNCTION3) return 3;
|
|
if (type == TE_FUNCTION2) return 2;
|
|
if (type == TE_FUNCTION1) return 1;
|
|
return 0;
|
|
}
|
|
|
|
typedef struct te_expr {
|
|
int type;
|
|
union {double value; const void *function;};
|
|
te_expr *parameters[];
|
|
} te_expr;
|
|
|
|
// TODO: Rename since variables have been removed.
|
|
typedef struct te_builtin {
|
|
const char *name;
|
|
const void *address;
|
|
int type;
|
|
} te_builtin;
|
|
|
|
typedef struct state {
|
|
const char *start;
|
|
const char *next;
|
|
int type;
|
|
union {double value; const void *function;};
|
|
|
|
te_error_type_t error;
|
|
} state;
|
|
|
|
/* Parses the input expression and binds variables. */
|
|
/* Returns NULL on error. */
|
|
te_expr *te_compile(const char *expression, te_error_t *error);
|
|
|
|
/* Evaluates the expression. */
|
|
double te_eval(const te_expr *n);
|
|
|
|
/* Frees the expression. */
|
|
/* This is safe to call on NULL pointers. */
|
|
void te_free(te_expr *n);
|
|
|
|
// TODO: That move there? Ouch. Replace with a proper class with a constructor.
|
|
#define NEW_EXPR(type, ...) new_expr((type), std::move((const te_expr*[]){__VA_ARGS__}))
|
|
|
|
static te_expr *new_expr(const int type, const te_expr *parameters[]) {
|
|
const int arity = get_arity(type);
|
|
const int psize = sizeof(te_expr*) * arity;
|
|
const int size = sizeof(te_expr) + psize;
|
|
te_expr *ret = (te_expr *)malloc(size);
|
|
// This sets float to 0, which depends on the implementation.
|
|
// We rely on IEEE-754 floats anyway, so it's okay.
|
|
std::memset(ret, 0, size);
|
|
if (arity && parameters) {
|
|
std::memcpy(ret->parameters, parameters, psize);
|
|
}
|
|
ret->type = type;
|
|
return ret;
|
|
}
|
|
|
|
|
|
void te_free_parameters(te_expr *n) {
|
|
if (!n) return;
|
|
int arity = get_arity(n->type);
|
|
// Free all parameters from the back to the front.
|
|
while (arity > 0) {
|
|
te_free(n->parameters[arity - 1]);
|
|
arity--;
|
|
}
|
|
}
|
|
|
|
|
|
void te_free(te_expr *n) {
|
|
if (!n) return;
|
|
te_free_parameters(n);
|
|
free(n);
|
|
}
|
|
|
|
|
|
static constexpr double pi() { return M_PI; }
|
|
static constexpr double e() { return M_E; }
|
|
|
|
static double fac(double a) { /* simplest version of fac */
|
|
if (a < 0.0)
|
|
return NAN;
|
|
if (a > UINT_MAX)
|
|
return INFINITY;
|
|
unsigned int ua = (unsigned int)(a);
|
|
unsigned long int result = 1, i;
|
|
for (i = 1; i <= ua; i++) {
|
|
if (i > ULONG_MAX / result)
|
|
return INFINITY;
|
|
result *= i;
|
|
}
|
|
return (double)result;
|
|
}
|
|
|
|
static double ncr(double n, double r) {
|
|
if (n < 0.0 || r < 0.0 || n < r) return NAN;
|
|
if (n > UINT_MAX || r > UINT_MAX) return INFINITY;
|
|
unsigned long int un = (unsigned int)(n), ur = (unsigned int)(r), i;
|
|
unsigned long int result = 1;
|
|
if (ur > un / 2) ur = un - ur;
|
|
for (i = 1; i <= ur; i++) {
|
|
if (result > ULONG_MAX / (un - ur + i))
|
|
return INFINITY;
|
|
result *= un - ur + i;
|
|
result /= i;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static double npr(double n, double r) {return ncr(n, r) * fac(r);}
|
|
|
|
static const te_builtin functions[] = {
|
|
/* must be in alphabetical order */
|
|
{"abs", (const void *)(te_fun1)fabs, TE_FUNCTION1},
|
|
{"acos", (const void *)(te_fun1)acos, TE_FUNCTION1},
|
|
{"asin", (const void *)(te_fun1)asin, TE_FUNCTION1},
|
|
{"atan", (const void *)(te_fun1)atan, TE_FUNCTION1},
|
|
{"atan2", (const void *)(te_fun2)atan2, TE_FUNCTION2},
|
|
{"ceil", (const void *)(te_fun1)ceil, TE_FUNCTION1},
|
|
{"cos", (const void *)(te_fun1)cos, TE_FUNCTION1},
|
|
{"cosh", (const void *)(te_fun1)cosh, TE_FUNCTION1},
|
|
{"e", (const void *)(te_fun0)e, TE_FUNCTION0},
|
|
{"exp", (const void *)(te_fun1)exp, TE_FUNCTION1},
|
|
{"fac", (const void *)(te_fun1)fac, TE_FUNCTION1},
|
|
{"floor", (const void *)(te_fun1)floor, TE_FUNCTION1},
|
|
{"ln", (const void *)(te_fun1)log, TE_FUNCTION1},
|
|
{"log", (const void *)(te_fun1)log10, TE_FUNCTION1},
|
|
{"log10", (const void *)(te_fun1)log10, TE_FUNCTION1},
|
|
{"ncr", (const void *)(te_fun2)ncr, TE_FUNCTION2},
|
|
{"npr", (const void *)(te_fun2)npr, TE_FUNCTION2},
|
|
{"pi", (const void *)(te_fun1)pi, TE_FUNCTION0},
|
|
{"pow", (const void *)(te_fun2)pow, TE_FUNCTION2},
|
|
{"round", (const void *)(te_fun1)round, TE_FUNCTION1},
|
|
{"sin", (const void *)(te_fun1)sin, TE_FUNCTION1},
|
|
{"sinh", (const void *)(te_fun1)sinh, TE_FUNCTION1},
|
|
{"sqrt", (const void *)(te_fun1)sqrt, TE_FUNCTION1},
|
|
{"tan", (const void *)(te_fun1)tan, TE_FUNCTION1},
|
|
{"tanh", (const void *)(te_fun1)tanh, TE_FUNCTION1}
|
|
};
|
|
|
|
static const te_builtin *find_builtin(const char *name, int len) {
|
|
const auto end = std::end(functions);
|
|
const te_builtin *found = std::lower_bound(std::begin(functions), end, name,
|
|
[len](const te_builtin &lhs, const char *rhs) {
|
|
// The length is important because that's where the parens start
|
|
return std::strncmp(lhs.name, rhs, len) < 0;
|
|
});
|
|
// We need to compare again because we might have gotten the first "larger" element.
|
|
if (found != end && std::strncmp(found->name, name, len) == 0) return found;
|
|
return NULL;
|
|
}
|
|
|
|
static constexpr double add(double a, double b) {return a + b;}
|
|
static constexpr double sub(double a, double b) {return a - b;}
|
|
static constexpr double mul(double a, double b) {return a * b;}
|
|
static constexpr double divide(double a, double b) {
|
|
// If b isn't zero, divide.
|
|
// If a isn't zero, return signed INFINITY.
|
|
// Else, return NAN.
|
|
return b ? a / b : a ? copysign(1, a) * copysign(1,b) * INFINITY : NAN;
|
|
}
|
|
|
|
static constexpr double negate(double a) {return -a;}
|
|
|
|
void next_token(state *s) {
|
|
s->type = TOK_NULL;
|
|
|
|
do {
|
|
if (!*s->next){
|
|
s->type = TOK_END;
|
|
return;
|
|
}
|
|
|
|
/* Try reading a number. */
|
|
if ((s->next[0] >= '0' && s->next[0] <= '9') || s->next[0] == '.') {
|
|
s->value = strtod(s->next, (char**)&s->next);
|
|
s->type = TOK_NUMBER;
|
|
} else {
|
|
/* Look for a variable or builtin function call. */
|
|
if (s->next[0] >= 'a' && s->next[0] <= 'z') {
|
|
const char *start;
|
|
start = s->next;
|
|
while ((s->next[0] >= 'a' && s->next[0] <= 'z') || (s->next[0] >= '0' && s->next[0] <= '9') || (s->next[0] == '_')) s->next++;
|
|
|
|
const te_builtin *var = find_builtin(start, s->next - start);
|
|
|
|
if (var) {
|
|
switch(var->type) {
|
|
case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3:
|
|
s->type = var->type;
|
|
s->function = var->address;
|
|
break;
|
|
}
|
|
} else if (s->type != TOK_ERROR
|
|
|| s->error == TE_ERROR_UNKNOWN) {
|
|
// Our error is more specific, so it takes precedence.
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_UNKNOWN_VARIABLE;
|
|
}
|
|
} else {
|
|
/* Look for an operator or special character. */
|
|
switch (s->next++[0]) {
|
|
// The "te_fun2" casts are necessary to pick the right overload.
|
|
case '+': s->type = TOK_INFIX; s->function = (const void *)(te_fun2) add; break;
|
|
case '-': s->type = TOK_INFIX; s->function = (const void *)(te_fun2) sub; break;
|
|
case '*': s->type = TOK_INFIX; s->function = (const void *)(te_fun2) mul; break;
|
|
case '/': s->type = TOK_INFIX; s->function = (const void *)(te_fun2) divide; break;
|
|
case '^': s->type = TOK_INFIX; s->function = (const void *)(te_fun2) pow; break;
|
|
case '%': s->type = TOK_INFIX; s->function = (const void *)(te_fun2) fmod; break;
|
|
case '(': s->type = TOK_OPEN; break;
|
|
case ')': s->type = TOK_CLOSE; break;
|
|
case ',': s->type = TOK_SEP; break;
|
|
case ' ': case '\t': case '\n': case '\r': break;
|
|
default: s->type = TOK_ERROR; s->error = TE_ERROR_MISSING_OPERATOR; break;
|
|
}
|
|
}
|
|
}
|
|
} while (s->type == TOK_NULL);
|
|
}
|
|
|
|
|
|
static te_expr *expr(state *s);
|
|
static te_expr *power(state *s);
|
|
|
|
static te_expr *base(state *s) {
|
|
/* <base> = <constant> | <variable> | <function-0> {"(" ")"} | <function-1> <power> | <function-X> "(" <expr> {"," <expr>} ")" | "(" <list> ")" */
|
|
te_expr *ret;
|
|
int arity;
|
|
|
|
switch (s->type) {
|
|
case TOK_NUMBER:
|
|
ret = new_expr(TE_CONSTANT, 0);
|
|
ret->value = s->value;
|
|
next_token(s);
|
|
break;
|
|
|
|
case TE_FUNCTION0:
|
|
ret = new_expr(s->type, 0);
|
|
ret->function = s->function;
|
|
next_token(s);
|
|
if (s->type == TOK_OPEN) {
|
|
next_token(s);
|
|
if (s->type == TOK_CLOSE) {
|
|
next_token(s);
|
|
} else if (s->type != TOK_ERROR
|
|
|| s->error == TE_ERROR_UNKNOWN) {
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TE_FUNCTION1:
|
|
case TE_FUNCTION2: case TE_FUNCTION3:
|
|
arity = get_arity(s->type);
|
|
|
|
ret = new_expr(s->type, 0);
|
|
ret->function = s->function;
|
|
next_token(s);
|
|
|
|
if (s->type == TOK_OPEN) {
|
|
int i;
|
|
for(i = 0; i < arity; i++) {
|
|
next_token(s);
|
|
ret->parameters[i] = expr(s);
|
|
if(s->type != TOK_SEP) {
|
|
break;
|
|
}
|
|
}
|
|
if(s->type == TOK_CLOSE && i == arity - 1) {
|
|
next_token(s);
|
|
} else if (s->type != TOK_ERROR
|
|
|| s->error == TE_ERROR_UNKNOWN) {
|
|
s->type = TOK_ERROR;
|
|
s->error = i < arity ? TE_ERROR_TOO_FEW_ARGS
|
|
: TE_ERROR_TOO_MANY_ARGS;
|
|
}
|
|
} else if (s->type != TOK_ERROR
|
|
|| s->error == TE_ERROR_UNKNOWN) {
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_MISSING_OPENING_PAREN;
|
|
}
|
|
|
|
break;
|
|
|
|
case TOK_OPEN:
|
|
next_token(s);
|
|
ret = expr(s);
|
|
if (s->type == TOK_CLOSE) {
|
|
next_token(s);
|
|
} else if (s->type != TOK_ERROR
|
|
|| s->error == TE_ERROR_UNKNOWN) {
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
|
|
}
|
|
break;
|
|
|
|
case TOK_END:
|
|
// The expression ended before we expected it.
|
|
// e.g. `2 - `.
|
|
// This means we have too few things.
|
|
// Instead of introducing another error, just call it
|
|
// "too few args".
|
|
ret = new_expr(0, 0);
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_TOO_FEW_ARGS;
|
|
ret->value = NAN;
|
|
break;
|
|
default:
|
|
ret = new_expr(0, 0);
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_UNKNOWN;
|
|
ret->value = NAN;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static te_expr *power(state *s) {
|
|
/* <power> = {("-" | "+")} <base> */
|
|
int sign = 1;
|
|
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
|
|
if (s->function == sub) sign = -sign;
|
|
next_token(s);
|
|
}
|
|
|
|
te_expr *ret;
|
|
|
|
if (sign == 1) {
|
|
ret = base(s);
|
|
} else {
|
|
ret = NEW_EXPR(TE_FUNCTION1, base(s));
|
|
ret->function = (const void *) negate;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static te_expr *factor(state *s) {
|
|
/* <factor> = <power> {"^" <power>} */
|
|
te_expr *ret = power(s);
|
|
|
|
while (s->type == TOK_INFIX && (s->function == (const void*)(te_fun2)pow)) {
|
|
te_fun2 t = (te_fun2) s->function;
|
|
next_token(s);
|
|
ret = NEW_EXPR(TE_FUNCTION2, ret, power(s));
|
|
ret->function = (const void *) t;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static te_expr *term(state *s) {
|
|
/* <term> = <factor> {("*" | "/" | "%") <factor>} */
|
|
te_expr *ret = factor(s);
|
|
|
|
while (s->type == TOK_INFIX && (s->function == (const void*)(te_fun2)mul || s->function == (const void*)(te_fun2)divide || s->function == (const void*)(te_fun2)fmod)) {
|
|
te_fun2 t = (te_fun2) s->function;
|
|
next_token(s);
|
|
ret = NEW_EXPR(TE_FUNCTION2, ret, factor(s));
|
|
ret->function = (const void *) t;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static te_expr *expr(state *s) {
|
|
/* <expr> = <term> {("+" | "-") <term>} */
|
|
te_expr *ret = term(s);
|
|
|
|
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
|
|
te_fun2 t = (te_fun2) s->function;
|
|
next_token(s);
|
|
ret = NEW_EXPR(TE_FUNCTION2, ret, term(s));
|
|
ret->function = (const void *) t;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
#define TE_FUN(...) ((double(*)(__VA_ARGS__))n->function)
|
|
#define M(e) te_eval(n->parameters[e])
|
|
|
|
|
|
double te_eval(const te_expr *n) {
|
|
if (!n) return NAN;
|
|
|
|
switch(n->type) {
|
|
case TE_CONSTANT: return n->value;
|
|
case TE_FUNCTION0:
|
|
return TE_FUN(void)();
|
|
case TE_FUNCTION1:
|
|
return TE_FUN(double)(M(0));
|
|
case TE_FUNCTION2:
|
|
return TE_FUN(double, double)(M(0), M(1));
|
|
case TE_FUNCTION3:
|
|
return TE_FUN(double, double, double)(M(0), M(1), M(2));
|
|
default: return NAN;
|
|
}
|
|
|
|
}
|
|
|
|
#undef TE_FUN
|
|
#undef M
|
|
|
|
static void optimize(te_expr *n) {
|
|
/* Evaluates as much as possible. */
|
|
if (n->type == TE_CONSTANT) return;
|
|
|
|
const int arity = get_arity(n->type);
|
|
bool known = true;
|
|
for (int i = 0; i < arity; ++i) {
|
|
optimize(n->parameters[i]);
|
|
if ((n->parameters[i])->type != TE_CONSTANT) {
|
|
known = false;
|
|
}
|
|
}
|
|
if (known) {
|
|
const double value = te_eval(n);
|
|
te_free_parameters(n);
|
|
n->type = TE_CONSTANT;
|
|
n->value = value;
|
|
}
|
|
}
|
|
|
|
|
|
te_expr *te_compile(const char *expression, te_error_t *error) {
|
|
state s;
|
|
s.start = s.next = expression;
|
|
s.error = TE_ERROR_NONE;
|
|
|
|
next_token(&s);
|
|
te_expr *root = expr(&s);
|
|
|
|
if (s.type != TOK_END) {
|
|
te_free(root);
|
|
if (error) {
|
|
error->position = (s.next - s.start) + 1;
|
|
if (s.error != TE_ERROR_NONE) {
|
|
error->type = s.error;
|
|
} else {
|
|
// If we're not at the end but there's no error, then that means we have a superfluous
|
|
// token that we have no idea what to do with.
|
|
// This occurs in e.g. `2 + 2 4` - the "4" is just not part of the expression.
|
|
// We can report either "too many arguments" or "expected operator", but the operator
|
|
// should be reported between the "2" and the "4".
|
|
// So we report TOO_MANY_ARGS on the "4".
|
|
error->type = TE_ERROR_TOO_MANY_ARGS;
|
|
}
|
|
}
|
|
return 0;
|
|
} else {
|
|
optimize(root);
|
|
if (error) error->position = 0;
|
|
return root;
|
|
}
|
|
}
|
|
|
|
double te_interp(const char *expression, te_error_t *error) {
|
|
te_expr *n = te_compile(expression, error);
|
|
double ret;
|
|
if (n) {
|
|
ret = te_eval(n);
|
|
te_free(n);
|
|
} else {
|
|
ret = NAN;
|
|
}
|
|
return ret;
|
|
}
|