fish-shell/src/screen.cpp
2016-06-23 22:48:45 -07:00

1258 lines
48 KiB
C++

// High level library for handling the terminal screen.
//
// The screen library allows the interactive reader to write its output to screen efficiently by
// keeping an internal representation of the current screen contents and trying to find the most
// efficient way for transforming that to the desired screen content.
//
// IWYU pragma: no_include <cstddef>
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#if HAVE_NCURSES_H
#include <ncurses.h>
#elif HAVE_NCURSES_CURSES_H
#include <ncurses/curses.h>
#else
#include <curses.h>
#endif
#if HAVE_TERM_H
#include <term.h>
#elif HAVE_NCURSES_TERM_H
#include <ncurses/term.h>
#endif
#include <assert.h>
#include <time.h>
#include <wchar.h>
#include <algorithm>
#include <string>
#include <vector>
#include "common.h"
#include "env.h"
#include "fallback.h" // IWYU pragma: keep
#include "highlight.h"
#include "output.h"
#include "pager.h"
#include "screen.h"
#include "util.h"
/// The number of characters to indent new blocks.
#define INDENT_STEP 4u
/// The initial screen width.
#define SCREEN_WIDTH_UNINITIALIZED -1
/// A helper value for an invalid location.
#define INVALID_LOCATION (screen_data_t::cursor_t(-1, -1))
static void invalidate_soft_wrap(screen_t *scr);
/// Ugly kludge. The internal buffer used to store output of tputs. Since tputs external function
/// can only take an integer and not a pointer as parameter we need a static storage buffer.
typedef std::vector<char> data_buffer_t;
static data_buffer_t *s_writeb_buffer = 0;
static int s_writeb(char character);
/// Class to temporarily set s_writeb_buffer and the writer function in a scoped way.
class scoped_buffer_t {
data_buffer_t *const old_buff;
int (*const old_writer)(char);
public:
explicit scoped_buffer_t(data_buffer_t *buff)
: old_buff(s_writeb_buffer), old_writer(output_get_writer()) {
s_writeb_buffer = buff;
output_set_writer(s_writeb);
}
~scoped_buffer_t() {
s_writeb_buffer = old_buff;
output_set_writer(old_writer);
}
};
/// Tests if the specified narrow character sequence is present at the specified position of the
/// specified wide character string. All of \c seq must match, but str may be longer than seq.
static size_t try_sequence(const char *seq, const wchar_t *str) {
for (size_t i = 0;; i++) {
if (!seq[i]) return i;
if (seq[i] != str[i]) return 0;
}
return 0;
}
/// Returns the number of columns left until the next tab stop, given the current cursor postion.
static size_t next_tab_stop(size_t current_line_width) {
// Assume tab stops every 8 characters if undefined.
size_t tab_width = init_tabs > 0 ? (size_t)init_tabs : 8;
return ((current_line_width / tab_width) + 1) * tab_width;
}
/// Like fish_wcwidth, but returns 0 for control characters instead of -1.
static int fish_wcwidth_min_0(wchar_t widechar) { return maxi(0, fish_wcwidth(widechar)); }
/// Whether we permit soft wrapping. If so, in some cases we don't explicitly move to the second
/// physical line on a wrapped logical line; instead we just output it.
static bool allow_soft_wrap(void) {
// Should we be looking at eat_newline_glitch as well?
return auto_right_margin;
}
/// Does this look like the escape sequence for setting a screen name.
static bool is_screen_name_escape_seq(const wchar_t *code, size_t *resulting_length) {
bool found = false;
if (code[1] == L'k') {
const env_var_t term_name = env_get_string(L"TERM");
if (!term_name.missing() && string_prefixes_string(L"screen", term_name)) {
const wchar_t *const screen_name_end_sentinel = L"\x1b\\";
const wchar_t *screen_name_end = wcsstr(&code[2], screen_name_end_sentinel);
if (screen_name_end == NULL) {
// Consider just <esc>k to be the code.
*resulting_length = 2;
} else {
const wchar_t *escape_sequence_end =
screen_name_end + wcslen(screen_name_end_sentinel);
*resulting_length = escape_sequence_end - code;
}
found = true;
}
}
return found;
}
/// iTerm2 escape codes: CSI followed by ], terminated by either BEL or escape + backslash.
/// See https://code.google.com/p/iterm2/wiki/ProprietaryEscapeCodes.
static bool is_iterm2_escape_seq(const wchar_t *code, size_t *resulting_length) {
bool found = false;
if (code[1] == ']') {
// Start at 2 to skip over <esc>].
size_t cursor = 2;
for (; code[cursor] != L'\0'; cursor++) {
// Consume a sequence of characters up to <esc>\ or <bel>.
if (code[cursor] == '\x07' || (code[cursor] == '\\' && code[cursor - 1] == '\x1b')) {
found = true;
break;
}
}
if (found) {
*resulting_length = cursor + 1;
}
}
return found;
}
/// Generic VT100 one byte sequence: CSI followed by something in the range @ through _.
static bool is_single_byte_escape_seq(const wchar_t *code, size_t *resulting_length) {
bool found = false;
if (code[1] == L'[' && (code[2] >= L'@' && code[2] <= L'_')) {
*resulting_length = 3;
found = true;
}
return found;
}
/// Generic VT100 two byte sequence: <esc> followed by something in the range @ through _.
static bool is_two_byte_escape_seq(const wchar_t *code, size_t *resulting_length) {
bool found = false;
if (code[1] >= L'@' && code[1] <= L'_') {
*resulting_length = 2;
found = true;
}
return found;
}
/// Generic VT100 CSI-style sequence. <esc>, followed by zero or more ASCII characters NOT in
/// the range [@,_], followed by one character in that range.
static bool is_csi_style_escape_seq(const wchar_t *code, size_t *resulting_length) {
bool found = false;
if (code[1] == L'[') {
// Start at 2 to skip over <esc>[
size_t cursor = 2;
for (; code[cursor] != L'\0'; cursor++) {
// Consume a sequence of ASCII characters not in the range [@, ~].
wchar_t widechar = code[cursor];
// If we're not in ASCII, just stop.
if (widechar > 127) break;
// If we're the end character, then consume it and then stop.
if (widechar >= L'@' && widechar <= L'~') {
cursor++;
break;
}
}
// curs now indexes just beyond the end of the sequence (or at the terminating zero).
found = true;
*resulting_length = cursor;
}
return found;
}
/// Returns the number of characters in the escape code starting at 'code' (which should initially
/// contain \x1b).
size_t escape_code_length(const wchar_t *code) {
assert(code != NULL);
// The only escape codes we recognize start with \x1b.
if (code[0] != L'\x1b') return 0;
size_t resulting_length = 0;
bool found = false;
if (cur_term != NULL) {
// Detect these terminfo color escapes with parameter value 0..7, all of which don't move
// the cursor.
char *const esc[] = {
set_a_foreground, set_a_background, set_foreground, set_background,
};
for (size_t p = 0; p < sizeof esc / sizeof *esc && !found; p++) {
if (!esc[p]) continue;
for (size_t k = 0; k < 8; k++) {
size_t len = try_sequence(tparm(esc[p], k), code);
if (len) {
resulting_length = len;
found = true;
break;
}
}
}
}
if (cur_term != NULL) {
// Detect these semi-common terminfo escapes without any parameter values, all of which
// don't move the cursor.
char *const esc2[] = {enter_bold_mode, exit_attribute_mode, enter_underline_mode,
exit_underline_mode, enter_standout_mode, exit_standout_mode,
flash_screen, enter_subscript_mode, exit_subscript_mode,
enter_superscript_mode, exit_superscript_mode, enter_blink_mode,
enter_italics_mode, exit_italics_mode, enter_reverse_mode,
enter_shadow_mode, exit_shadow_mode, enter_standout_mode,
exit_standout_mode, enter_secure_mode};
for (size_t p = 0; p < sizeof esc2 / sizeof *esc2 && !found; p++) {
if (!esc2[p]) continue;
// Test both padded and unpadded version, just to be safe. Most versions of tparm don't
// actually seem to do anything these days.
size_t len = maxi(try_sequence(tparm(esc2[p]), code), try_sequence(esc2[p], code));
if (len) {
resulting_length = len;
found = true;
}
}
}
if (!found) found = is_screen_name_escape_seq(code, &resulting_length);
if (!found) found = is_iterm2_escape_seq(code, &resulting_length);
if (!found) found = is_single_byte_escape_seq(code, &resulting_length);
if (!found) found = is_csi_style_escape_seq(code, &resulting_length);
if (!found) is_two_byte_escape_seq(code, &resulting_length);
return resulting_length;
}
// Information about a prompt layout.
struct prompt_layout_t {
// How many lines the prompt consumes.
size_t line_count;
// Width of the longest line.
size_t max_line_width;
// Width of the last line.
size_t last_line_width;
};
/// Calculate layout information for the given prompt. Does some clever magic to detect common
/// escape sequences that may be embeded in a prompt, such as color codes.
static prompt_layout_t calc_prompt_layout(const wchar_t *prompt) {
size_t current_line_width = 0;
size_t j;
prompt_layout_t prompt_layout = {};
prompt_layout.line_count = 1;
for (j = 0; prompt[j]; j++) {
if (prompt[j] == L'\x1b') {
// This is the start of an escape code. Skip over it if it's at least one character
// long.
size_t escape_len = escape_code_length(&prompt[j]);
if (escape_len > 0) {
j += escape_len - 1;
}
} else if (prompt[j] == L'\t') {
current_line_width = next_tab_stop(current_line_width);
} else if (prompt[j] == L'\n' || prompt[j] == L'\f') {
// PCA: At least one prompt uses \f\r as a newline. It's unclear to me what this is
// meant to do, but terminals seem to treat it as a newline so we do the same.
current_line_width = 0;
prompt_layout.line_count += 1;
} else if (prompt[j] == L'\r') {
current_line_width = 0;
} else {
// Ordinary decent character. Just add width. This returns -1 for a control character -
// don't add that.
current_line_width += fish_wcwidth_min_0(prompt[j]);
prompt_layout.max_line_width = maxi(prompt_layout.max_line_width, current_line_width);
}
}
prompt_layout.last_line_width = current_line_width;
return prompt_layout;
}
static size_t calc_prompt_lines(const wcstring &prompt) {
// Hack for the common case where there's no newline at all. I don't know if a newline can
// appear in an escape sequence, so if we detect a newline we have to defer to
// calc_prompt_width_and_lines.
size_t result = 1;
if (prompt.find(L'\n') != wcstring::npos || prompt.find(L'\f') != wcstring::npos) {
result = calc_prompt_layout(prompt.c_str()).line_count;
}
return result;
}
/// Stat stdout and stderr and save result. This should be done before calling a function that may
/// cause output.
static void s_save_status(screen_t *s) {
// PCA Let's not do this futimes stuff, because sudo dumbly uses the tty's ctime as part of its
// tty_tickets feature. Disabling this should fix issue #122.
#if 0
// This futimes call tries to trick the system into using st_mtime as a tampering flag. This of
// course only works on systems where futimes is defined, but it should make the status saving
// stuff failsafe.
struct timeval t[] = {
{ time(0)-1, 0 },
{ time(0)-1, 0 }
};
// Don't check return value on these. We don't care if they fail, really. This is all just to
// make the prompt look ok, which is impossible to do 100% reliably. We try, at least.
futimes(1, t);
futimes(2, t);
#endif
fstat(1, &s->prev_buff_1);
fstat(2, &s->prev_buff_2);
}
/// Stat stdout and stderr and compare result to previous result in reader_save_status. Repaint if
/// modification time has changed.
///
/// Unfortunately, for some reason this call seems to give a lot of false positives, at least under
/// Linux.
static void s_check_status(screen_t *s) {
fflush(stdout);
fflush(stderr);
if (!has_working_tty_timestamps) {
// We can't reliably determine if the terminal has been written to behind our back so we
// just assume that hasn't happened and hope for the best. This is important for multi-line
// prompts to work correctly.
return;
}
fstat(1, &s->post_buff_1);
fstat(2, &s->post_buff_2);
bool changed = (s->prev_buff_1.st_mtime != s->post_buff_1.st_mtime) ||
(s->prev_buff_2.st_mtime != s->post_buff_2.st_mtime);
#if defined HAVE_STRUCT_STAT_ST_MTIMESPEC_TV_NSEC
changed = changed ||
s->prev_buff_1.st_mtimespec.tv_nsec != s->post_buff_1.st_mtimespec.tv_nsec ||
s->prev_buff_2.st_mtimespec.tv_nsec != s->post_buff_2.st_mtimespec.tv_nsec;
#elif defined HAVE_STRUCT_STAT_ST_MTIM_TV_NSEC
changed = changed || s->prev_buff_1.st_mtim.tv_nsec != s->post_buff_1.st_mtim.tv_nsec ||
s->prev_buff_2.st_mtim.tv_nsec != s->post_buff_2.st_mtim.tv_nsec;
#endif
if (changed) {
// Ok, someone has been messing with our screen. We will want to repaint. However, we do not
// know where the cursor is. It is our best bet that we are still on the same line, so we
// move to the beginning of the line, reset the modelled screen contents, and then set the
// modeled cursor y-pos to its earlier value.
int prev_line = s->actual.cursor.y;
write_loop(STDOUT_FILENO, "\r", 1);
s_reset(s, screen_reset_current_line_and_prompt);
s->actual.cursor.y = prev_line;
}
}
/// Appends a character to the end of the line that the output cursor is on. This function
/// automatically handles linebreaks and lines longer than the screen width.
static void s_desired_append_char(screen_t *s, wchar_t b, int c, int indent, size_t prompt_width) {
int line_no = s->desired.cursor.y;
if (b == L'\n') {
int i;
// Current line is definitely hard wrapped.
s->desired.create_line(s->desired.line_count());
s->desired.line(s->desired.cursor.y).is_soft_wrapped = false;
s->desired.cursor.y++;
s->desired.cursor.x = 0;
for (i = 0; i < prompt_width + indent * INDENT_STEP; i++) {
s_desired_append_char(s, L' ', 0, indent, prompt_width);
}
} else if (b == L'\r') {
line_t &current = s->desired.line(line_no);
current.clear();
s->desired.cursor.x = 0;
} else {
int screen_width = common_get_width();
int cw = fish_wcwidth_min_0(b);
s->desired.create_line(line_no);
// Check if we are at the end of the line. If so, continue on the next line.
if ((s->desired.cursor.x + cw) > screen_width) {
// Current line is soft wrapped (assuming we support it).
s->desired.line(s->desired.cursor.y).is_soft_wrapped = true;
// fprintf(stderr, "\n\n1 Soft wrapping %d\n\n", s->desired.cursor.y);
line_no = (int)s->desired.line_count();
s->desired.add_line();
s->desired.cursor.y++;
s->desired.cursor.x = 0;
}
line_t &line = s->desired.line(line_no);
line.append(b, c);
s->desired.cursor.x += cw;
// Maybe wrap the cursor to the next line, even if the line itself did not wrap. This
// avoids wonkiness in the last column.
if (s->desired.cursor.x >= screen_width) {
line.is_soft_wrapped = true;
s->desired.cursor.x = 0;
s->desired.cursor.y++;
}
}
}
/// The writeb function offered to tputs.
static int s_writeb(char c) {
s_writeb_buffer->push_back(c);
return 0;
}
/// Write the bytes needed to move screen cursor to the specified position to the specified buffer.
/// The actual_cursor field of the specified screen_t will be updated.
///
/// \param s the screen to operate on
/// \param b the buffer to send the output escape codes to
/// \param new_x the new x position
/// \param new_y the new y position
static void s_move(screen_t *s, data_buffer_t *b, int new_x, int new_y) {
if (s->actual.cursor.x == new_x && s->actual.cursor.y == new_y) return;
// If we are at the end of our window, then either the cursor stuck to the edge or it didn't. We
// don't know! We can fix it up though.
if (s->actual.cursor.x == common_get_width()) {
// Either issue a cr to go back to the beginning of this line, or a nl to go to the
// beginning of the next one, depending on what we think is more efficient.
if (new_y <= s->actual.cursor.y) {
b->push_back('\r');
} else {
b->push_back('\n');
s->actual.cursor.y++;
}
// Either way we're not in the first column.
s->actual.cursor.x = 0;
}
int i;
int x_steps, y_steps;
char *str;
/*
debug( 0, L"move from %d %d to %d %d",
s->screen_cursor[0], s->screen_cursor[1],
new_x, new_y );
*/
scoped_buffer_t scoped_buffer(b); //!OCLINT(has side effects)
y_steps = new_y - s->actual.cursor.y;
if (y_steps > 0 && (strcmp(cursor_down, "\n") == 0)) {
// This is very strange - it seems some (all?) consoles use a simple newline as the cursor
// down escape. This will of course move the cursor to the beginning of the line as well as
// moving it down one step. The cursor_up does not have this behaviour...
s->actual.cursor.x = 0;
}
if (y_steps < 0) {
str = cursor_up;
} else {
str = cursor_down;
}
for (i = 0; i < abs(y_steps); i++) {
writembs(str);
}
x_steps = new_x - s->actual.cursor.x;
if (x_steps && new_x == 0) {
b->push_back('\r');
x_steps = 0;
}
char *multi_str = NULL;
if (x_steps < 0) {
str = cursor_left;
multi_str = parm_left_cursor;
} else {
str = cursor_right;
multi_str = parm_right_cursor;
}
// Use the bulk ('multi') output for cursor movement if it is supported and it would be shorter
// Note that this is required to avoid some visual glitches in iTerm (issue #1448).
bool use_multi =
multi_str != NULL && multi_str[0] != '\0' && abs(x_steps) * strlen(str) > strlen(multi_str);
if (use_multi) {
char *multi_param = tparm(multi_str, abs(x_steps));
writembs(multi_param);
} else {
for (i = 0; i < abs(x_steps); i++) {
writembs(str);
}
}
s->actual.cursor.x = new_x;
s->actual.cursor.y = new_y;
}
/// Set the pen color for the terminal.
static void s_set_color(screen_t *s, data_buffer_t *b, highlight_spec_t c) {
scoped_buffer_t scoped_buffer(b); //!OCLINT(has side effects)
unsigned int uc = (unsigned int)c;
set_color(highlight_get_color(uc & 0xffff, false),
highlight_get_color((uc >> 16) & 0xffff, true));
}
/// Convert a wide character to a multibyte string and append it to the buffer.
static void s_write_char(screen_t *s, data_buffer_t *b, wchar_t c) {
scoped_buffer_t scoped_buffer(b); //!OCLINT(has side effects)
s->actual.cursor.x += fish_wcwidth_min_0(c);
writech(c);
if (s->actual.cursor.x == s->actual_width && allow_soft_wrap()) {
s->soft_wrap_location.x = 0;
s->soft_wrap_location.y = s->actual.cursor.y + 1;
// Note that our cursor position may be a lie: Apple Terminal makes the right cursor stick
// to the margin, while Ubuntu makes it "go off the end" (but still doesn't wrap). We rely
// on s_move to fix this up.
} else {
invalidate_soft_wrap(s);
}
}
/// Send the specified string through tputs and append the output to the specified buffer.
static void s_write_mbs(data_buffer_t *b, char *s) {
scoped_buffer_t scoped_buffer(b); //!OCLINT(has side effects)
writembs(s);
}
/// Convert a wide string to a multibyte string and append it to the buffer.
static void s_write_str(data_buffer_t *b, const wchar_t *s) {
scoped_buffer_t scoped_buffer(b); //!OCLINT(has side effects)
writestr(s);
}
/// Returns the length of the "shared prefix" of the two lines, which is the run of matching text
/// and colors. If the prefix ends on a combining character, do not include the previous character
/// in the prefix.
static size_t line_shared_prefix(const line_t &a, const line_t &b) {
size_t idx, max = std::min(a.size(), b.size());
for (idx = 0; idx < max; idx++) {
wchar_t ac = a.char_at(idx), bc = b.char_at(idx);
if (fish_wcwidth(ac) < 1 || fish_wcwidth(bc) < 1) {
// Possible combining mark, return one index prior.
if (idx > 0) idx--;
break;
}
// We're done if the text or colors are different.
if (ac != bc || a.color_at(idx) != b.color_at(idx)) break;
}
return idx;
}
// We are about to output one or more characters onto the screen at the given x, y. If we are at the
// end of previous line, and the previous line is marked as soft wrapping, then tweak the screen so
// we believe we are already in the target position. This lets the terminal take care of wrapping,
// which means that if you copy and paste the text, it won't have an embedded newline.
static bool perform_any_impending_soft_wrap(screen_t *scr, int x, int y) {
if (x == scr->soft_wrap_location.x && y == scr->soft_wrap_location.y) { //!OCLINT
// We can soft wrap; but do we want to?
if (scr->desired.line(y - 1).is_soft_wrapped && allow_soft_wrap()) {
// Yes. Just update the actual cursor; that will cause us to elide emitting the commands
// to move here, so we will just output on "one big line" (which the terminal soft
// wraps.
scr->actual.cursor = scr->soft_wrap_location;
}
}
return false;
}
/// Make sure we don't soft wrap.
static void invalidate_soft_wrap(screen_t *scr) { scr->soft_wrap_location = INVALID_LOCATION; }
// Various code for testing term behavior.
#if 0
static bool test_stuff(screen_t *scr)
{
data_buffer_t output;
scoped_buffer_t scoped_buffer(&output);
s_move(scr, &output, 0, 0);
int screen_width = common_get_width();
const wchar_t *left = L"left";
const wchar_t *right = L"right";
for (size_t idx = 0; idx < 80; idx++)
{
output.push_back('A');
}
if (! output.empty())
{
write_loop(STDOUT_FILENO, &output.at(0), output.size());
output.clear();
}
sleep(5);
for (size_t i=0; i < 1; i++)
{
writembs(cursor_left);
}
if (! output.empty())
{
write_loop(1, &output.at(0), output.size());
output.clear();
}
while (1)
{
int c = getchar();
if (c != EOF) break;
}
while (1)
{
int c = getchar();
if (c != EOF) break;
}
puts("Bye");
exit(0);
while (1) sleep(10000);
return true;
}
#endif
/// Update the screen to match the desired output.
static void s_update(screen_t *scr, const wchar_t *left_prompt, const wchar_t *right_prompt) {
// if (test_stuff(scr)) return;
const size_t left_prompt_width = calc_prompt_layout(left_prompt).last_line_width;
const size_t right_prompt_width = calc_prompt_layout(right_prompt).last_line_width;
int screen_width = common_get_width();
// Figure out how many following lines we need to clear (probably 0).
size_t actual_lines_before_reset = scr->actual_lines_before_reset;
scr->actual_lines_before_reset = 0;
data_buffer_t output;
bool need_clear_lines = scr->need_clear_lines;
bool need_clear_screen = scr->need_clear_screen;
bool has_cleared_screen = false;
if (scr->actual_width != screen_width) {
// Ensure we don't issue a clear screen for the very first output, to avoid issue #402.
if (scr->actual_width != SCREEN_WIDTH_UNINITIALIZED) {
need_clear_screen = true;
s_move(scr, &output, 0, 0);
s_reset(scr, screen_reset_current_line_contents);
need_clear_lines = need_clear_lines || scr->need_clear_lines;
need_clear_screen = need_clear_screen || scr->need_clear_screen;
}
scr->actual_width = screen_width;
}
scr->need_clear_lines = false;
scr->need_clear_screen = false;
// Determine how many lines have stuff on them; we need to clear lines with stuff that we don't
// want.
const size_t lines_with_stuff = maxi(actual_lines_before_reset, scr->actual.line_count());
#if 0
if (lines_with_stuff > scr->desired.line_count()) {
// There are lines that we output to previously that will need to be cleared.
need_clear_lines = true;
}
#endif
if (wcscmp(left_prompt, scr->actual_left_prompt.c_str())) {
s_move(scr, &output, 0, 0);
s_write_str(&output, left_prompt);
scr->actual_left_prompt = left_prompt;
scr->actual.cursor.x = (int)left_prompt_width;
}
for (size_t i = 0; i < scr->desired.line_count(); i++) {
const line_t &o_line = scr->desired.line(i);
line_t &s_line = scr->actual.create_line(i);
size_t start_pos = i == 0 ? left_prompt_width : 0;
int current_width = 0;
// If this is the last line, maybe we should clear the screen.
const bool should_clear_screen_this_line =
need_clear_screen && i + 1 == scr->desired.line_count() && clr_eos != NULL;
// Note that skip_remaining is a width, not a character count.
size_t skip_remaining = start_pos;
if (!should_clear_screen_this_line) {
// Compute how much we should skip. At a minimum we skip over the prompt. But also skip
// over the shared prefix of what we want to output now, and what we output before, to
// avoid repeatedly outputting it.
const size_t shared_prefix = line_shared_prefix(o_line, s_line);
if (shared_prefix > 0) {
int prefix_width = fish_wcswidth(&o_line.text.at(0), shared_prefix);
if (prefix_width > skip_remaining) skip_remaining = prefix_width;
}
// If we're soft wrapped, and if we're going to change the first character of the next
// line, don't skip over the last two characters so that we maintain soft-wrapping.
if (o_line.is_soft_wrapped && i + 1 < scr->desired.line_count()) {
bool next_line_will_change = true;
if (i + 1 < scr->actual.line_count()) { //!OCLINT
if (line_shared_prefix(scr->desired.line(i + 1), scr->actual.line(i + 1)) > 0) {
next_line_will_change = false;
}
}
if (next_line_will_change) {
skip_remaining = mini(skip_remaining, (size_t)(scr->actual_width - 2));
}
}
}
// Skip over skip_remaining width worth of characters.
size_t j = 0;
for (; j < o_line.size(); j++) {
int width = fish_wcwidth_min_0(o_line.char_at(j));
if (skip_remaining < width) break;
skip_remaining -= width;
current_width += width;
}
// Skip over zero-width characters (e.g. combining marks at the end of the prompt).
for (; j < o_line.size(); j++) {
int width = fish_wcwidth_min_0(o_line.char_at(j));
if (width > 0) break;
}
// Now actually output stuff.
for (; j < o_line.size(); j++) {
// If we are about to output into the last column, clear the screen first. If we clear
// the screen after we output into the last column, it can erase the last character due
// to the sticky right cursor. If we clear the screen too early, we can defeat soft
// wrapping.
if (j + 1 == screen_width && should_clear_screen_this_line && !has_cleared_screen) {
s_move(scr, &output, current_width, (int)i);
s_write_mbs(&output, clr_eos);
has_cleared_screen = true;
}
perform_any_impending_soft_wrap(scr, current_width, (int)i);
s_move(scr, &output, current_width, (int)i);
s_set_color(scr, &output, o_line.color_at(j));
s_write_char(scr, &output, o_line.char_at(j));
current_width += fish_wcwidth_min_0(o_line.char_at(j));
}
// Clear the screen if we have not done so yet.
if (should_clear_screen_this_line && !has_cleared_screen) {
s_move(scr, &output, current_width, (int)i);
s_write_mbs(&output, clr_eos);
has_cleared_screen = true;
}
bool clear_remainder = false;
// Clear the remainder of the line if we need to clear and if we didn't write to the end of
// the line. If we did write to the end of the line, the "sticky right edge" (as part of
// auto_right_margin) means that we'll be clearing the last character we wrote!
if (has_cleared_screen) {
// Already cleared everything.
clear_remainder = false;
} else if (need_clear_lines && current_width < screen_width) {
clear_remainder = true;
} else if (right_prompt_width < scr->last_right_prompt_width) {
clear_remainder = true;
} else {
int prev_width =
s_line.text.empty() ? 0 : fish_wcswidth(&s_line.text.at(0), s_line.text.size());
clear_remainder = prev_width > current_width;
}
if (clear_remainder) {
s_set_color(scr, &output, 0xffffffff);
s_move(scr, &output, current_width, (int)i);
s_write_mbs(&output, clr_eol);
}
// Output any rprompt if this is the first line.
if (i == 0 && right_prompt_width > 0) {
s_move(scr, &output, (int)(screen_width - right_prompt_width), (int)i);
s_set_color(scr, &output, 0xffffffff);
s_write_str(&output, right_prompt);
scr->actual.cursor.x += right_prompt_width;
// We output in the last column. Some terms (Linux) push the cursor further right, past
// the window. Others make it "stick." Since we don't really know which is which, issue
// a cr so it goes back to the left.
//
// However, if the user is resizing the window smaller, then it's possible the cursor
// wrapped. If so, then a cr will go to the beginning of the following line! So instead
// issue a bunch of "move left" commands to get back onto the line, and then jump to the
// front of it.
s_move(scr, &output, scr->actual.cursor.x - (int)right_prompt_width,
scr->actual.cursor.y);
s_write_str(&output, L"\r");
scr->actual.cursor.x = 0;
}
}
// Clear remaining lines (if any) if we haven't cleared the screen.
if (!has_cleared_screen && scr->desired.line_count() < lines_with_stuff) {
s_set_color(scr, &output, 0xffffffff);
for (size_t i = scr->desired.line_count(); i < lines_with_stuff; i++) {
s_move(scr, &output, 0, (int)i);
s_write_mbs(&output, clr_eol);
}
}
s_move(scr, &output, scr->desired.cursor.x, scr->desired.cursor.y);
s_set_color(scr, &output, 0xffffffff);
if (!output.empty()) {
write_loop(STDOUT_FILENO, &output.at(0), output.size());
}
// We have now synced our actual screen against our desired screen. Note that this is a big
// assignment!
scr->actual = scr->desired;
scr->last_right_prompt_width = right_prompt_width;
}
/// Returns true if we are using a dumb terminal.
static bool is_dumb(void) { return !cursor_up || !cursor_down || !cursor_left || !cursor_right; }
struct screen_layout_t {
// The left prompt that we're going to use.
wcstring left_prompt;
// How much space to leave for it.
size_t left_prompt_space;
// The right prompt.
wcstring right_prompt;
// The autosuggestion.
wcstring autosuggestion;
// Whether the prompts get their own line or not.
bool prompts_get_own_line;
};
// Given a vector whose indexes are offsets and whose values are the widths of the string if
// truncated at that offset, return the offset that fits in the given width. Returns
// width_by_offset.size() - 1 if they all fit. The first value in width_by_offset is assumed to be
// 0.
static size_t truncation_offset_for_width(const std::vector<size_t> &width_by_offset,
size_t max_width) {
assert(!width_by_offset.empty() && width_by_offset.at(0) == 0);
size_t i;
for (i = 1; i < width_by_offset.size(); i++) {
if (width_by_offset.at(i) > max_width) break;
}
// i is the first index that did not fit; i-1 is therefore the last that did.
return i - 1;
}
static screen_layout_t compute_layout(screen_t *s, size_t screen_width,
const wcstring &left_prompt_str,
const wcstring &right_prompt_str, const wcstring &commandline,
const wcstring &autosuggestion_str, const int *indent) {
screen_layout_t result = {};
// Start by ensuring that the prompts themselves can fit.
const wchar_t *left_prompt = left_prompt_str.c_str();
const wchar_t *right_prompt = right_prompt_str.c_str();
const wchar_t *autosuggestion = autosuggestion_str.c_str();
prompt_layout_t left_prompt_layout = calc_prompt_layout(left_prompt);
prompt_layout_t right_prompt_layout = calc_prompt_layout(right_prompt);
size_t left_prompt_width = left_prompt_layout.last_line_width;
size_t right_prompt_width = right_prompt_layout.last_line_width;
if (left_prompt_layout.max_line_width > screen_width) {
// If we have a multi-line prompt, see if the longest line fits; if not neuter the whole
// left prompt.
left_prompt = L"> ";
left_prompt_width = 2;
}
if (left_prompt_width + right_prompt_width >= screen_width) {
// Nix right_prompt.
right_prompt = L"";
right_prompt_width = 0;
}
if (left_prompt_width + right_prompt_width >= screen_width) {
// Still doesn't fit, neuter left_prompt.
left_prompt = L"> ";
left_prompt_width = 2;
}
// Now we should definitely fit.
assert(left_prompt_width + right_prompt_width < screen_width);
// Convert commandline to a list of lines and their widths.
wcstring_list_t command_lines(1);
std::vector<size_t> line_widths(1);
for (size_t i = 0; i < commandline.size(); i++) {
wchar_t c = commandline.at(i);
if (c == L'\n') {
// Make a new line.
command_lines.push_back(wcstring());
line_widths.push_back(indent[i] * INDENT_STEP);
} else {
command_lines.back() += c;
line_widths.back() += fish_wcwidth_min_0(c);
}
}
const size_t first_command_line_width = line_widths.at(0);
// If we have more than one line, ensure we have no autosuggestion.
if (command_lines.size() > 1) {
autosuggestion = L"";
}
// Compute the width of the autosuggestion at all possible truncation offsets.
std::vector<size_t> autosuggest_truncated_widths;
autosuggest_truncated_widths.reserve(1 + wcslen(autosuggestion));
size_t autosuggest_total_width = 0;
for (size_t i = 0; autosuggestion[i] != L'\0'; i++) {
autosuggest_truncated_widths.push_back(autosuggest_total_width);
autosuggest_total_width += fish_wcwidth_min_0(autosuggestion[i]);
}
// Here are the layouts we try in turn:
//
// 1. Left prompt visible, right prompt visible, command line visible, autosuggestion visible.
//
// 2. Left prompt visible, right prompt visible, command line visible, autosuggestion truncated
// (possibly to zero).
//
// 3. Left prompt visible, right prompt hidden, command line visible, autosuggestion hidden.
//
// 4. Newline separator (left prompt visible, right prompt hidden, command line visible,
// autosuggestion visible).
//
// A remark about layout #4: if we've pushed the command line to a new line, why can't we draw
// the right prompt? The issue is resizing: if you resize the window smaller, then the right
// prompt will wrap to the next line. This means that we can't go back to the line that we were
// on, and things turn to chaos very quickly.
bool done = false;
// Case 1
if (!done &&
left_prompt_width + right_prompt_width + first_command_line_width +
autosuggest_total_width <
screen_width) {
result.left_prompt = left_prompt;
result.left_prompt_space = left_prompt_width;
result.right_prompt = right_prompt;
result.autosuggestion = autosuggestion;
done = true;
}
// Case 2. Note that we require strict inequality so that there's always at least one space
// between the left edge and the rprompt.
if (!done && left_prompt_width + right_prompt_width + first_command_line_width < screen_width) {
result.left_prompt = left_prompt;
result.left_prompt_space = left_prompt_width;
result.right_prompt = right_prompt;
// Need at least two characters to show an autosuggestion.
size_t available_autosuggest_space =
screen_width - (left_prompt_width + right_prompt_width + first_command_line_width);
if (autosuggest_total_width > 0 && available_autosuggest_space > 2) {
size_t truncation_offset = truncation_offset_for_width(autosuggest_truncated_widths,
available_autosuggest_space - 2);
result.autosuggestion = wcstring(autosuggestion, truncation_offset);
result.autosuggestion.push_back(ellipsis_char);
}
done = true;
}
// Case 3
if (!done && left_prompt_width + first_command_line_width < screen_width) {
result.left_prompt = left_prompt;
result.left_prompt_space = left_prompt_width;
done = true;
}
// Case 4
if (!done) {
result.left_prompt = left_prompt;
result.left_prompt_space = left_prompt_width;
// See remark about for why we can't use the right prompt here result.right_prompt =
// right_prompt. If the command wraps, and the prompt is not short, place the command on its
// own line. A short prompt is 33% or less of the terminal's width.
const size_t prompt_percent_width = (100 * left_prompt_width) / screen_width;
if (left_prompt_width + first_command_line_width + 1 > screen_width &&
prompt_percent_width > 33) {
result.prompts_get_own_line = true;
}
done = true;
}
assert(done);
return result;
}
void s_write(screen_t *s, const wcstring &left_prompt, const wcstring &right_prompt,
const wcstring &commandline, size_t explicit_len, const highlight_spec_t *colors,
const int *indent, size_t cursor_pos, const page_rendering_t &pager,
bool cursor_is_within_pager) {
screen_data_t::cursor_t cursor_arr;
CHECK(s, );
CHECK(indent, );
// Turn the command line into the explicit portion and the autosuggestion.
const wcstring explicit_command_line = commandline.substr(0, explicit_len);
const wcstring autosuggestion = commandline.substr(explicit_len);
// If we are using a dumb terminal, don't try any fancy stuff, just print out the text.
// right_prompt not supported.
if (is_dumb()) {
const std::string prompt_narrow = wcs2string(left_prompt);
const std::string command_line_narrow = wcs2string(explicit_command_line);
write_loop(STDOUT_FILENO, "\r", 1);
write_loop(STDOUT_FILENO, prompt_narrow.c_str(), prompt_narrow.size());
write_loop(STDOUT_FILENO, command_line_narrow.c_str(), command_line_narrow.size());
return;
}
s_check_status(s);
const size_t screen_width = common_get_width();
// Completely ignore impossibly small screens.
if (screen_width < 4) {
return;
}
// Compute a layout.
const screen_layout_t layout = compute_layout(s, screen_width, left_prompt, right_prompt,
explicit_command_line, autosuggestion, indent);
// Determine whether, if we have an autosuggestion, it was truncated.
s->autosuggestion_is_truncated =
!autosuggestion.empty() && autosuggestion != layout.autosuggestion;
// Clear the desired screen.
s->desired.resize(0);
s->desired.cursor.x = s->desired.cursor.y = 0;
// Append spaces for the left prompt.
for (size_t i = 0; i < layout.left_prompt_space; i++) {
s_desired_append_char(s, L' ', 0, 0, layout.left_prompt_space);
}
// If overflowing, give the prompt its own line to improve the situation.
size_t first_line_prompt_space = layout.left_prompt_space;
if (layout.prompts_get_own_line) {
s_desired_append_char(s, L'\n', 0, 0, 0);
first_line_prompt_space = 0;
}
// Reconstruct the command line.
wcstring effective_commandline = explicit_command_line + layout.autosuggestion;
// Output the command line.
size_t i;
for (i = 0; i < effective_commandline.size(); i++) {
// Grab the current cursor's x,y position if this character matches the cursor's offset.
if (!cursor_is_within_pager && i == cursor_pos) {
cursor_arr = s->desired.cursor;
}
s_desired_append_char(s, effective_commandline.at(i), colors[i], indent[i],
first_line_prompt_space);
}
// Cursor may have been at the end too.
if (!cursor_is_within_pager && i == cursor_pos) {
cursor_arr = s->desired.cursor;
}
// Now that we've output everything, set the cursor to the position that we saved in the loop
// above.
s->desired.cursor = cursor_arr;
if (cursor_is_within_pager) {
s->desired.cursor.x = (int)cursor_pos;
s->desired.cursor.y = (int)s->desired.line_count();
}
// Append pager_data (none if empty).
s->desired.append_lines(pager.screen_data);
s_update(s, layout.left_prompt.c_str(), layout.right_prompt.c_str());
s_save_status(s);
}
void s_reset(screen_t *s, screen_reset_mode_t mode) {
CHECK(s, );
bool abandon_line = false, repaint_prompt = false, clear_to_eos = false;
switch (mode) {
case screen_reset_current_line_contents: {
break;
}
case screen_reset_current_line_and_prompt: {
repaint_prompt = true;
break;
}
case screen_reset_abandon_line: {
abandon_line = true;
repaint_prompt = true;
break;
}
case screen_reset_abandon_line_and_clear_to_end_of_screen: {
abandon_line = true;
repaint_prompt = true;
clear_to_eos = true;
break;
}
}
// If we're abandoning the line, we must also be repainting the prompt.
assert(!abandon_line || repaint_prompt);
// If we are not abandoning the line, we need to remember how many lines we had output to, so we
// can clear the remaining lines in the next call to s_update. This prevents leaving junk
// underneath the cursor when resizing a window wider such that it reduces our desired line
// count.
if (!abandon_line) {
s->actual_lines_before_reset = maxi(s->actual_lines_before_reset, s->actual.line_count());
}
if (repaint_prompt && !abandon_line) {
// If the prompt is multi-line, we need to move up to the prompt's initial line. We do this
// by lying to ourselves and claiming that we're really below what we consider "line 0"
// (which is the last line of the prompt). This will cause us to move up to try to get back
// to line 0, but really we're getting back to the initial line of the prompt.
const size_t prompt_line_count = calc_prompt_lines(s->actual_left_prompt);
assert(prompt_line_count >= 1);
s->actual.cursor.y += (prompt_line_count - 1);
} else if (abandon_line) {
s->actual.cursor.y = 0;
}
if (repaint_prompt) s->actual_left_prompt.clear();
s->actual.resize(0);
s->need_clear_lines = true;
s->need_clear_screen = s->need_clear_screen || clear_to_eos;
if (abandon_line) {
// Do the PROMPT_SP hack.
int screen_width = common_get_width();
wcstring abandon_line_string;
abandon_line_string.reserve(screen_width + 32); // should be enough
// Don't need to check for fish_wcwidth errors; this is done when setting up
// omitted_newline_char in common.cpp.
int non_space_width = fish_wcwidth(omitted_newline_char);
if (screen_width >= non_space_width) {
bool has_256_colors = output_get_color_support() & color_support_term256;
if (has_256_colors) {
// Draw the string in term256 gray.
abandon_line_string.append(L"\x1b[38;5;245m");
} else {
// Draw in "bright black" (gray).
abandon_line_string.append(
L"\x1b[0m" // bright
L"\x1b[30;1m"); // black
}
abandon_line_string.push_back(omitted_newline_char);
abandon_line_string.append(L"\x1b[0m"); // normal text ANSI escape sequence
abandon_line_string.append(screen_width - non_space_width, L' ');
}
abandon_line_string.push_back(L'\r');
// Now we are certainly on a new line. But we may have dropped the omitted newline char on
// it. So append enough spaces to overwrite the omitted newline char, and then clear all the
// spaces from the new line
abandon_line_string.append(non_space_width, L' ');
abandon_line_string.push_back(L'\r');
abandon_line_string.append(L"\x1b[2K");
const std::string narrow_abandon_line_string = wcs2string(abandon_line_string);
write_loop(STDOUT_FILENO, narrow_abandon_line_string.c_str(),
narrow_abandon_line_string.size());
s->actual.cursor.x = 0;
}
if (!abandon_line) {
// This should prevent resetting the cursor position during the next repaint.
write_loop(STDOUT_FILENO, "\r", 1);
s->actual.cursor.x = 0;
}
fstat(1, &s->prev_buff_1);
fstat(2, &s->prev_buff_2);
}
bool screen_force_clear_to_end() {
bool result = false;
if (clr_eos) {
data_buffer_t output;
s_write_mbs(&output, clr_eos);
if (!output.empty()) {
write_loop(STDOUT_FILENO, &output.at(0), output.size());
result = true;
}
}
return result;
}
screen_t::screen_t()
: desired(),
actual(),
actual_left_prompt(),
last_right_prompt_width(),
actual_width(SCREEN_WIDTH_UNINITIALIZED),
soft_wrap_location(INVALID_LOCATION),
autosuggestion_is_truncated(false),
need_clear_lines(false),
need_clear_screen(false),
actual_lines_before_reset(0),
prev_buff_1(),
prev_buff_2(),
post_buff_1(),
post_buff_2() {}